

Reaching SDV Level 5 when budgets shrink

Dylan Dawson November 13, 2025

The Levels of Software-Defined Vehicles

SDV LEVEL O
Software-enabled

Mechanical functions made possible via software

· No Updates

Customer experience

Scope of adaptability

and dynamics

Examples

- No connectivity
- Parking assistance
- Adaptive cruise control

SDV LEVEL 1
Connected

Information and control via connectivity

- · Static software
- · Dynamic environment
- · Live traffic information
- Mobile phone companion app

SDV LEVEL 2
Updateable

Vehicle maintenance via OTA updates

- Static functionality
- · Dynamic software
- · Navigation update

Security patches

SDV LEVEL 3
Upgradeable

New functions via software upgrades

- · Static target hardware
- · Dynamic functionality
- New function in a single car line

SDV LEVEL 4
Software Platform

Car always feels new via crossgeneration software upgrades

- Singular software provider
- Dynamic target hardware
- New function delivered to all vehicle generations

EB Elektrobit

SDV LEVEL 5

Full customization via ecosystem of 3rd party functions

- · Diverse software providers
- New 3rd party function deployed in a multi-brand fleet

The Levels of Software-Defined

Software-enabled

Mechanical functions made possible via software

Scope of adaptability and dynamics • No Updates

Customer experience

No connectivity

Examples

- Parking assistance
- Adaptive cruise control

• Static

SI

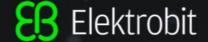
Info

- Dynami
- Live trans
- · Mobile

The Levels of Software-Defined Ve

evels of Software-Defined Vehicles

oftware-Defined Vehicles

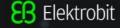

Defined Vehicles

Elektrobit

Defined Vehicles

SDV LEVEL 5
Innovation Platform

Full customization via ecosystem of 3rd party functions


• Diverse software providers

ross-

ades

 New 3rd party function deployed in a multi-brand fleet

The Levels of Software-Defined Vehicles

SDV LEVEL 5

Innovation Platform

Full customization via ecosystem

of 3rd party functions

Diverse software providers

SDV LEVEL 0 Software-enabled

Mechanical functions made possible via software

- No Updates
- No connectivity
- Parking assistance
- · Adaptive cruise control

SDV LEVEL 1 Connected

Information and control via connectivity

- · Static software
- Dynamic environment
- · Live traffic information
- Mobile phone companion app

SDV LEVEL 2 Updateable

Vehicle maintenance via OTA updates

- Static functionality
- Dynamic software
- Navigation update Security patches

SDV LEVEL 3 Upgradeable

New functions via software upgrades

- · Static target hardware
- · Dynamic functionality

car line

· New function in a single

SDV LEVEL 4 Software Platform

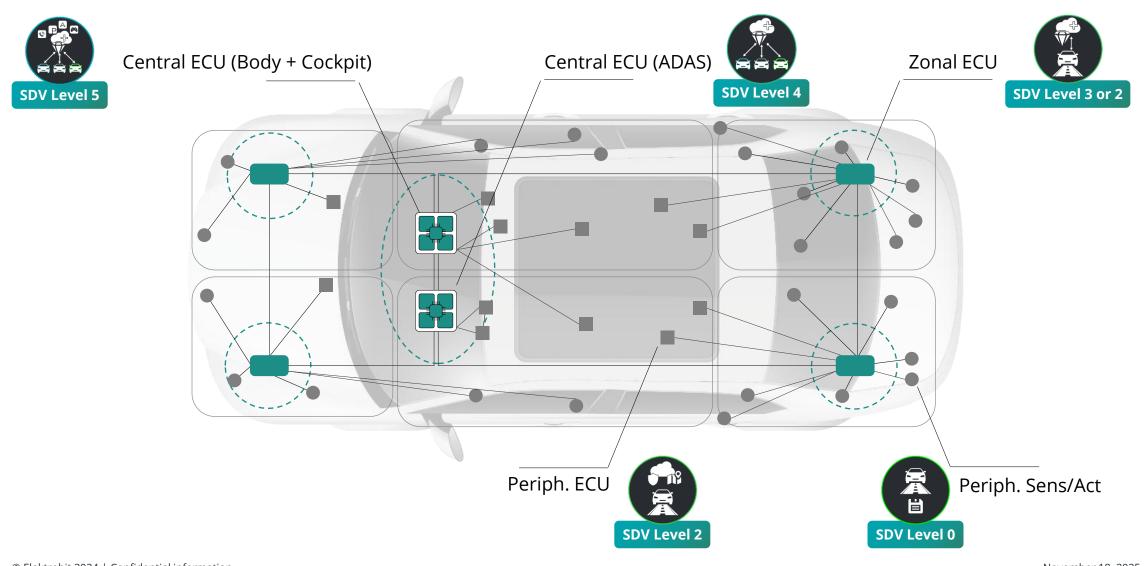
Car always feels new via crossgeneration software upgrades

