
EB GUIDE Studio
Tips for smart modeling

Version 6.9 or later

EB GUIDE Studio

Page 2 of 26

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.

This document contains links to websites owned and operated by third parties. Elektrobit has no control of the
content of any third party website and therefore takes no warranty nor liability for damage or loss caused in
connection with the use or reliance on any information, material, products or services contained or accessed
through any such linked website.
Copyright 2021, Elektrobit Automotive GmbH.

EB GUIDE Studio

Page 3 of 26

Table of Contents
1. Begin here ... 4
2. Performance .. 5

2.1. Resourcesystem .. 5
2.1.1. Prefetching of resources .. 5

2.1.1.1. Optimize prefetching with modeling ... 5
2.1.1.2. Adapt prefetching manually after export ... 6

2.1.2. Optimize resource cache with modeling ... 6
2.1.3. Compressed Textures ... 6

2.2. Avoid complex views ... 6
2.3. Reduce EB GUIDE Script execution. .. 7
2.4. Avoid unstable states ... 7
2.5. Examples .. 7

3. Animations ... 9
4. EB GUIDE model changes check-in .. 10
5. EB GUIDE Script .. 12

5.1. EB GUIDE Script formatting ... 13
5.2. Foreign functions ... 13

6. Naming .. 14
6.1. Example naming guideline ... 14

7. Packages ... 18
7.1. Plug-in packages ... 18
7.2. Template packages .. 18

8. State machines .. 22
9. Templates .. 24
10. Touch input .. 25
11. Widgets .. 26

EB GUIDE Studio
Chapter 1. Begin here

Page 4 of 26

1. Begin here
This document provides tips for projects with EB GUIDE Studio and EB GUIDE GTF. These tips are based
on experiences with EB GUIDE projects at EB. The provided information spans different topics. Consider that
your own modeling or coding guidelines may influence how you interpret these tips.

If this document does not cover a topic that you are interested in, please contact the support.

EB GUIDE support is available in the following ways:

► Find comprehensive information in our articles, blogs, and user documentation on the EB GUIDE microsite
https://www.elektrobit.com/ebguide/.

► For the community edition, contact us via https://www.elektrobit.com/ebguide/contact-us/.

► For the enterprise edition, contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE Studio installation. To find the
version number, open EB GUIDE Studio, go to the project center, and click About.

NOTE Change without notice
This document is being updated in irregular intervals and is subject to change without notice.

https://www.elektrobit.com/ebguide/
https://www.elektrobit.com/ebguide/contact-us/

EB GUIDE Studio
Chapter 2. Performance

Page 5 of 26

2. Performance
WARNING Performance-related issues

Adhere to the tips below concerning performance. Take hardware-related limitations into
account. Otherwise your EB GUIDE project can have performance-related issues.

2.1. Resourcesystem
► For general resource system configuration see EB GUIDE GTF user guide chapter References with the

subsection "platform.json configuration file".

► Adapt the following configuration items according to your system needs:

► gtf.resourcesystem.*

► gtf.decoder.*

► The resource system is able to work with multiple threads and limits for caches and garbage collection.

► You can optimize the usage of these caches with the prefetching mechanism.

NOTE Resource cache size
All file based formats (meshes and images) must be considered for configuring the limits
of the resource cache.

2.1.1. Prefetching of resources
► EB GUIDE GTF is able to prepare and decode resources before they are needed during runtime.

► For example during startup EB GUIDE GTF can use the advantage of parallel threads to already decode
resources of the first view while waiting with the main thread for operating system calls or graphics driver
initialization.

► EB GUIDE Studio generates the prefetching configuration file prefetching.json during model export.

► The file prefetching.json is optimized for the initial viewstate and the file prefetching_ids.json
that includes all model resource ids.

2.1.1.1. Optimize prefetching with modeling

► Add a resource as a user defined property in the first view.

EB GUIDE Studio
Chapter 2. Performance

Page 6 of 26

► The resource will be loaded and prepared during startup.

