
EB GUIDE Studio
User guide

Version 6.10.0.200602120856

EB GUIDE Studio

Page 2 of 471

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2020, Elektrobit Automotive GmbH.

EB GUIDE Studio

Page 3 of 471

Table of Contents
1. About this documentation .. 18

1.1. Target audiences of the user documentation ... 18
1.1.1. Target audience: Modelers ... 18
1.1.2. Target audience: Extension developers ... 19

1.2. Structure of user documentation ... 19
1.3. Typography and style conventions .. 20
1.4. Naming conventions ... 21
1.5. Path conventions ... 22

2. Safe and correct use .. 23
2.1. Intended use ... 23
2.2. Possible misuse ... 23

3. Support .. 24
4. Introduction to EB GUIDE ... 25

4.1. The EB GUIDE product line ... 25
4.2. EB GUIDE Studio .. 25

4.2.1. Modeling HMI behavior ... 25
4.2.2. Modeling HMI appearance ... 26
4.2.3. Handling data ... 26
4.2.4. Simulating the EB GUIDE model .. 26
4.2.5. Exporting the EB GUIDE model ... 27

4.3. EB GUIDE TF ... 27
4.3.1. Modularization ... 27

4.4. EB GUIDE arware ... 28
5. Getting started ... 29

5.1. Starting EB GUIDE .. 29
5.2. Creating a project .. 30
5.3. Modeling HMI behavior .. 31
5.4. Modeling HMI appearance ... 34
5.5. Starting the simulation ... 36

6. Background information .. 38
6.1. 3D graphics ... 38

6.1.1. Supported 3D graphic formats ... 38
6.1.2. Settings for 3D graphic files ... 38
6.1.3. Import of a 3D graphic file ... 39

6.2. Animations .. 41
6.2.1. Execution of animations .. 41
6.2.2. Widget animation .. 42
6.2.3. Datapool item animation .. 42
6.2.4. View transition animation ... 42

EB GUIDE Studio

Page 4 of 471

6.2.5. Color animation ... 44
6.2.6. Script curve .. 44

6.3. Anti-aliasing ... 44
6.4. Application programming interface between application and model .. 45
6.5. Communication context .. 45
6.6. Components of the graphical user interface ... 45

6.6.1. Graphical user interface of EB GUIDE Studio ... 45
6.6.1.1. Project center ... 46

6.6.1.1.1. Navigation area ... 46
6.6.1.1.2. Content area ... 47

6.6.1.2. Project editor .. 47
6.6.1.2.1. Navigation component .. 48
6.6.1.2.2. Outline component .. 49
6.6.1.2.3. Toolbox component .. 50
6.6.1.2.4. Properties component .. 50
6.6.1.2.5. Content area ... 51
6.6.1.2.6. Events component .. 53
6.6.1.2.7. Datapool component ... 53
6.6.1.2.8. Assets component .. 54
6.6.1.2.9. Namespaces component ... 54
6.6.1.2.10. Command area .. 54
6.6.1.2.11. Problems component .. 56
6.6.1.2.12. VTA component ... 56
6.6.1.2.13. Templates component .. 56

6.6.2. Graphical user interface of EB GUIDE Monitor .. 56
6.6.3. Dockable components ... 58

6.7. Datapool .. 59
6.7.1. Concept .. 59
6.7.2. Datapool items .. 59
6.7.3. Windowed lists .. 60

6.8. EB GUIDE model and EB GUIDE project .. 60
6.8.1. Storage format .. 61
6.8.2. Export format .. 63
6.8.3. Naming of model elements .. 64
6.8.4. Validation criteria for EB GUIDE project .. 64

6.8.4.1. Validation while opening an EB GUIDE project ... 65
6.8.4.2. Validation using the Problems component ... 65

6.9. EB GUIDE Monitor .. 65
6.10. Event handling ... 66

6.10.1. Event system .. 66
6.10.2. Events .. 66

6.11. Extensions ... 68

EB GUIDE Studio

Page 5 of 471

6.11.1. EB GUIDE Studio extension ... 68
6.11.2. EB GUIDE GTF extension ... 69
6.11.3. EB GUIDE Monitor extensions ... 69

