
www.elektrobit.com

Enhancing automotive HPC safety
with Linux: a comprehensive overview

Tech paper

http://www.elektrobit.com

2

EB corbos Linux for Safety Applications

Summary
of white paper contents

1. Introduction 3

 1.1 Functional safety matters 3

 1.2 Automated driving increases the need for safety-relevant software 4

 1.3 High-performance computing and applicability to AD/ADAS and cockpit 4

2. The role of Linux in automotive systems 5

	 2.1	 Understanding	and	defining	the	Automotive	OS	 5

	 2.2	 Advantages	of	using	Linux	in	automotive	systems	 5

 2.3 Advantages of using a specialized Linux distribution in automotive over enterprise
distributions or embedded Linux build system 6

3. Functional safety standards and regulations in the automotive industry 7

	 3.1	 Overview	of	relevant	safety	standards	and	regulations	 7

	 3.2	 Impact	of	functional	safety	standards	on	Linux-based	automotive	systems	 7

4. Safety solution for Linux in automotive 8

 4.1 Functional safety-relevant failure scenarios 9

 4.2 Integration of safety measures into the Linux-based automotive software stack 10

5. Best practices and recommendations 11

6. Conclusion 11

7. References 12

3

EB corbos Linux for Safety Applications

Enhancing automotive HPC safety with Linux: a comprehensive overview

Synopsis: Architecture, stage of development, and concept of EB corbos Linux for Safety Applications.
The reader will learn how Linux and safety for HPC in vehicles works.

Author: Joachim Schlosser

1. Introduction

1.1 Functional safety matters

Since the 1990s, the automotive industry has witnessed a proliferation of electronic control units (ECUs) in
vehicles, driven by increasing system complexity. Features such as anti-lock braking systems, traction control, and
advanced driver assistance systems (ADAS) demanded dedicated ECUs, allowing for optimization, and ensuring
efficient	performance	and	reliability.

This modular approach to ECU design facilitated easier integration of new features without overhauling the entire
system,	offering	flexibility	and	cost-effectiveness	in	sourcing,	assembly,	and	maintenance.	Moreover,	dedicated	
ECUs	 for	 critical	 functions	 such	 as	 braking	 and	 airbag	 deployment	 significantly	 improved	 vehicle	 safety	 and	
reliability by isolating these functions and reducing the risk of system failures.

Regulatory requirements and industry standards have further propelled the adoption of multiple ECUs in vehicles.
Mandates	for	emissions	control,	safety,	and	cybersecurity	often	stipulated	the	use	of	dedicated	ECUs	for	specific	
functions. Additionally, industry standards and protocols facilitated interoperability and compatibility between
different	ECUs	and	vehicle	systems,	ensuring	seamless	integration	and	operation.	With	more	and	more	software	
functionality, high-performance computing (HPC) systems now aim to bundle functionality of many ECUs into a
single system-on-a-chip (SoC) or SoC cluster within less, but larger ECUs.

Functional safety remains paramount in automotive high-performance computing (HPC) systems, due to their
integral role in managing both safety-critical and non-safety-critical applications. Compliance with the applicable
standards	and	regulations,	such	as	ISO	26262	[1]	for	functional	safety	is	required	for	HPC	systems	to	achieve	the	
required reliability, functional safety, security and especially cybersecurity, privacy, and data protection.

1.2 Automated driving increases the need for safety-relevant software

Automated	driving,	also	known	as	(partially)	autonomous	driving	or	self-driving	technology,	significantly	increases	
the amount of safety-relevant software in vehicles for several main reasons:

Complexity of control systems. The intricate interactions among components such as complex sensors –
cameras	or	radars	–	and	control	units	drive	the	increasing	complexity	of	automated	driving	systems.[1]	Substantial	
data volumes from complex sensors require advanced and intensive data processing. The integration of diverse
complex sensors and advanced data processing require the co-operation of many skilled interdisciplinary teams.
Making	complex	control	systems	functionally	safe	is	inherently	complex,	too.

Object recognition and situation interpretation.	AD/ADAS	systems	need	to	first	build	a	model	of	an	uncertain	
and	 changing	 environment	 (the	 road,	 other	 drivers,	 pedestrians,	 the	 vehicle	 itself ... ).	 This,	 in	 turn,	 requires	
collecting	and	processing	 information	from	different	sensors	and	aggregating	them	into	that	model,	and	then	
using the model to make decisions about how to drive the vehicle. This process requires extensive and intensive
data acquisition and processing, including images and signals.

Redundancy and fail-operational mechanisms. Safety-critical systems in automated vehicles often incorporate
redundancy and fault detection and negation mechanisms to ensure availability and functional safety.

4

EB corbos Linux for Safety Applications EB corbos Linux for Safety Applications

For example, redundant sensor arrays and redundant processing units are employed to cross-validate data and
detect/negate/mitigate	potential	failures.[2]	Sophisticated	fault	detection,	isolation,	and	recovery	algorithms	are	
often	used	to	detect	anomalies,	thus	ensuring	safe	operation.[3–5]

In	ADAS	systems	up	to	SAE	Level	2,[6]	the	driver	is	always	the	ultimate	supervisor	and	holds	final	responsibility	
for the vehicle, even if the system fails. From SAE Level 3, the system bears the full responsibility for the safety
of the vehicle, while the driver is not required to supervise its operations. For this reason, systems are required
to be able to perform an emergency function even after a fault, at least for a limited time (for instance, until the
vehicle	has	been	parked).	While	for	fail-safe	systems,	redundancy	can	be	used	to	detect	faults,	for	fail-operational	
systems it also allows the availability required to perform an emergency function in case of a fault or failure. And
of course, this applies to our example of a digital cockpit, where we also need to have a safe state and/or fallback
mechanisms.