2.1.1.2. Adapt prefetching manually after export

► With the informations from prefetching_ids.json we can manually adapt prefetching.json after
the export and add, remove or reorder the prefetching resources.

NOTE Be aware:

► Resource Ids are only unique for a single export run and may change between exports.

► Cache size is limited based on the configuration items. Already cached resources are
replaced by the latest cache requests if the cache limit is exceeded.

2.1.2. Optimize resource cache with modeling

► Add a resource as a user defined property in an earlier view.

► The resource will be loaded in the earlier view. This way we may create an overhead in the earlier view
to have the loading time benefit in a later view.

► In the best case scenario the resource stays in cache till it is displayed.

► In the worst case it will be removed from the cache until it is needed and will be requested again.

2.1.3. Compressed Textures

► For performance optimization use the compressed textures that are supported by your target hardware.

► Avoid using unsupported compressed formats and disable the software-based decompression of .basis
files as fallback (gtf.decoder.basis.softwareFallback).

► Default resource decoding may unintentionally use this software-based approach as well. This is why, if
hardware support is available, it is recommended to disable this feature.

2.2. Avoid complex views
► Prefer a more complex state machine with several simple views over a simple state machine with complex

views.

EB GUIDE Studio
Chapter 2. Performance

Page 7 of 26

► Limit the number of widgets in the widget template tree. Large widget template trees have a negative
impact on performance. Templates are added to the generated model data as often as there are instances
of a template. Adding many widgets creates a lot of overhead. Use solutions with fewer widgets.

► Invisible widgets or sub-trees also increase the load when the widget tree is created.

► Avoid views where large numbers of widgets are set to invisible during run-time. Invisible widgets are still
processed to keep the EB GUIDE model consistent, only the rendering is not executed. A better solution is
to use separate views. If you want elements to move in and out of the view, use dynamic state machines.

2.3. Reduce EB GUIDE Script execution.
► Some widget properties should not have scripted values. This concerns properties such as x, y, width,

height, focused, pressed, touched. These values are read by the renderer. Modeling them as EB
GUIDE Script affects the performance. Instead create a separate EB GUIDE Script to set these properties.

► When you model dynamic behavior with EB GUIDE Script and widget features, always be aware which
properties may be read and updated by the built-in widget feature to avoid update cycles or conflicting
updates. For example, layout changes require updates of multiple property values.

► Prefer the default animation curves over script curves. Script curves require additional processing steps
because they are defined in EB GUIDE Script.

► For complex calculations, foreign functions are faster than EB GUIDE Script .

► If foreign functions involve operations on resources (fonts, images) or have a large number of parameters,
they are especially costly.

2.4. Avoid unstable states
Your EB GUIDE model should reach a stable state quickly to be able to work together with the EB GUIDE GTF
update processing cycles. For more information, see the EB GUIDE GTF user documentation section "Update
processing in EB GUIDE GTF".

2.5. Examples
Example 2.1.
Alternating images

This example shows what a recommended and what a not recommended implementation looks like.

You want to model alternating displaying of 10 different images.

EB GUIDE Studio
Chapter 2. Performance

Page 8 of 26

► Recommended: Modeling one image widget with a reference to a list of 10 images.

► Not recommended: Modeling 10 image widgets.

Example 2.2.
Property values accessing list elements

This example shows what a recommended and what a not recommended implementation looks like.

You want to model a property that accesses an element from a list.

► Recommended: Linking the property to a datapool item or a widget property of type list.

► Not recommended: Modeling the property with EB GUIDE Script.

EB GUIDE Studio
Chapter 3. Animations

Page 9 of 26

3. Animations
For more information, see EB GUIDE Studio user guide section "Animations".

2. Start and cancel animations in a consistent way throughout your EB GUIDE model. For example, use
conditional scripts with consistent names.

3. Cancel a running animation before you restart it. Restarting it without canceling can cause lagging of the
animation.

4. To disable animations, use the enabled property. Setting the enabled property to false cancels ani-
mations immediately.