6.12. Focus handling .. 70
6.13. Gamma-correct rendering ... 71

6.13.1. Concepts .. 71
6.13.2. Gamma correction in EB GUIDE Studio .. 72

6.14. Image-based lighting .. 73
6.14.1. IBLGenerator, file formats and importing ... 73
6.14.2. Limitations to IBL with an OpenGL renderer .. 74

6.15. Languages ... 74
6.15.1. Display languages in EB GUIDE Studio .. 74
6.15.2. Languages in the EB GUIDE model ... 74
6.15.3. Export and import of language-dependent texts ... 75

6.16. Linking .. 76
6.17. Namespaces .. 78
6.18. Model interfaces .. 80

6.18.1. Import of datapool items .. 80
6.18.2. Import of events .. 80
6.18.3. Import of event groups .. 81
6.18.4. Import of namespaces ... 81

6.19. Photoshop file format support ... 82
6.20. Resource management .. 82

6.20.1. Fonts .. 83
6.20.1.1. Bitmap fonts ... 83
6.20.1.2. Multifont support ... 84

6.20.2. Image-based lighting for 3D graphics ... 86
6.20.3. Images ... 86

6.20.3.1. 9-patch images ... 86
6.20.4. Meshes for 3D graphics .. 87

6.21. Scripting language EB GUIDE Script ... 88
6.21.1. Capabilities and areas of application .. 88
6.21.2. Prefixes and identifiers .. 88
6.21.3. Comments .. 89
6.21.4. Types ... 89
6.21.5. Expressions .. 90
6.21.6. Constants and references .. 90
6.21.7. Arithmetic and logic expressions .. 91
6.21.8. L-values and r-values .. 92
6.21.9. Local variables .. 92
6.21.10. While loops ... 93
6.21.11. If-then-else .. 94

EB GUIDE Studio

Page 6 of 471

6.21.12. Foreign function calls ... 95
6.21.13. Datapool access .. 96
6.21.14. Widget properties .. 97
6.21.15. Lists .. 98
6.21.16. Events .. 99
6.21.17. String formatting .. 101
6.21.18. The standard library ... 101

6.22. Scripted values .. 101
6.23. Skins ... 103
6.24. State machines and states ... 104

6.24.1. Dynamic state machines .. 105
6.24.2. States ... 106

6.24.2.1. Initial state .. 107
6.24.2.2. View state .. 107
6.24.2.3. Compound state ... 107
6.24.2.4. Choice state ... 108
6.24.2.5. History states ... 109
6.24.2.6. Final state .. 112

6.24.3. Transitions .. 113
6.24.4. Execution of a state machine ... 116
6.24.5. EB GUIDE notation in comparison to UML notation ... 119

6.24.5.1. Supported elements .. 119
6.24.5.2. Not supported elements .. 120
6.24.5.3. Deviations from UML .. 120

6.25. Touch input .. 121
6.25.1. Non-path gestures ... 121
6.25.2. Path gestures .. 122
6.25.3. Input processing and gestures ... 122
6.25.4. Multi-touch input .. 122

6.26. Widgets ... 123
6.26.1. View ... 123
6.26.2. Widget categories .. 125
6.26.3. Widget properties .. 126
6.26.4. Widget templates ... 127
6.26.5. Widget features ... 129

6.26.5.1. List management widget feature category .. 130
7. Modeling HMI behavior ... 131

7.1. Modeling a state machine .. 131
7.1.1. Adding a state machine ... 131
7.1.2. Defining an entry action for a state machine ... 132
7.1.3. Defining an exit action for a state machine ... 132
7.1.4. Deleting a state machine ... 133

EB GUIDE Studio

Page 7 of 471

7.2. Modeling a dynamic state machine ... 133
7.2.1. Enabling a dynamic state machine list .. 133
7.2.2. Adding a dynamic state machine .. 134
7.2.3. Controlling a dynamic state machine .. 134

7.3. Modeling states ... 135
7.3.1. Adding a state .. 135
7.3.2. Adding a state to a Compound state .. 135
7.3.3. Adding a Choice state ... 136
7.3.4. Defining an entry action for a state ... 137
7.3.5. Defining an exit action for a state ... 137
7.3.6. Deleting a model element from a state machine .. 138