Real-time decision-making. Automated driving systems must quickly make a decision in dynamic and
unpredictable driving environments to ensure safe driving. This requires highly responsive and accurate software
capable	of	 processing,	 in	 real	 time,	 vast	 amounts	of	 data	 through	 complex	 algorithms.[7]	 The	 software	must	
account	for	factors	such	as	road	conditions,	traffic	patterns,	weather	conditions,	and	the	behavior	of	other	road	
users	to	make	appropriate	driving	decisions	and	avoid	accidents.[8]

Verification and validation. The development of safety-critical software for automated driving requires proper
verification	and	validation	activities	to	ensure	the	risk	of	residual	errors	complies	with	the	applicable	norms	and	
regulations.	This	includes	testing	in	simulated	and	real-world	environments,	involving	many	different	scenarios	
with	both	virtual	[12-14]	and	real	[11]	driving	data.

Automated driving technology brings various safety-related software components into vehicles. These components
include	everything	from	perception	algorithms	to	fail-operational	mechanisms.	Additionally,	there	are	verification/
validation processes to ensure that all these components work correctly. Ensuring the safety and reliability of these
software	systems	remains	paramount	as	the	automotive	industry	advances	towards	autonomous	driving.	[9]

1.3 High-performance computing and applicability to AD/ADAS and cockpit

While	HPC	systems	support	safety-critical	functions	such	as	autonomous	driving	and	collision	avoidance,	cockpit/
in-vehicle	infotainment	(IVI)	systems	as	use	cases	for	HPC	[10]	primarily	focus	on	non-safety-critical	functions	such	
as entertainment and GPS navigation, but also perform safety-related functionalities. Regardless of their level of
criticality, both cases share the same challenges related to system complexity, interconnectivity, and potential
failure modes, necessitating robust functional safety measures to ensure reliable operation.

Fig. 1. Edge-to-edge digital cockpit as shown at CES 2024 [10]

A cockpit system is a good example. Intensive computation resources are required for all the screen real estate,
and might lead towards needing an HPC. It is worth noting that the cockpit can also be used to show safety-critical
information, which then requires to take functional safety into account. In vehicle technology, both automated
driving and advanced driver assistance systems (ADAS) involve the cockpit, which constitutes the human-machine
interface and as such is critical for the overall vehicle control.

2. The role of Linux in automotivesystems

2.1 Understanding and defining the Automotive OS

One	of	the	most	common	terms	currently	used	by	carmakers	is	Automotive	OS	(automotive	operating	system).
[11]	It	gives	the	impression	that	a	car	actually	has	a	single	operating	system,	like	your	mobile	phone	or	your	PC,	
and	 is	 the	 incarnation	of	 the	 'software	defined	vehicle'	 –	another	 term	broadly	used	 in	 the	automotive	world	
currently. Yet, we all know that a car in fact contains dozens of individual ECUs, all running their own software,
held together via multiple networks such as CAN or Ethernet using common communication standards mostly
defined	by	AUTOSAR	[12].	How	should	such	a	collection	of	ECUs	act	as	a	single	automotive	operating	system?	And	
how	should	such	a	scattered	infrastructure	be	safe	and	secure	[13]?

To	address	these	questions,	we	need	to	start	with	a	definition	of	the	term	'Automotive	OS'.	Elektrobit	uses	three	
statements	to	define	the	properties	of	an	Automotive	OS:

“The Automotive OS is a software platform that abstracts the complex vehicle network
of ECUs as one device.”[14]

This	means	that	for	the	Automotive	OS	we	are	not	talking	about	a	single	operating	system.	In	fact,	it	is	a	software	
layer	 to	hide	 the	 complex	 collection	of	 ECUs	with	 its	 communication	matrices	using	 a	 defined	 interface.	 This	
allows applications such as the infotainment and cluster systems to interact with drivers and passengers, but also
enables cloud connectivity to access the car's functionality without knowing the vehicle's network structure. This
increases	the	portability	between	car	models	and	different	generations	of	the	software	platform.[15,	16]
“The Automotive OS manages, supervises, and updates the device.” [14]

Of	course,	 the	software	platform	 that	makes	up	 the	Automotive	OS	knows	about	 the	 internal	network	of	 the	
vehicle.	It	makes	sure	that	individual	components	are	configured	correctly,	operating	in	the	right	state,	and	acts	
as an interface to the outside world. It also makes sure that all components are up to date and run on compatible
software versions.

“The Automotive OS enables an ecosystem by harmonizing the APIs against which functions
are developed.” [14]

While	the	first	two	statements	already	improve	the	maintainability	of	a	carmaker's	software	platform	significantly,	
this	 statement	 summarizes	 the	 full	 power	 of	 the	 Automotive	OS	 concept:	 “We	need	 to	 provide	 an	 open	 and	
defined	interface	to	applications	that	can	function	between	different	car	models,	brands,	and	even	generations	–	
such	as	your	mobile	phone	apps	that	run	on	multiple	OS	versions	and	various	devices.”[17]

2.2 Advantages of using Linux in automotive systems

GNU/Linux,	an	open-source	operating	system,	offers	numerous	advantages	for	automotive	systems.	It	provides	
customizable features and functionalities, reliability, and stability across various use cases such as server
environments, cloud computing, HPC, and Android devices.

Large developer pool.	One	major	advantage	of	GNU/Linux	is	its	large	developer	pool.	Together	with	the	large	
number of users and user organizations, this contributes to continuous improvement and providing valuable
resources,	documentation,	and	support.	Well-known	APIs	simplify	development	and	integration,	reducing	time	
and	effort.	Additionally,	the	open-source	nature	eliminates	vendor	lock-in,	enabling	organizations	to	choose	from	
multiple	suppliers	and	ensuring	flexibility	even	if	the	original	supplier	becomes	unavailable.

Rapid evolution cycle.	GNU/Linux	benefits	 from	a	rapid	evolution	cycle,	with	regular	updates,	bug	fixes,	and	
feature enhancements keeping the operating system up to date.