5. Do not use the visibility property to disable animations. Disabling the visibility property does
not disable the animation. The animation is still going to run.

6. Only the first and last step of an animation are guaranteed to be executed. Depending on system load,
intermediate steps may be skipped.

7. To model animations during view transitions, use view transition animation (VTA). Using widget animation
for this purpose requires additional steps to synchronize the animation with the view transition. VTA makes
transition animations simpler.

EB GUIDE Studio
Chapter 4. EB GUIDE model changes check-in

Page 10 of 26

4. EB GUIDE model changes check-in
These recommendations are for the revision control system (RCS), for example, SVN, Git, ClearCase. In order
to have a functioning EB GUIDE model after committing your latest changes to the RCS, follow these steps.

Checking in EB GUIDE model changes

Prerequisite:

■ An EB GUIDE model is opened in EB GUIDE Studio.

Step 1
Save the EB GUIDE model.

Step 2
Make an additional local backup copy of the EB GUIDE model.

Step 3
In the RCS check for modifications on the EB GUIDE model folder to check for non-versioned or missing
files.

► If missing files are missing on purpose, delete them from the RCS.

► If new, non-versioned files are needed, add them to the RCS.

Step 4
In the RCS update the model folder.

Step 5

► If there are automatically merged files, review them. Somebody else could have changed something that
is relevant to you.

► If there are deleted .gdata files or other EB GUIDE model elements, verify during review that refer-
ences to them are removed throughout the change set.

► If there are conflicted files, work through the diffs and resolve the conflicts.

► If something is unclear, ask the person who committed the changes and resolve it together.

► If none of these points apply, continue with the next step.

Step 6
Reload the merged EB GUIDE model in EB GUIDE Studio.

Step 7
Validate the EB GUIDE model and resolve newly introduced errors.

Step 8
Start the simulation. If it runs properly, your EB GUIDE model is syntactically correct.

EB GUIDE Studio
Chapter 4. EB GUIDE model changes check-in

Page 11 of 26

Step 9
If you changed something, save the EB GUIDE model.

Step 10
In the RCS commit the EB GUIDE model folder.

NOTE .ebguide folder
Exclude the $GUIDE_PROJECT_PATH/<projectname>/.ebguide folder from the revi-
sion control system because it contains user-relevant settings.

EB GUIDE Studio
Chapter 5. EB GUIDE Script

Page 12 of 26

5. EB GUIDE Script
For more information, see EB GUIDE Studio user guide sections "Scripting language EB GUIDE Script" and
"Conditional script".

8. Use comments and indentations to document behavior.

9. Do not create update cycles. For example, a scripted condition that triggers an animation that sends an
event after completion that triggers the same condition again.

10. Do not use animated properties as triggers.

11. Consider the scope of an EB GUIDE Script. Does it affect only a widget or also a datapool item? Usually
widget properties only affect one widget or start an animation with scripted values with return type void.
Datapool items usually control the configuration of the entire project, like the language. Model this kind of
behavior with datapool items, as part of the state machine, or as part of a separate logical state machine.

12. If you want to run an EB GUIDE Script at every change of a language or skin, use a datapool item as
a trigger that changes with the language or skin. EB GUIDE Script does not react on language or skin
changes by default.

13. For complex scripts: Currently, EB GUIDE Script has no switch case or break functionality. Consider
how many conditions have to be evaluated every time a script is executed. If possible:

► Use else clauses.

► To avoid repeating calculations, foreign function calls, or reading the same datapool value several
times throughout a script, use local variables (v:myScriptVar...).

14. Conditional scripts with datapool items in the trigger are executed once per datapool context that is defined
in the EB GUIDE model. For this reason, consider the following:

► In a cascade of multiple if-else-if-else... check the most probable before the less probable cases.