7.4. Connecting states through transitions .. 138
7.4.1. Adding a transition between two states ... 139
7.4.2. Moving a transition .. 139
7.4.3. Moving transition labels ... 140
7.4.4. Defining a trigger for a transition .. 141
7.4.5. Adding a condition to a transition ... 141
7.4.6. Adding an action to a transition .. 142
7.4.7. Adding an internal transition to a state ... 143
7.4.8. Changing the priority of choice transitions ... 143

8. Modeling HMI appearance .. 145
8.1. Changing the background color of states and state machines ... 145
8.2. Working with widgets ... 145

8.2.1. Adding a View .. 145
8.2.2. Adding a basic widget to a View .. 146

8.2.2.1. Adding a Rectangle .. 146
8.2.2.2. Adding an Ellipse ... 146

8.2.2.2.1. Editing an Ellipse ... 147
8.2.2.3. Adding an Image .. 148
8.2.2.4. Adding a Label ... 149
8.2.2.5. Adding a container ... 150
8.2.2.6. Adding an Instantiator ... 151
8.2.2.7. Adding an Animation .. 153

8.2.2.7.1. Animating a widget .. 153
8.2.2.7.2. Animating a view transition ... 154
8.2.2.7.3. Animating with a script curve .. 157
8.2.2.7.4. Animating a datapool item .. 158
8.2.2.7.5. Animating colors .. 160

8.2.2.8. Adding an Alpha mask .. 161
8.2.3. Adding a 3D widget to a View .. 162

8.2.3.1. Adding a Scene graph to a View ... 162
8.2.4. Importing a .psd file to a View .. 163

EB GUIDE Studio

Page 8 of 471

8.2.5. Extracting images from a .psd file ... 164
8.2.6. Importing IBL files ... 164
8.2.7. Deleting a widget from a View ... 166

8.3. Working with widget properties ... 166
8.3.1. Positioning a widget .. 166
8.3.2. Resizing a widget .. 167
8.3.3. Linking between widget properties .. 168
8.3.4. Linking a widget property to a datapool item ... 171
8.3.5. Linking to a list element ... 172
8.3.6. Adding a user-defined property to a widget ... 175

8.3.6.1. Adding a user-defined property of type Function (): bool 176
8.3.7. Renaming a user-defined property ... 177
8.3.8. Editing a property of type list ... 177
8.3.9. Managing order and visibility of widgets .. 178

8.4. Extending a widget by widget features .. 180
8.4.1. Adding a widget feature ... 180
8.4.2. Removing a widget feature .. 182

8.5. Changing the Label settings ... 183
8.5.1. Changing the font size of a Label .. 184
8.5.2. Changing the font of a Label ... 184
8.5.3. Changing the line spacing ... 185

8.5.3.1. Changing the default line spacing .. 186
8.5.3.2. Changing the line spacing for multiple lines .. 187

8.5.4. Changing the text position ... 187
8.5.5. Managing multifont support .. 190
8.5.6. Placing text along a circular path ... 193

8.6. Working with language support ... 194
8.6.1. Adding a language to the EB GUIDE model .. 194
8.6.2. Adding language support to a datapool item ... 195
8.6.3. Deleting a language .. 195
8.6.4. Creating an export set for languages .. 196

8.7. Working with skin support .. 197
8.7.1. Adding a skin to the EB GUIDE model ... 197
8.7.2. Adding skin support to a datapool item ... 198
8.7.3. Switching between skins .. 199
8.7.4. Deleting a skin .. 199
8.7.5. Creating an export set for skins ... 200

8.8. Working with templates .. 200
8.8.1. Adding a template ... 201
8.8.2. Creating a template from widget tree .. 201
8.8.3. Defining the template interface ... 202
8.8.4. Using a template ... 203

EB GUIDE Studio

Page 9 of 471

8.8.5. Deleting a template ... 203
8.9. Enabling anti-aliasing ... 204

8.9.1. Enabling anti-aliasing globally .. 204
8.9.2. Enabling anti-aliasing for scene graphs .. 205

9. Handling data ... 206
9.1. Working with namespaces .. 206

9.1.1. Adding a namespace ... 206
9.1.2. Adding model elements to a namespace .. 207
9.1.3. Moving model elements between namespaces .. 207
9.1.4. Deleting a namespace ... 208

9.2. Working with events ... 209
9.2.1. Adding an event .. 209
9.2.2. Adding a parameter to an event ... 210
9.2.3. Addressing an event ... 211
9.2.4. Mapping a key to an event .. 211
9.2.5. Adding events to a model interface .. 213
9.2.6. Deleting an event .. 213