- · Singular software provider
- · Dynamic target hardware
- · New function delivered to all New 3rd party function vehicle generations deployed in a multi-brand fleet

Optional Domain Restriction

Customer experience

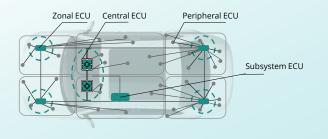
Scope of adaptability


and dynamics

Examples

Example: SDV Level 4 for cockpit domain

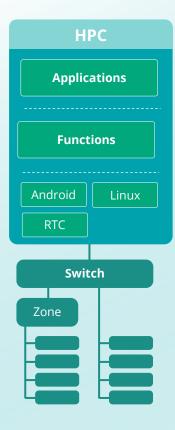
Do I really need to re-architect my complete platform to reach level 5?


Primary SW pitfall: Doing SDV everywhere

© Elektrobit 2024 | Confidential information November 18, 2025 **10**

The most common mistakes

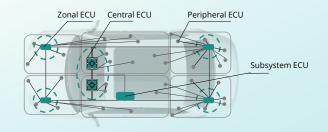
When building scalable E/E architecture


Scalable E/E architecture

Pain points

Targeting the wrong upgradability level for an ECU type

Software reusabilty blocked by insufficent backward/forward compatibility and portability across vehicles


Lack of integration automation and high number of variants

Failure to scale hardware across vehicle trims (low/high price-points)

© Elektrobit 2025 | Confidential information November 18, 2025 | 11

Right-sized SDV Architecture

Reduce cost while capturing SDV value

Leverage your existing E/E architecture **Implement non-disruptive cost** reductions

Capture value with low-hanging fruit

Open application ecosystem to 3rd party developers for IVI only

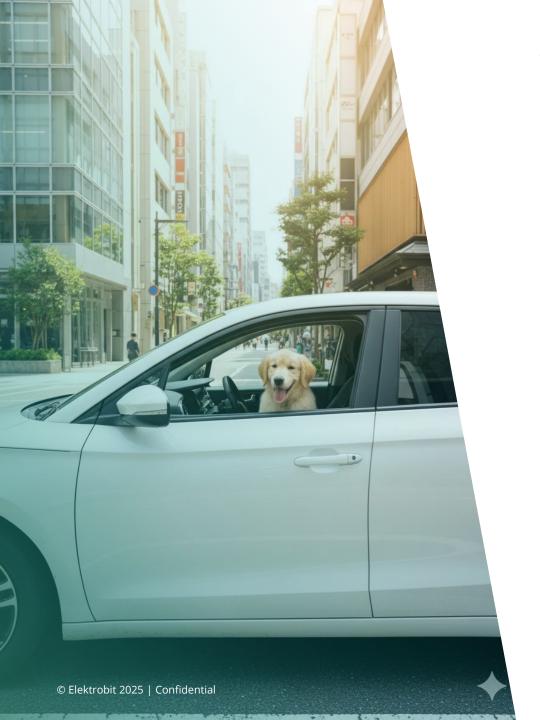
Upgrades up to SDV Level 4 **optionally** in other HPCs (esp. ADAS)

Safe open-source to leverage existing ecosystems and to provide abstraction Iterate on scalable E/E architecture **HPC**

SDV-value zone

Switch SomeIP Zone Discover Discover November 18, 2025 **12**

HPC Applications Functions Android RTC vehicles/brands **Switch** Zone


Abstraction layers and **Semantic API** to separate EE architecture from upgrade scope

Automate integration and reduce SW variants to be managed for different

Consolidate functions to zonal and maintain legacy ECUs and buses unless they are consolidated

Reduce complexity of edge ECUs that require cost scalability and integrate via device discovery

SDV-cost zone

"Roll-down the window by 10% when an animal is in the car and the outside temperature is above 25°C"

Optimize for roll-out of the function across vehicle lines.

- 1. The function is completely agnostic of the vehicle architecture.
- It is relevant for all vehicle price-points, yet available sensors and acutators may differ (e.g. interior camera, seat occupancy)
- It has no direct safety allocation if e.g. anti-pinch is already solved in the actuator