► Check whether the same logic could be moved to:

► An internal transition, for example in the case of pop-up triggers

► A state enter or exit action

► A logic state machine, for example to keep track of model internal states, such as phone call
initiated or phone call ongoing

► A widget template, for example in the case of calculating the size of a widget

15. Use the default argument in conditional scripts (v:arg0) to enable or disable execution of your script
contents on initialization. Within the condition if(v:arg0):

► Conditional scripts in the datapool are only executed once at start-up.

► Conditional scripts in widgets are executed every time the widget is instantiated, for example every
time you enter a view that contains the widget.

EB GUIDE Studio
Chapter 5. EB GUIDE Script

Page 13 of 26

5.1. EB GUIDE Script formatting
16. Add spaces in front of and after operators such as = / + .

17. Add empty lines before and after code blocks. But only use one empty line. If } is directly followed by },
no empty line is necessary.

18. Indent lines after the beginning of a code block. Example:

Function(…)

{

 v:this.value=1

}

5.2. Foreign functions
19. Use built-in or user-defined foreign functions to encapsulate complicated business logic or longer calcu-

lations.

20. Every foreign function call within an EB GUIDE Script has a high initial overhead due to boxing/stacking
of function parameters.

21. Reuse calculation results instead of computing the same result multiple times. For example, instead of
calling a foreign function with same parameters repeatedly, store the result in a local variable and reuse it.

EB GUIDE Studio
Chapter 6. Naming

Page 14 of 26

6. Naming
Naming conventions make it easier for your development team to work with the EB GUIDE model and with
other team members. They prevent misunderstandings and common issues that come from a misinterpretation
of names.

22. Use unique names.

23. Use speaking names. Names shall say what the object or property is used for.

24. Use underscores _ to separate prefixes and suffixes or for a meaningful separation of sub-strings.

25. Use internal capitalization (camel case). Internal capitalization means using a capital letter within a phrase,
without any space or other separation of words.

► Upper camel case: UpperCase

► Lower camel case: lowerCase

26. Use namespaces to group content. Namespaces were introduced in EB GUIDE Studio 6.8. If you are using
a version earlier than 6.8, use prefixes separated by underscore to group elements.

27. Do not use similar names that only differ in capital and small letters.

28. Do not use EB GUIDE Script keywords as names. When you use EB GUIDE Script distinguish clearly
between model elements and code. For a list of all keywords, see EB GUIDE Studio user guide chapter
"EB GUIDE Script keywords".

29. Do not use names of widget feature properties for user-defined properties. For a list of widget feature
properties, see the EB GUIDE Studio user guide chapter "References".

30. Do not use white space. Replace white space with underscores.

31. Avoid naming elements in a way where they only differ in capitalization, hyphenation, spaces, or under-
scores, for example PopupState and popupState.

32. Stick to the following range of characters: a-z, A-Z, 0-9 and underscore. Characters outside of this
range may be replaced automatically during the export of an EB GUIDE model. It is easier to find elements
in the exported files when no characters need to be replaced. For example, the following datapool item
names result in the following #define.

► dp:var A results in #define LOCAL_DP_ID_VAR_A ((uint32_t) 0x00000000)

► dp:var_A results in #define LOCAL_DP_ID_VAR_A1 ((uint32_t) 0x00000002)

► dp:var-A results in #define LOCAL_DP_ID_VARA ((uint32_t) 0x00000001)

6.1. Example naming guideline
This section provides an example naming guideline.

EB GUIDE Studio
Chapter 6. Naming

Page 15 of 26

Animations

Start with prefix a, then underscore, and then the description. Examples:

► a_Playback

► a_SpinningWheel

Animation curves

Start with a description of what the animation curve does followed by the name of the target widget or datapool
item which is animated. Examples:

► incrementPlaybackTime

► rotateSpinningWheel

► enlargeSpinningWheel

Datapool items

Start with a prefix and then underscore, and then the description. The prefix indicates the type.