5

EB corbos Linux for Safety Applications EB corbos Linux for Safety Applications

2. The role of Linux in automotivesystems

2.1 Understanding and defining the Automotive OS

One	of	the	most	common	terms	currently	used	by	carmakers	is	Automotive	OS	(automotive	operating	system).
[11]	It	gives	the	impression	that	a	car	actually	has	a	single	operating	system,	like	your	mobile	phone	or	your	PC,	
and	 is	 the	 incarnation	of	 the	 'software	defined	vehicle'	 –	another	 term	broadly	used	 in	 the	automotive	world	
currently. Yet, we all know that a car in fact contains dozens of individual ECUs, all running their own software,
held together via multiple networks such as CAN or Ethernet using common communication standards mostly
defined	by	AUTOSAR	[12].	How	should	such	a	collection	of	ECUs	act	as	a	single	automotive	operating	system?	And	
how	should	such	a	scattered	infrastructure	be	safe	and	secure	[13]?

To	address	these	questions,	we	need	to	start	with	a	definition	of	the	term	'Automotive	OS'.	Elektrobit	uses	three	
statements	to	define	the	properties	of	an	Automotive	OS:

“The Automotive OS is a software platform that abstracts the complex vehicle network
of ECUs as one device.”[14]

This	means	that	for	the	Automotive	OS	we	are	not	talking	about	a	single	operating	system.	In	fact,	it	is	a	software	
layer	 to	hide	 the	 complex	 collection	of	 ECUs	with	 its	 communication	matrices	using	 a	 defined	 interface.	 This	
allows applications such as the infotainment and cluster systems to interact with drivers and passengers, but also
enables cloud connectivity to access the car's functionality without knowing the vehicle's network structure. This
increases	the	portability	between	car	models	and	different	generations	of	the	software	platform.[15,	16]
“The Automotive OS manages, supervises, and updates the device.” [14]

Of	course,	 the	software	platform	 that	makes	up	 the	Automotive	OS	knows	about	 the	 internal	network	of	 the	
vehicle.	It	makes	sure	that	individual	components	are	configured	correctly,	operating	in	the	right	state,	and	acts	
as an interface to the outside world. It also makes sure that all components are up to date and run on compatible
software versions.

“The Automotive OS enables an ecosystem by harmonizing the APIs against which functions
are developed.” [14]

While	the	first	two	statements	already	improve	the	maintainability	of	a	carmaker's	software	platform	significantly,	
this	 statement	 summarizes	 the	 full	 power	 of	 the	 Automotive	OS	 concept:	 “We	need	 to	 provide	 an	 open	 and	
defined	interface	to	applications	that	can	function	between	different	car	models,	brands,	and	even	generations	–	
such	as	your	mobile	phone	apps	that	run	on	multiple	OS	versions	and	various	devices.”[17]

2.2 Advantages of using Linux in automotive systems

GNU/Linux,	an	open-source	operating	system,	offers	numerous	advantages	for	automotive	systems.	It	provides	
customizable features and functionalities, reliability, and stability across various use cases such as server
environments, cloud computing, HPC, and Android devices.

Large developer pool.	One	major	advantage	of	GNU/Linux	is	its	large	developer	pool.	Together	with	the	large	
number of users and user organizations, this contributes to continuous improvement and providing valuable
resources,	documentation,	and	support.	Well-known	APIs	simplify	development	and	integration,	reducing	time	
and	effort.	Additionally,	the	open-source	nature	eliminates	vendor	lock-in,	enabling	organizations	to	choose	from	
multiple	suppliers	and	ensuring	flexibility	even	if	the	original	supplier	becomes	unavailable.

Rapid evolution cycle.	GNU/Linux	benefits	 from	a	rapid	evolution	cycle,	with	regular	updates,	bug	fixes,	and	
feature enhancements keeping the operating system up to date.

6

EB corbos Linux for Safety Applications

Compatibility. Compatibility with a wide range of hardware architectures allows automotive manufacturers to
select	components	based	on	specific	requirements	without	immediate	software	compatibility	issues.

Source code transparency.	 Moreover,	 complete	 source	 code	 transparency	 in	 GNU/Linux	 facilitates	 efficient	
debugging	 and	 troubleshooting,	 potentially	 leading	 to	 faster	 bug	 fixes	 and	 improved	 system	 stability.	 This	
transparency enhances the overall maintainability of automotive systems built on GNU/Linux.

2.3  Advantages of using a specialized Linux distribution in automotive over
enterprise distributions or embedded Linux build system

Choosing a Linux distribution over an embedded Linux build system
such	 as	 Yocto	 [18]	 for	 automotive	 applications	 warrants	 consideration	
due to several key factors, with maintenance standing out as a critical
consideration.	 While	 Yocto	 offers	 flexibility	 and	 customization	 options	
for embedded systems, it requires substantial expertise and resources to
maintain	and	update	it	effectively.	In	contrast,	a	Linux	distribution	tailored	
for automotive use streamlines maintenance processes by providing pre-
configured	 components	 and	 support	 for	 automotive-specific	 features,	
reducing the burden on development teams, and ensuring system security
over the vehicle's life cycle.

It also needs to be considered that a general-purpose Linux distribution
does	not	match	the	specific	needs	of	the	automotive	domain	because	of	
its excessive storage and memory requirements. Until now this has been
addressed by simply minimizing the number of packages, which is not an
effective	solution	because	it	adversely	affects	the	functionality.
Moreover,	 a	 dedicated	 automotive	 Linux	 distribution	 offers	 targeted	
optimizations and enhancements for automotive use cases, automotive-
grade security features and should comply with the applicable standards
and	 regulations	 such	 as	 ISO	26262.	 This	 specialized	 solution	EB corbos
Linux for Safety Applications comes equipped with software stacks and
tools tailored for automotive development, enabling faster time to market
and reducing development costs.