Pet protection

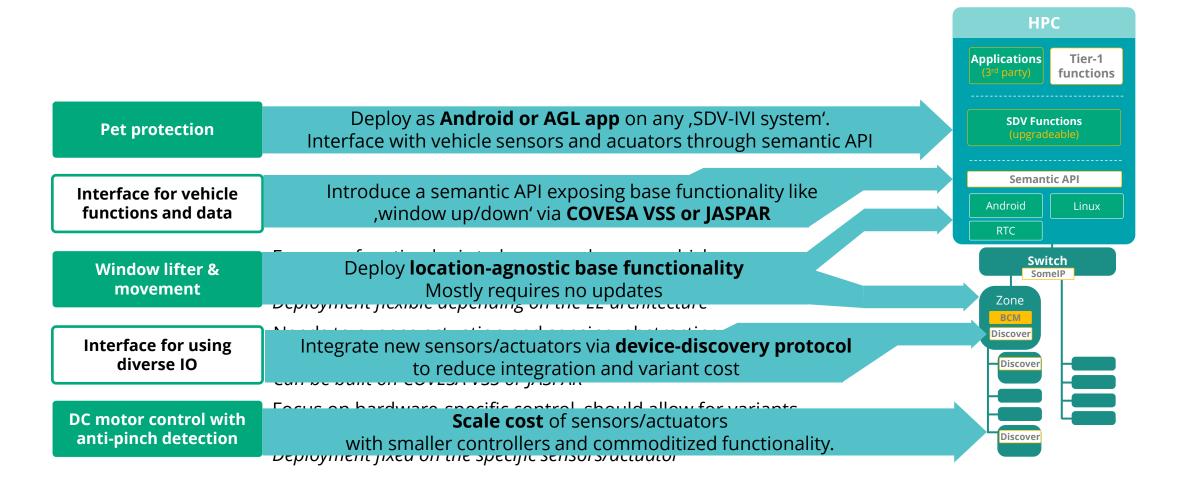
Focus on fast dev. and deployment Can be built on Android or AGL

Interface for vehicle functions and data

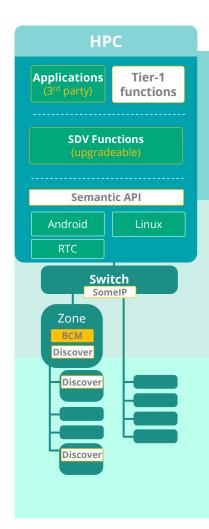
Needs to expose window lifter and sensors (vehicle agnostic) Can be built on COVESA VSS or JASPAR

Window lifter & movement

Focus on function logic to be re-used across vehicles Can be HPCs or Classic AUTOSAR Deployment flexible depending on the EE architecture


Interface for using diverse IO

Needs to expose actuation and sensing, abstracting specific HW


Can be built on COVESA VSS or JASPAR

DC motor control with anti-pinch detection

Focus on hardware-specific control, should allow for variants Can be small scale controllers, must have safety and real-time Deployment fixed on the specific sensors/actuator

© Elektrobit 2025 | Confidential November 18, 2025

Upgrade scope limited to HPC

Reduction of SW variants on HPC and zonal

Re-use of peripheral ECUs

Incremental introduction of pluggable commodity sensors and actuators

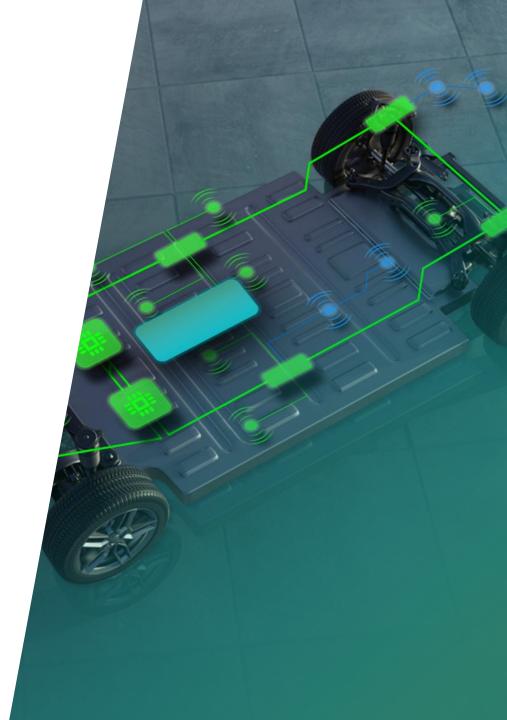
© Elektrobit 2025 | Confidential November 18, 2025

Right-sized SDV

A semantic API on Cockpit systems is your fast-path to SDV Expose vehicle base functionality in a standard API and use app frameworks

Re-use your existing EE architecture

You only evolutionarily change your architecture for cost improvements



Grow on open ecosystems

Build your SDV functions on top of ecosystems like COVESA and JASPAR

Commoditize peripheral hardware with device discovery Achieve price scalability across your vehicle line-up with standardized sensors/actuators

Contact us

Dr. Moritz Neukirchner

Head of Cross-Portfolio Growth and Alliances Elektrobit – Driving the future of software

moritz.neukirchner@elektrobit.com elektrobit.com

> **Dylan Dawson** Business Development Elektrobit

Dylan.dawson@elektrobit.com