Prefix Datapool item type Example

c_ Color c_White_EB

f_ Font f_Narrow_50

s_ sl_ String, String list - which needs language
support

s_Welcome

Start the names of other datapool items with the context that they are used in. The names of other datapool
items do not have any specific prefix. Examples:

► Display_Width

► CD_IsPlaying

► CD_SongDuration

Dynamic state machines

Start with prefix dm, then underscore, and then the description. Examples:

► dm_Help

EB GUIDE Studio
Chapter 6. Naming

Page 16 of 26

► dm_Warning

Events

Start with a lower case letter. Use two words. The first word describes the action that the event triggers. The
second word describes the context of the event. Separate the second word with an underscore. Write the
second word with a capital letter. Examples:

► goto_Main

► pause_CD

► increase_LogoSize

Write parameters in lower camel case. Examples:

► status

► isTimeOut

States and views

Start with a prefix, then underscore, and then the description of the state. Possible prefixes are, for example,
vs for view states or cs for compound states. Examples:

► vs_StartUp

► cs_CD

► vs_Disambiguation

Start names of views with prefix v, then underscore, and then the description. Examples:

► v_StartUp

► v_CDPlayer

Templates

Start with a prefix, then underscore, and then the description. Possible prefixes are tb_ for buttons or tv_
for views. Examples:

► tb_Simple

► tv_Training

EB GUIDE Studio
Chapter 6. Naming

Page 17 of 26

User-defined properties

Start with a lower case letter and write the name in camel case. Start conditional scripts with an action. Ex-
amples:

► buttonImage

► textX

► startAnimation

► setColor

Widgets

Start with a prefix, then underscore, and then the description. Possible prefixes are bg for background, l or
t for label, bt for button. Examples:

► bg_Image

► l_Welcome

► bt_Play

EB GUIDE Studio
Chapter 7. Packages

Page 18 of 26

7. Packages
For more information, see EB GUIDE Studio user guide section "Packages".

33. Keep the package naming consistent during its lifetime.

34. When you update packages, be aware of backwards compatibility with older package versions that your
colleagues are using.

35. If you made changes to a package, before each export, increment the version of the package. EB GUIDE
cannot distinguish between packages with the same name and version number.

36. It is recommended to export your package to a single folder to avoid duplicate packages.

7.1. Plug-in packages
37. If you import multiple plug-in packages, first import all packages and then restart EB GUIDE Studio.

7.2. Template packages
For more information on templates, see chapter 9, “Templates“.

38. Do not include the following model elements into a template package:

► Model elements that a part of the model interface

► Events in default event groups (Default, Key, Touch, Rotary and System notification)

► Datapool items that have skin or language support

39. Imported templates are not editable.

Imported templates have the following editable and non-editable properties:

► All properties that are added to the template interface are editable when instances of that template are
created. This allows your colleagues to edit template interface properties after importing this template
package.

► Linked model elements like datapool items and events are read-only.

40. To retain maintainability of the template package, keep the amount of dependency links to datapool items
and events to a minimum.

41. Consider the following before exporting:

► Before you export a template package, run a validation so that you can fix errors in advance.

EB GUIDE Studio
Chapter 7. Packages

Page 19 of 26

► Template packages include the existing dependencies to model elements on export. Transitive de-
pendencies, for example links of links, are not shown in the export dialog.

42. Consider the following before importing:

► First import all dependent packages and only then import the template package. The dependent pack-
ages can be the plug-in packages or other template packages.

43. Consider the following before updating:

► If there are no conflicts on import, view the change log before you commit to the import.

44. It is not recommended to edit the imported assets.

Example 7.1.
Template structure for sharing

Template packages can include direct dependencies to other model elements, for example other tem-
plates, datapool items, events, assets. At the same time every model element can only exist once in
your EB GUIDE model as well as in the target EB GUIDE model where the template packages should
be imported.

Use case 1: You plan to import multiple packages into the same EB GUIDE model. Each package in-
cludes templates that share dependencies.

Figure 7.1. Template structure example

Limitation: Different packages with the same dependencies to model elements cannot be imported.

EB GUIDE Studio
Chapter 7. Packages

Page 20 of 26

Figure 7.2. Dependency conflict: Import of Package 4 fails

Solution: Import packages with dependencies to other packages. Do the following:

► Create base templates in a separate EB GUIDE model.