7

EB corbos Linux for Safety Applications

3.  Functional safety standards and
regulations in the automotive industry

3.1 Overview of relevant safety standards and regulations

Relevant automotive safety standards and regulations play a crucial role in ensuring the safety and reliability of
vehicles	on	the	road.	One	of	the	most	prominent	standards	 is	 ISO	26262,	which	outlines	the	functional	safety	
requirements	 for	 electrical	 and	 electronic	 systems	 in	 road	 vehicles.[19]	 ISO	26262	provides	 a	 comprehensive	
framework	 for	 the	 development,	 implementation,	 and	 verification	 of	 safety-critical	 systems	 throughout	 the	
automotive supply chain. It covers various aspects, including hazard analysis and risk assessment, safety goals
definition,	hardware	and	software	development	processes,	and	verification	and	validation	activities,	all	aimed	at	
minimizing the risk of system failures and ensuring vehicle safety.

On	a	software	source	code	level,	for	automotive	this	usually	includes	adhering	to	MISRA-C	and	derivatives.	[20]	
While	there	are	coding	guidelines	for	GNU/Linux	[21,	22]	available,	those	are	not	geared	towards	embedded	let	
alone functional-safety-relevant systems.

In	addition	to	ISO	26262,	automotive	manufacturers	must	comply	with	regional	safety	regulations	and	standards	
specific	to	their	target	markets.	If	companies	want	to	put	an	electronic	or	software	system	on	the	road,	they	must	
take functional safety into account. Product liability laws, even when not explicitly demanding compliance to
certain	functional	safety	standard,	hold	OEMs	accountable	for	ensuring	their	systems	are	developed	with	state-
of-the-art	technology	including	verification	and	validation.

3.2 Impact of functional safety standards on Linux-based automotive systems

“The	Linux	kernel,	as	a	prominent	open-source	component,	attracts	significant	attention	from	security	researchers	
and the broader developer community. Its transparent nature allows for in-depth analysis, leading to a higher
reporting	rate	of	security	vulnerabilities	compared	to	closed-source	software.”	[23]

This makes for a solid cybersecurity performance but does not yet talk about functional safety. Functional safety
is another axis of consideration. The Linux kernel was not designed for vehicle systems to operate reliably and
safely, even in the presence of malfunctions or errors, to prevent accidents and protect passengers and road
users. Even more, the GNU system around the kernel was even less designed for this purpose. This makes for a
solid cybersecurity performance but does not achieve the required functional safety. The Linux kernel was not
designed to operate reliably and safely and even less to handle malfunctions or errors. The GNU system around
the kernel was even less designed for safety-critical and mission-critical applications. As a consequence, it would
not be realistically possible to specify and demonstrate the functional safety of GNU/Linux using the methods,
techniques, and procedures that are commonly applied to achieve and demonstrate the compliance with the
applicable functional safety norms and standards.

Making	GNU/Linux	suitable	for	functional-safety-relevant	applications	requires	a	very	innovative	approach	and	
thinking 'out of the box'.

8

EB corbos Linux for Safety Applications

4. Safety solution for Linux in automotive

Let’s take a closer look at EB corbos Linux for Safety Applications as the solution for safety-relevant systems
automotive HPC system based on open source.

A TÜV assessed safety architecture for an HPC system with Linux for automotive applications

The safety concept involves the integration of safety measures within the software of the ECU to ensure the
validity of critical systems in automotive applications.

In	order	to	show	the	potential	and	benefits	of	its	solution,	Elektrobit	has	developed	an	example	system.	The	example	
system displays a video stream generated by the vehicle's sensors or cameras, providing visual information about
the vehicle's surroundings. The video stream and other relevant data are shown on display screens, showing the
software behavior and system responses, allowing viewers to understand the system’s behavior. The software
includes a safety monitoring system that continuously analyzes a video feed for errors or anomalies. If any issues
are detected, the system takes appropriate action, such as shutting down the system to prevent potential safety
hazards.	The	demo	includes	a	mechanism	for	inducing	error	scenarios	by	injecting	faults	into	the	video	feed	or	the	
Linux kernel, emulating real-world situations where the system must detect and respond to anomalies.

An exemplary architecture for a system is illustrated in Fig. 2. In this example, there is another operating system
partition	integrated	in	the	HPC,	using	an	Android	framework	serving	special	display	use	cases	for	which	the	OEM	
might want to use existing software modules. The shaded, outlined areas show the safety integrity level for which
the components are being developed and run.

app

app

app

app

MW

app app

RTE

EB tresos Safety (BSW)

EB tresos OS

Safety MCAL SoC enablement
OS safety monitorEB corbos Hypervisor

EB corbos Linux kernel Android Linux kernelEB corbos Linux for Safety
Applications kernel

Base
• Startup
• Update
• Monitoring
• Logging
...

Container n

Android framework

Hardware abstraction
layer (HAL)

Middleware
API

Container 1

Container
1a

Safety middleware API
Automotive libraries
(Adaptive AUTOSAR,

ROS/ROS2, ...)

Bootleader Bootleader

HPC cores (Cortex A78AE, for example) RTC cores
(Cortex M, R or external MCU)

ASIL-B/D ASIL-B/D QM QM

Fig. 2. Example integration cockpit + IVI [24

The	illustration	of	an	exemplary	digital	cockpit	architecture	shows	the	different	hardware	and	software	layers.	
Starting	from	bottom	to	top,	the	system-on-a-chip	(SoC)	uses	one	or	more	RTC	cores	such	as	the	ARM	Cortex	M,	
R,	or	an	external	MCU.	The	HPC	cores	will	usually	comprise	ARM	Cortex	A	cores,	such	as	the	Cortex	A78AE,	for	
example. RTC and HPC cores each have their own bootloader.

9

EB corbos Linux for Safety Applications

In	 this	example,	 the	RTC	section	 lays	 the	safety-enabled	Classic	AUTOSAR	operating	system	EB tresos Safety
OS	 [25]	with	 its	Safety	MCAL	on	top	of	 the	bootloader,	but	could	also	have	the	dedicated	real-time	EB tresos
Embedded Hypervisor	[26]	below,	in	case	multiple	Classic	AUTOSAR	instances	are	needed.