9.3. Working with datapool items ... 214
9.3.1. Adding a datapool item .. 214
9.3.2. Editing datapool items of type list ... 215
9.3.3. Converting a property to a scripted value .. 216
9.3.4. Establishing external communication .. 217
9.3.5. Linking between datapool items ... 218
9.3.6. Adding datapool items to a model interface .. 220
9.3.7. Deleting a datapool item .. 220

10. Handling a project ... 222
10.1. Creating a project .. 222
10.2. Opening a project .. 222

10.2.1. Opening a project from the file explorer .. 223
10.2.2. Opening a project within EB GUIDE Studio ... 223

10.3. Renaming model elements ... 224
10.4. Validating and simulating an EB GUIDE model .. 224

10.4.1. Validating an EB GUIDE model .. 225
10.4.1.1. Validating an EB GUIDE model in EB GUIDE Studio 225
10.4.1.2. Validating an EB GUIDE model using command line 226

10.4.2. Starting and stopping the simulation ... 226
10.5. Exporting an EB GUIDE model ... 226

10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio .. 227
10.5.2. Exporting an EB GUIDE model using command line .. 228

10.6. Changing the display language of EB GUIDE Studio .. 228
10.7. Configuring profiles .. 228

10.7.1. Adding a profile ... 229

EB GUIDE Studio

Page 10 of 471

10.7.2. Adding a library ... 229
10.7.3. Configuring a scene .. 232

10.8. Exporting and importing language-dependent texts .. 233
10.8.1. Exporting language-dependent texts ... 233
10.8.2. Importing language-dependent texts ... 234

10.8.2.1. Importing language-dependent texts using EB GUIDE Studio 235
10.8.2.2. Importing language-dependent texts using command line 235

10.9. Working with model interfaces .. 236
10.9.1. Adding a model interface ... 236
10.9.2. Exporting a model interface ... 237
10.9.3. Importing a model interface .. 238
10.9.4. Updating an imported model interface .. 239
10.9.5. Deleting a model interface ... 239

11. Working with EB GUIDE Monitor ... 241
11.1. Starting EB GUIDE Monitor as a stand-alone application .. 241
11.2. Configuring EB GUIDE Monitor ... 242
11.3. Loading configurations into EB GUIDE Monitor .. 244
11.4. Firing an event in EB GUIDE Monitor .. 245
11.5. Changing the value of the datapool item with EB GUIDE Monitor .. 246
11.6. Using scripts in EB GUIDE Monitor ... 247

11.6.1. Writing script files for EB GUIDE Monitor .. 247
11.6.2. Starting scripts in EB GUIDE Monitor .. 251

11.7. Exporting and importing watch lists ... 252
12. Extending EB GUIDE Studio ... 255

12.1. Concepts ... 255
12.1.1. Dependency injection ... 255
12.1.2. EB GUIDE model extensions ... 256
12.1.3. EB GUIDE Studio UI extensions .. 258

12.2. Creating an extension project ... 260
12.3. Disabling copying of the assemblies .. 261
12.4. Running an extension ... 262

13. Best practices ... 263
13.1. Best practice: Handling scripted values ... 263

14. Tutorials ... 264
14.1. Tutorial: Adding a dynamic state machine .. 264
14.2. Tutorial: Modeling button behavior with EB GUIDE Script ... 272
14.3. Tutorial: Modeling a path gesture .. 279
14.4. Tutorial: Creating a list with dynamic content ... 281
14.5. Tutorial: Making an ellipse move across the screen .. 289
14.6. Tutorial: Adding a language-dependent text to a datapool item .. 291
14.7. Tutorial: Working with a 3D graphic ... 295
14.8. Tutorial: Rendering gamma correctly ... 300

EB GUIDE Studio

Page 11 of 471

14.9. Tutorial: Using view transition animations .. 303
14.10. Tutorial: Using script curves for animations .. 312
14.11. Tutorial: Creating a horizontal progress bar .. 316