► Create a package with these templates.

► Import this package into your EB GUIDE model.

► Derive templates from these imported base templates.

All derived templates will have a dependency to the base template package.

Figure 7.3. Example workflow: Create Package 2 in a separate EB GUIDE model

EB GUIDE Studio
Chapter 7. Packages

Page 21 of 26

Figure 7.4. Example workflow: Import Package 2

Use case 2: You plan to import template packages that do not share dependencies.

Limitations: There are no additional limitations.

Solution: See "Use case 1".

EB GUIDE Studio
Chapter 8. State machines

Page 22 of 26

8. State machines
For more information, see EB GUIDE Studio user guide section "State machines and states".

45. Use dynamic state machines to model pop-ups such as warnings or error messages.

46. Use logical state machines to model complex behavior instead of using EB GUIDE Script or foreign func-
tions.

Example 8.1.
Transitions

This example shows how a recommended and how a not recommended implementation looks like.

► Not recommended:

Figure 8.1. Not recommended transitions

► Recommended:

EB GUIDE Studio
Chapter 8. State machines

Page 23 of 26

Figure 8.2. Recommended transitions

EB GUIDE Studio
Chapter 9. Templates

Page 24 of 26

9. Templates
For more information, see EB GUIDE Studio user guide section "Widget templates".

For more information on template packages and an example of the template structure for sharing, see sec-
tion 7.2, “Template packages”.

47. If a property of a template is supposed to be set from the outside, add this property to the template interface.

48. If a property of a template is not supposed to be set from the outside, do not add this property to the
template interface.

49. Make templates small and interchangeable to make the reuse easier. For example, if you have ten views
with the same background and status line, create separate templates for the background and the status
line.

50. Make templates self-contained. Templates should not depend on an individual EB GUIDE model or other
elements except datapool items or events. This way templates can be exchanged between EB GUIDE
models.

51. An image widget always requires an image resource. If an image widget in a template does not require
a fixed image, use a dummy image.

EB GUIDE Studio
Chapter 10. Touch input

Page 25 of 26

10. Touch input
For more information, see EB GUIDE Studio user guide section "Touch input"

52. If you want a widget to react when the user taps on it, model the action using widget feature Touch released
and property touchShortReleased.

53. To consume a touch event, the corresponding EB GUIDE Script needs to have the return value true. It
is possible that return values have additional functionality inside EB GUIDE GTF that may influence the
behavior.

EB GUIDE Studio
Chapter 11. Widgets

Page 26 of 26

11. Widgets
For more information, see EB GUIDE Studio user guide section "Widgets".

54. For data that needs to be stored persistently, link widget properties to datapool items.

55. Use the instantiator widget to add or remove widgets at run-time.

► Use a low number of child widgets as a default setting for numItems. These child widgets are instan-
tiated during view creation.

56. When values for x, y, width, height, visible need calculation, for example if the x-position
depends on the width of a neighboring widget, update them with separate update scripts. Put the dependent
properties into the trigger lists and update the widget property depending on that.

	EB GUIDE Studio
	Table of Contents
	1.Begin here
	2.Performance
	2.1. Resourcesystem
	2.1.1. Prefetching of resources
	2.1.1.1. Optimize prefetching with modeling
	2.1.1.2. Adapt prefetching manually after export

	2.1.2. Optimize resource cache with modeling
	2.1.3. Compressed Textures

	2.2. Avoid complex views
	2.3. Reduce EB GUIDE Script execution.
	2.4. Avoid unstable states
	2.5. Examples

	3.Animations
	4.EB GUIDE model changes check-in
	5.EB GUIDE Script
	5.1. EB GUIDE Script formatting
	5.2. Foreign functions

	6.Naming
	6.1. Example naming guideline

	7.Packages
	7.1. Plug-in packages
	7.2. Template packages

	8.State machines
	9.Templates
	10.Touch input
	11.Widgets