The dedicated HPC hypervisor EB corbos Hypervisor	[27]	with	the	specific	SoC	enablement	and	the	OS	safety	
monitor	serves	as	the	basis	for	multiple	HPC	operating	system	instances.	The	hypervisor	and	OS	safety	monitor	
are	 safety	 components	 and	developed	 in	 full	 accordance	with	 relevant	 quality	 [28]	 and	 safety	 standards	 [19,	
29].	 A	 non-safety	 (quality-managed	 (QM))	 Linux	 partition	 runs	 all	 regular	 non-safety-related	 functions,	 e.g.	 as	
performance	 applications	 in	 a	 containerized	 environment.	 [30,	 31]	 In	 the	 example	 of	 the	 digital	 cockpit,	 the	
Android framework also runs as a non-safety-related partition, for use cases as mentioned above. Finally, the EB
corbos Linux for Safety Applications	kernel	[32]	is	a	separate	virtual	machine	on	a	hypervisor,	with	the	safety	
middleware API, such as EB corbos Adaptive	[33]	or	ROS	[34],	as	basis	for	performance	safety	applications	that	
are	ISO	26262	ASIL-A/B	enabled.

This concept encompasses several key aspects:

1. Error monitoring: The system continuously monitors for errors, particularly in the example’s video stream,
which is critical for various automotive functionalities.

2. High-integrity partition: A high-integrity partition within the ECU is responsible for generating and monitoring
the video feed. It ensures that the video stream promptly detects any errors or anomalies.

3. OS safety monitor:	The	OS	safety	monitor,	aka	supervisor,	oversees	the	functions	of	the	high	integrity	partition,	
ensuring its proper operation. It also monitors for faults within the partition and triggers shutdown procedures
if necessary.

Overall,	 this	 safety	 concept	aims	 to	 create	a	 robust	 system	 that	 can	detect	and	 respond	 to	potential	hazards	
or malfunctions, enhancing the safety and reliability of automotive systems. Higher integrity levels (ASIL) are
well	possible	by	functional	decomposition	[35,	36]	or	multichannel	approaches.	In	ISO	26262	context,	functional	
decomposition involves breaking down ASIL-D functions, which have the highest safety requirements, e.g., into
redundant	ASIL-B(D)	requirements.[37Ch.	5].	These	ASIL-B(D)	requirements	then	can	be	implemented	in	ASIL-B	
components	with	sufficient	freedom	from	interference.[37Ch.	6–7]

EB corbos Linux for Safety Applications is protected by patents due to its technological approach which
decouples	OSS	from	the	supervisor.

4.1  Functional safety-relevant failure scenarios

The failure scenarios demonstrated with the example system introduced above involve inducing errors in the
video stream or directly in the monitor.

Nominal use case:	A	performance	application	runs	on	our	Linux	distribution	[32]	and	processes	image	data.	A	
safety-critical application runs on the safety derivative of the Linux distribution, in a second hypervisor virtual
machine, and supervises the performance application. The supervisor protects the data integrity of the safety-
critical application.

Fault within the performance application:	In	the	first	scenario,	an	error	is	injected	into	the	video	feed,	causing	
the video stream generator to transmit an invalid image to the safety application. The system detects the error in
the video feed, leading to the display of a red indicator and subsequent system shutdown.

Kernel fault corrupting the safety-critical application:	When	the	kernel	of	the	safety-enabled	Linux	partition,	
for example, performs an access to an unauthorized memory area, a dedicated safety layer of our operating system
solution,	called	supervisor,	detects	this,	and	notifies	the	external	user	interface,	running	on	the	PC,	via	GPIO.	It	
should be noted that functional safety is a system property, not an inherent feature of any of its components.
Each	function	by	its	very	nature	results	in	specific	functional	safety	requirements	for	the	chain	of	influence	of	this	
function throughout the complete system, and thus creates requirements on the system architecture, resulting in
requirements on the hardware as well as software and software architecture.

10

EB corbos Linux for Safety Applications

While	in	the	classic	ECU	world	as	mentioned	above,	this	led	to	specialized	hardware	for	many	functions,	fulfilling	
specific	 functional	 safety	 needs	 amongst	 others,	 the	 strong	need	 and	desire	 to	 reduce	 variants	 and	 increase	
centralization as well as the reduction of hardware complexity, drive the E/E architecture evolution towards
architectures that allow for various functional safety concepts.

Both	scenarios	highlight	the	system's	ability	to	detect	errors	and	initiate	shutdown	procedures,	highlighting	the	
robustness of safety measures integrated into the system.

4.2  Integration of safety measures into the Linux-based
automotive software stack

The	goal	is	for	the	safety	application	to	execute	correctly	and	provide	appropriate	notification	otherwise.	Safety	
extensions within EB corbos Linux for Safety Applications incorporate aspects of keeping the system safe:

Supervise and legitimate user-space initialization with its processes.	When	a	Linux	system	boots	up,	various	
user-space components need to be initialized to enable the system to function properly. This initialization process
involves loading necessary libraries, setting up environment variables, and executing startup scripts or binaries.
Legitimate in this context implies that the initialization process follows established conventions, respects security
mechanisms, and adheres to best practices. In particular, specialized startup and service initialization modules
such	as	crinit	[38]	and	cominit	[39]	replace	non-automotive	ready	script-based	solutions.

Separate read/write/exec rights on memory regions in between kernel and applications. In Linux, the kernel
does not have write or execute rights on the memory allocated to the applications, which means that the memory
allocated	to	the	application	and	its	content	cannot	be	modified	by	the	Linux	kernel,	which	in	turns	protects	the	
application.

Supervise and legitimate any read/write/exec attempt on the application memory. This means in addition
to	the	different	write	and	execute	rights	described	above,	any	attempt	to	access	the	memory	allocated	to	the	
application is supervised and allowed only if it is legitimate. The goal here is to detect any undue or improper
access to the memory allocated to the application and give notice if such an attempt happens.