15. References ... 321
15.1. Command line options .. 321

15.1.1. Command line options for Studio.Console.exe .. 321
15.1.2. Command line options for Monitor.Console.exe .. 322

15.2. Datapool items ... 323
15.3. Data types ... 323

15.3.1. Boolean .. 323
15.3.2. Color .. 323
15.3.3. Conditional script ... 324
15.3.4. Float ... 324
15.3.5. Font .. 325
15.3.6. Function () : bool ... 325
15.3.7. Ibl ... 325
15.3.8. Image ... 326
15.3.9. Integer .. 326
15.3.10. Mesh .. 327
15.3.11. String .. 327
15.3.12. List ... 327

15.4. EB GUIDE Script ... 328
15.4.1. EB GUIDE Script keywords .. 328
15.4.2. EB GUIDE Script operator precedence ... 329
15.4.3. EB GUIDE Script standard library ... 330

15.4.3.1. EB GUIDE Script functions A - B ... 330
15.4.3.1.1. abs ... 330
15.4.3.1.2. absf ... 330
15.4.3.1.3. acosf ... 331
15.4.3.1.4. animation_before ... 331
15.4.3.1.5. animation_beyond ... 331
15.4.3.1.6. animation_cancel ... 331
15.4.3.1.7. animation_cancel_end ... 332
15.4.3.1.8. animation_cancel_reset ... 332
15.4.3.1.9. animation_pause ... 332
15.4.3.1.10. animation_play ... 332
15.4.3.1.11. animation_reverse .. 333
15.4.3.1.12. animation_running ... 333
15.4.3.1.13. animation_set_time ... 333
15.4.3.1.14. asinf ... 333
15.4.3.1.15. atan2f ... 334
15.4.3.1.16. atan2i ... 334

EB GUIDE Studio

Page 12 of 471

15.4.3.1.17. atanf ... 334
15.4.3.1.18. bool2string ... 335

15.4.3.2. EB GUIDE Script functions C - H ... 335
15.4.3.2.1. ceil ... 335
15.4.3.2.2. changeDynamicStateMachinePriority 335
15.4.3.2.3. character2unicode ... 335
15.4.3.2.4. clampf ... 336
15.4.3.2.5. clampi ... 336
15.4.3.2.6. clearAllDynamicStateMachines .. 336
15.4.3.2.7. color2string ... 337
15.4.3.2.8. cosf ... 337
15.4.3.2.9. deg2rad ... 337
15.4.3.2.10. expf ... 337
15.4.3.2.11. float2string .. 338
15.4.3.2.12. floor ... 338
15.4.3.2.13. fmod ... 338
15.4.3.2.14. focusMoveTo ... 338
15.4.3.2.15. focusNext ... 339
15.4.3.2.16. focusPrevious ... 339
15.4.3.2.17. format_float ... 339
15.4.3.2.18. format_int ... 340
15.4.3.2.19. frac ... 341
15.4.3.2.20. getAllLanguages ... 341
15.4.3.2.21. getAllSkins ... 341
15.4.3.2.22. getConfigItem ... 342
15.4.3.2.23. getFontAscender ... 342
15.4.3.2.24. getFontDescender ... 342
15.4.3.2.25. getFontLineGap ... 343
15.4.3.2.26. getImageHeight ... 343
15.4.3.2.27. getImageWidth ... 343
15.4.3.2.28. getLabelTextHeight ... 344
15.4.3.2.29. getLabelTextWidth ... 344
15.4.3.2.30. getLanguage ... 344
15.4.3.2.31. getLanguageName ... 344
15.4.3.2.32. getLanguageTag ... 345
15.4.3.2.33. getLineCount ... 345
15.4.3.2.34. getLineHeight ... 345
15.4.3.2.35. getProductString ... 346
15.4.3.2.36. getSkin ... 346
15.4.3.2.37. getSkinName ... 346
15.4.3.2.38. getTextHeight ... 346
15.4.3.2.39. getTextLength ... 347

EB GUIDE Studio

Page 13 of 471

15.4.3.2.40. getTextWidth ... 347
15.4.3.2.41. getVersionString ... 348
15.4.3.2.42. has_list_window ... 348
15.4.3.2.43. hsba2color ... 348

15.4.3.3. EB GUIDE Script functions I - R .. 349
15.4.3.3.1. int2float ... 349
15.4.3.3.2. int2string ... 349
15.4.3.3.3. isDynamicStateMachineActive .. 349
15.4.3.3.4. isWidgetOnActiveStatemachine .. 349
15.4.3.3.5. language ... 350
15.4.3.3.6. lerp ... 350
15.4.3.3.7. localtime_day ... 350
15.4.3.3.8. localtime_hour ... 350
15.4.3.3.9. localtime_minute ... 351
15.4.3.3.10. localtime_month ... 351
15.4.3.3.11. localtime_second .. 351
15.4.3.3.12. localtime_weekday ... 351
15.4.3.3.13. localtime_year ... 352
15.4.3.3.14. log10f ... 352
15.4.3.3.15. logf ... 352
15.4.3.3.16. maxf ... 352
15.4.3.3.17. maxi ... 353
15.4.3.3.18. minf ... 353
15.4.3.3.19. mini ... 353
15.4.3.3.20. nearbyint ... 354
15.4.3.3.21. popDynamicStateMachine .. 354
15.4.3.3.22. powf ... 354
15.4.3.3.23. pushDynamicStateMachine .. 354
15.4.3.3.24. rad2deg ... 355
15.4.3.3.25. rand ... 355
15.4.3.3.26. rgba2color ... 355
15.4.3.3.27. round ... 355

15.4.3.4. EB GUIDE Script functions S - W .. 356
15.4.3.4.1. saturate ... 356
15.4.3.4.2. seed_rand ... 356
15.4.3.4.3. setLanguage ... 356
15.4.3.4.4. setSkin ... 357
15.4.3.4.5. shutdown ... 357
15.4.3.4.6. sinf ... 357
15.4.3.4.7. skin ... 357
15.4.3.4.8. smoothstep ... 358
15.4.3.4.9. sqrtf ... 358

EB GUIDE Studio

Page 14 of 471

15.4.3.4.10. string2float ... 358
15.4.3.4.11. string2int .. 359
15.4.3.4.12. string2string ... 359
15.4.3.4.13. substring ... 359
15.4.3.4.14. system_time ... 360
15.4.3.4.15. system_time_ms ... 360
15.4.3.4.16. tanf ... 360
15.4.3.4.17. trace_dp ... 360
15.4.3.4.18. trace_string ... 361
15.4.3.4.19. transformToScreenX ... 361
15.4.3.4.20. transformToScreenY ... 361
15.4.3.4.21. transformToWidgetX ... 362
15.4.3.4.22. transformToWidgetY ... 362
15.4.3.4.23. trunc ... 362
15.4.3.4.24. widgetGetChildCount ... 363

15.5. Events ... 363
15.5.1. Decimal codes for key events .. 363

15.6. Buttons and icons .. 365
15.7. Scenes .. 371
15.8. Shortcuts ... 372
15.9. State machines .. 374

15.9.1. Haptic state machine ... 374
15.9.2. Logic state machine .. 375
15.9.3. States ... 375

15.9.3.1. Initial state .. 375
15.9.3.2. Compound state ... 375
15.9.3.3. View state .. 376
15.9.3.4. Choice state ... 376
15.9.3.5. Shallow history state ... 376
15.9.3.6. Deep history state .. 376
15.9.3.7. Final state .. 377

15.9.4. Transitions .. 377
15.9.4.1. Default transition ... 377
15.9.4.2. Choice transition ... 377
15.9.4.3. Else transition ... 377
15.9.4.4. Internal transition .. 378
15.9.4.5. Self transition ... 378

15.10. Widgets ... 378
15.10.1. View ... 378
15.10.2. Basic widgets .. 379

15.10.2.1. Alpha mask .. 380
15.10.2.2. Animation ... 381

EB GUIDE Studio

Page 15 of 471

15.10.2.2.1. Constant curve ... 382
15.10.2.2.2. Fast start curve .. 382
15.10.2.2.3. Slow start curves ... 383
15.10.2.2.4. Quadratic curve .. 384
15.10.2.2.5. Sinus curve .. 385
15.10.2.2.6. Script curve ... 385
15.10.2.2.7. Linear curve ... 386
15.10.2.2.8. Linear interpolation curve .. 387

15.10.2.3. Container ... 387
15.10.2.4. Ellipse .. 388
15.10.2.5. Image ... 388
15.10.2.6. Instantiator ... 389
15.10.2.7. Label .. 389
15.10.2.8. Rectangle ... 390