Supervise and allow or prevent updates on registers holding the processor state throughout context
switches.	This	ensures	proper	handling	of	process	switching	and	prevents	unauthorized	modifications,	enhancing	
system stability and security.

With	these	extensions,	EB corbos Linux for Safety Applications ensures there will be no improper access to
memory sections that belong to a safety application by the Linux kernel, and there will be no uncontrolled access
to memory sections that belong to a safety application via memory shared with other partitions.
The safety-assessed hypervisor partitions resources for safety and non-safety workloads. The hypervisor’s
operating system safety monitor is responsible for the external monitoring of the EB corbos Linux for Safety
Applications kernel.

11

EB corbos Linux for Safety Applications

5. Best practices and recommendations

Contrary	to	ECU	design	in	earlier	decades,	where	after	SOP	of	the	vehicle	there	were	little	to	no	updates	ever	to	an	
ECU’s	software,	an	HPC	system	design	is	not	a	one-time	activity,	but	a	long-term	continuous	development	project.	

All software development for EB corbos Linux for Safety Applications virtual machine partitions must follow
the	Safety	Manual.	This	does	not	apply	to	non-safety	EB	corbos	Linux,	which	has	no	restrictions.	The	supervision-
concept does scale; further allowed functionalities will be added throughout the upcoming versions.

The adoption of open-source software in the automotive industry brings both opportunities and challenges. In
this section, we draw conclusions based on the discussions presented throughout the paper, highlighting the key
points to consider when evaluating the use of GNU/Linux and open-source software in automotive systems.

It is important to acknowledge that open-source software is not a drop-in replacement for proprietary software,
particularly	 when	 considering	 the	 implications	 of	 long-term	maintenance.	While	 open-source	 software	 offers	
numerous	 advantages	 such	 as	 flexibility,	 transparency,	 and	 a	 large	 developer	 pool,	 it	 also	 requires	 careful	
evaluation	and	consideration	of	specific	application	requirements.

There	are	no	easy	answers	or	'one	size	fits	all'	solutions	when	it	comes	to	selecting	between	proprietary	software	
and GNU/Linux. Each application needs to undergo a thorough analysis, considering the pros and cons of adopting
GNU/Linux, particularly in view of the long-term implications. Factors such as functional requirements, compliance
regulations, and industry standards must be considered to determine the suitability of open-source software for
a	specific	application.[23]

While	open-source	software	is	often	associated	with	cost	savings,	it	is	essential	to	consider	that	the	total	cost	of	
ownership	may	vary	depending	on	the	application's	needs	[15].	Free	software	obtained	directly	from	open-source	
projects	may	lack	warranties	and	guarantees,	which	can	impact	its	suitability	for	use	in	critical	automotive	systems.	
Therefore, sourcing from organizations dedicated to GNU/Linux as a product can provide additional support and
ensure	long-term	maintenance,	potentially	saving	significant	resources	and	mitigating	risks.	Companies	with	deep	
experience	 in	automotive	software	and	Linux	such	as	Elektrobit	can	help	them,	offering	EB	corbos	Linux	[16],	
based	on	Canonical	Ubuntu	[17,	18].

Thoroughly evaluate the needs and priorities of each application when considering the adoption of GNU/Linux.
Consider the long-term implications, compatibility with existing systems, and the availability of dedicated GNU/
Linux suppliers. Engage with suppliers that have a proven track record in delivering long-term maintained GNU/
Linux systems suitable for the automotive industry, such as Elektrobit. This will help ensure ongoing support, bug
fixes,	and	security	updates.

6. Conclusion

Keeping an HPC system functionally safe is by no means an easy task and shall not be underestimated. This
applies	to	GNU/Linux	as	operating	system	for	the	HPC,	too.	Effectively,	EB corbos Linux for Safety Applications
achieves the required level of functional safety without placing any reliance on the Linux kernel itself, and so
using the latest kernel is possible. This allows for future-proof architecture and performance in your vehicles’ and
vehicle platform’s architecture.

Going HPC, you need to seriously consider functional safety aspects early on. EB corbos Linux for Safety
Applications is the way to go.

12

EB corbos Linux for Safety Applications

7. References

[1]	 	S.	Pruisken,	“An	end-to-end	approach	for	mastering	rising	software	complexity,”	presented	at	the	Autonomous	Driving	
Meetup	Munich,	Munich,	Sep.	19,	2019.	Available:	https://autonomous-driving.org/wp-content/uploads/2019/10/
Elektrobit_Mastering-Software-Complexity__ADM11.pdf.	[Accessed:	Feb.	15,	2024]

[2]	 	T.	Ishigooka,	S.	Honda,	and	H.	Takada,	“Cost-Effective	Redundancy	Approach	for	Fail-Operational	Autonomous	Driving	
System,”	in	2018	IEEE	21st	International	Symposium	on	Real-Time	Distributed	Computing	(ISORC),	Singapore:	IEEE,	
May	2018,	pp.	107–115.	doi:	10.1109/ISORC.2018.00023.	Available:	https://ieeexplore.ieee.org/document/8421154/.	
[Accessed:	Feb.	15,	2024]

[3]	 	AUTOSAR,	“Explanation	of	Error	Handling	on	Application	Level.”	Nov.	23,	2023.	Available:	https://www.autosar.org/
fileadmin/standards/R23-11/CP/AUTOSAR_CP_EXP_ApplicationLevelErrorHandling.pdf

[4]	 	Lucian	Badescu,	“Software	for	fail-operational	systems	in	autonomous	vehicles,”	Elektrobit,	Jun.	30,	2023.	Available:	
https://www.elektrobit.com/blog/software-for-fail-operational-systems-in-autonomous-vehicles/.
[Accessed:	Feb.	15,	2024]

[5]	 	T.	Schmid,	S.	Schraufstetter,	and	S.	Wagner,	“An	Approach	for	Structuring	a	Highly	Automated	Driving	Multiple	Channel	
Vehicle	System	for	Safety	Analysis,”	in	2018	3rd	International	Conference	on	System	Reliability	and	Safety	(ICSRS),	
Barcelona,	Spain:	IEEE,	Nov.	2018,	pp.	362–367.	doi:	10.1109/ICSRS.2018.8688859.	Available:	https://ieeexplore.ieee.org/
document/8688859/.	[Accessed:	Feb.	15,	2024]

[6]	 	“J3016:2018:	Taxonomy	and	Definitions	for	Terms	Related	to	Driving	Automation	Systems	for	On-Road	Motor	Vehicles	-	
SAE	International.”	Available:	https://www.sae.org/standards/content/j3016_201806/.	[Accessed:	Nov.	17,	2020]

[7]	 	J.	Ren	and	D.	Xia,	“Autonomous	Driving	Operating	Systems,”	in	Autonomous	driving	algorithms	and	Its	IC	Design,	
Singapore:	Springer	Nature	Singapore,	2023,	pp.	245–261.	doi:	10.1007/978-981-99-2897-2_11.	Available:	https://link.
springer.com/10.1007/978-981-99-2897-2_11.	[Accessed:	Feb.	15,	2024]

[8]	 	A.	K.	Jägerbrand	and	J.	Sjöbergh,	“Effects	of	weather	conditions,	light	conditions,	and	road	lighting	on	vehicle	speed,”	
SpringerPlus,	vol.	5,	no.	1,	p.	505,	Dec.	2016,	doi:	10.1186/s40064-016-2124-6

[9]	 		J.	Schlosser	and	J.	Petersohn,	“Considering	Linux	for	functional	safety	relevant	system	architecture:	Pitfalls	and	
Potential,”	in	ATZlive	Automatisiertes	Fahren	2024,	Frankfurt	am	Main:	Springer	Nature,	Mar.	2024.

[10]	 		“Digital	Cockpits	Solutions	for	Automotive,”	Elektrobit.	Available:	https://www.elektrobit.com/services/software-
engineering/hmi/cockpit-system-solutions/.	[Accessed:	Feb.	15,	2024]

[11]	 	A.	Mattausch,	J.	Schlosser,	and	M.	Neukirchner,	“E/E	Architectures	and	the	Automotive	OS,”	in	23rd	Stuttgart	
International	Symposium	-	Automotive	and	Engine	Technology	Documentation,	Wiesbaden:	Springer	Vieweg,	2023,	pp.	
175–183.	Available:	https://link.springer.com/chapter/10.1007/978-3-658-42048-2_13

[12]	 	“Standards	AUTOSAR.”	Available:	https://www.autosar.org/standards.	[Accessed:	Apr.	03,	2024]
[13]	 	United	Nations	Economic	Commission	for	Europe,	“UN	Regulation	No.	155	-	Cyber	security	and	cyber	security	

management	system,	E/ECE/TRANS/505/Rev.3/Add.154.”	4.	Available:	https://unece.org/transport/documents/2021/03/
standards/un-regulation-no-155-cyber-security-and-cyber-security

[14]	 	M.	Neukirchner,	“Defining	the	Automotive	OS,”	LinkedIn	Post,	Apr.	08,	2022.	Available:	https://www.linkedin.com/posts/
dr-moritz-neukirchner-6a957b19_defining-the-automotive-os-activity-6918185360971722752-rnFI/.
[Accessed:	Apr.	11,	2023]

[15]	 	M.	Neukirchner,	“Automotive	OS	Fulfills	Its	Promise,”	EE	Times,	Mar.	06,	2023.	Available:	https://www.eetimes.com/
automotive-os-fulfills-its-promise/

[16]	 	J.	Schlosser,	A.	Mattausch,	M.	Neukirchner,	and	R.	Holve,	“Adaption	des	Software-Qualitätsmanagements	im	
Automotive-Bereich	für	eine	Nutzung	von	Fremdkomponenten,”	in	Software	Engineering	2023	Workshops,	I.	Groher	
and	T.	Vogel,	Eds.,	Bonn:	Gesellschaft	für	Informatik	e.V.,	Feb.	2023,	pp.	78–91.	doi:	10.18420/SE2023-WS-10.	Available:	
http://dl.gi.de/handle/20.500.12116/40195

[17]	 	M.	Neukirchner,	“There	is	no	software-defined	vehicle	without	an	Automotive	OS.	Period.,”	The	Automotive	OS	
perspective,	Dec.	15,	2022.	Available:	https://www.linkedin.com/pulse/software-defined-vehicle-without-automotive-os-
period-neukirchner/.	[Accessed:	Apr.	11,	2023]

[18]	 	Linux	Foundation,	“The	Yocto	Project,”	The	Yocto	Project.	Available:	https://www.yoctoproject.org/.
[Accessed:	Jan.	30,	2024]

[19]	 	“ISO	26262:2018:	Road	Vehicles	–	Functional	Safety.	Part	1-12,”	International	Organization	for	Standardization,	Geneva,	
ISO	26262:2018,	Dec.	2018.

[20]	 	Motor	Industry	Software	Reliability	Association,	Ed.,	MISRA-C:2004:	guidelines	for	the	use	of	the	C	language	in	critical	
systems,	2.	ed,	[Stand]:	October	2004.	Nuneaton:	MIRA,	2008.

13

EB corbos Linux for Safety Applications

[21]	 	“GNU	Coding	Standards,”	Jul.	01,	2021.	Available:	https://www.gnu.org/prep/standards/standards.html.
[Accessed:	Mar.	06,	2024]

[22]	 	“Linux	kernel	coding	style,”	The	Linux	Kernel	documentation,	2016.	Available:	https://www.kernel.org/doc/html/v4.10/
process/coding-style.html.	[Accessed:	Mar.	06,	2024]

[23]	 	J.	Schlosser	and	J.	Petersohn,	“Maintaining	Open-Source	based	Software	or	What	is	the	true	cost	of	free?,”	in	ELIV	2023:	
Electric	/	Electronics	for	Commercial	Vehicles	2023,	VDI	Wissensforum,	Ed.,	in	VDI-Berichte,	vol.	2423.	Düsseldorf:	VDI	
Verlag,	2023,	pp.	267–280.	doi:	10.51202/9783181024232-267.	Available:	https://doi.org/10.51202/9783181024232-267

[24]	 	J.	Petersohn	and	M.	Wiegand,	“EB	corbos	Linux	–	built	on	Ubuntu.	Product	Description,”	Erlangen,	Dec.	29,	2023.
[25]	 	“Functional	Safety	ISO	26262	for	Automotive	-	EB	tresos	Safety,”	Elektrobit.	Available:	https://www.elektrobit.com/

products/ecu/eb-tresos/functional-safety/.	[Accessed:	Apr.	20,	2023]
[26]	 	“EB	tresos	Embedded	Hypervisor,”	Elektrobit.	Available:	https://www.elektrobit.com/products/ecu/eb-tresos/embedded-

hypervisor/.	[Accessed:	Apr.	20,	2023]
[27]	 	“Adaptive	AUTOSAR	Hypervisor:	EB	corbos	Hypervisor,”	Elektrobit.	Available:	https://www.elektrobit.com/products/ecu/

eb-corbos/hypervisor/.	[Accessed:	Apr.	20,	2023]
[28]	 	“Automotive	SPICE	Process	Reference	Model	/	Process	Assessment	Model.”

VDA	Quality	Management	Center,	Nov.	29,	2023.
[29]	 	“IEC	61508-1:2010	Functional	safety	of	electrical/electronic/programmable	electronic	safety-related	systems	-	Part	1:	

General	requirements.”	International	Electrotechnical	Commission,	Geneva,	Switzerland,	2010.
[30]	 	M.	Schäfer,	“Invisible	Container	Fortress	with	EB	corbos	Linux	–	built	on	Ubuntu.”	Elektrobit,	2023.	Available:	https://

www.elektrobit.com/tech-corner/invisible-container-fortress-with-eb-corbos-linux-built-on-ubuntu/
[31]	 	The	invisible	container	fortress	-	isolating	apps	in	software	instead	of	distinct	ECUs,	(Jul.	26,	2023).	Available:	https://

mobex.io/webinar-library/the-invisible-container-fortress-isolating-apps-in-software-instead-of-distinct-ecus/
[32]	 	“Linux	OS	for	Automotive:	EB	corbos	Linux,”	Elektrobit.	Available:	https://www.elektrobit.com/linux/.

[Accessed:	Apr.	20,	2023]
[33]	 	“Adaptive	AUTOSAR	Architecture:	EB	corbos,”	Elektrobit.	Available:	https://www.elektrobit.com/products/ecu/eb-

corbos/.	[Accessed:	Feb.	16,	2024]
[34]	 	“ROS:	Home,”	Robot	Operating	System	(ROS).	Available:	https://www.ros.org/.	[Accessed:	Feb.	16,	2024]
[35]	 	A.	Frigerio,	B.	Vermeulen,	and	K.	Goossens,	“Component-Level	ASIL	Decomposition	for	Automotive	Architectures,”	

in	2019	49th	Annual	IEEE/IFIP	International	Conference	on	Dependable	Systems	and	Networks	Workshops	(DSN-W),	
Portland,	OR,	USA:	IEEE,	Jun.	2019,	pp.	62–69.	doi:	10.1109/DSN-W.2019.00021.
Available:	https://ieeexplore.ieee.org/document/8806012/

[36]	 	C.	Lidstrom,	C.	Bondesson,	M.	Nyberg,	and	J.	Westman,	“Improved	Pattern	for	ISO	26262	ASIL	Decomposition	with	
Dependent	Requirements,”	in	2019	IEEE	19th	International	Conference	on	Software	Quality,	Reliability	and	Security	
Companion	(QRS-C),	Sofia,	Bulgaria:	IEEE,	Jul.	2019,	pp.	28–35.	doi:	10.1109/QRS-C.2019.00019.
Available:	https://ieeexplore.ieee.org/document/8859482/

[37]	 	“ISO	26262:2018:	Road	Vehicles	–	Functional	Safety.	Part	9:	Automotive	safety	integrity	level	(ASIL)-oriented	and	safety-
oriented	analyses,”	International	Organization	for	Standardization,	Geneva,	ISO	26262:2018-9,	Dec.	2018.

[38]	 	“Elektrobit/crinit.”	Elektrobit	Automotive	GmbH,	Dec.	06,	2023.
Available:	https://github.com/Elektrobit/crinit.	[Accessed:	Feb.	15,	2024]

[39]	 	“Elektrobit/cominit.”	Elektrobit	Automotive	GmbH,	Sep.	11,	2023.	Available:	https://github.com/Elektrobit/cominit.	
[Accessed:	Feb.	15,	2024]

About the author

Prof. Dr. Joachim Schlosser
Senior Manager
Elektrobit

About Elektrobit

Elektrobit is an award-winning and visionary global vendor of
embedded and connected software products and services for the
automotive industry. A leader in automotive software with over
35	years	of	serving	the	industry,	Elektrobit’s	software	powers	over
five	billion	devices	in	more	than	600	million	vehicles	and	offers
flexible,	innovative	solutions	for	car	infrastructure	software,	con-
nectivity & security, automated driving and related tools, and user
experience. Elektrobit is a wholly-owned, independently-operated
subsidiary of Continental.

For more information, visit us at elektrobit.com

Elektrobit Automotive GmbH
Am Wolfsmantel 46
91058 Erlangen, Germany

Phone: +49 9131 7701 0
Fax: +49 9131 7701 6333

sales@elektrobit.com

www.elektrobit.com

EB corbos Linux for Safety Applications

http://elektrobit.com
mailto:sales%40elektrobit.com?subject=
http://www.elektrobit.com