15.10.3. 3D widgets .. 391
15.10.3.1. Ambient light .. 391
15.10.3.2. Camera .. 391
15.10.3.3. Directional light ... 391
15.10.3.4. Image-based light ... 392
15.10.3.5. Material .. 392
15.10.3.6. Mesh .. 393
15.10.3.7. PBR GGX material .. 393
15.10.3.8. PBR Phong material ... 394
15.10.3.9. Point light ... 395
15.10.3.10. Scene graph ... 396
15.10.3.11. Scene graph node ... 396
15.10.3.12. Spot light .. 397

15.11. Widget features .. 397
15.11.1. Common ... 398

15.11.1.1. Child visibility selection .. 398
15.11.1.2. Enabled .. 398
15.11.1.3. Focused ... 398
15.11.1.4. Font metrics .. 399
15.11.1.5. Multiple lines ... 399
15.11.1.6. Pressed .. 400
15.11.1.7. Selected ... 401
15.11.1.8. Selection group ... 401
15.11.1.9. Spinning ... 402
15.11.1.10. Text truncation .. 402
15.11.1.11. Touched .. 403

15.11.2. Effect .. 404
15.11.2.1. Border .. 404

EB GUIDE Studio

Page 16 of 471

15.11.2.2. Coloration ... 405
15.11.2.3. Circular text .. 405
15.11.2.4. Stroke ... 406

15.11.3. Focus .. 407
15.11.3.1. Auto focus .. 407
15.11.3.2. User-defined focus .. 407

15.11.4. Gestures ... 408
15.11.4.1. Flick gesture ... 408
15.11.4.2. Hold gesture ... 409
15.11.4.3. Long hold gesture ... 410
15.11.4.4. Path gestures ... 410

15.11.4.4.1. Gesture IDs ... 411
15.11.4.5. Pinch gesture .. 412
15.11.4.6. Rotate gesture .. 413

15.11.5. Input handling .. 414
15.11.5.1. Gestures ... 414
15.11.5.2. Key pressed ... 414
15.11.5.3. Key released .. 414
15.11.5.4. Key status changed ... 415
15.11.5.5. Key unicode .. 415
15.11.5.6. Move in .. 416
15.11.5.7. Move out .. 416
15.11.5.8. Move over .. 417
15.11.5.9. Moveable .. 417
15.11.5.10. Rotary .. 418
15.11.5.11. Touch lost ... 418
15.11.5.12. Touch move .. 419
15.11.5.13. Touch pressed .. 420
15.11.5.14. Touch released .. 420
15.11.5.15. Touch status changed .. 421

15.11.6. Layout ... 422
15.11.6.1. Absolute layout ... 422
15.11.6.2. Box layout .. 422
15.11.6.3. Flow layout ... 423
15.11.6.4. Grid layout .. 424
15.11.6.5. Layout margins ... 424
15.11.6.6. List layout ... 425
15.11.6.7. Scale mode .. 426

15.11.7. List management ... 427
15.11.7.1. Line index ... 427
15.11.7.2. List index .. 427
15.11.7.3. Template index .. 428

EB GUIDE Studio

Page 17 of 471

15.11.7.4. Viewport ... 428
15.11.8. 3D ... 429

15.11.8.1. Anti-aliasing mode ... 429
15.11.8.2. Camera bloom .. 429
15.11.8.3. Camera depth of field .. 430
15.11.8.4. Camera viewport ... 431
15.11.8.5. Clear coat ... 431
15.11.8.6. Ambient texture ... 432
15.11.8.7. Anisotropy .. 433
15.11.8.8. Diffuse texture ... 433
15.11.8.9. Base color texture ... 434
15.11.8.10. Emissive texture .. 436
15.11.8.11. Light map texture .. 437
15.11.8.12. Metallic texture .. 438
15.11.8.13. Normal map texture ... 439
15.11.8.14. Opaque texture ... 440
15.11.8.15. Reflection texture .. 441
15.11.8.16. Roughness texture .. 442
15.11.8.17. Shininess texture ... 443
15.11.8.18. Specular texture .. 444
15.11.8.19. Reflectance texture .. 445
15.11.8.20. Texture coordinate transformation ... 447
15.11.8.21. Tone mapping ... 447
15.11.8.22. Screen space ambient occlusion .. 448

15.11.9. Transformation ... 449
15.11.9.1. Pivot ... 450
15.11.9.2. Rotation .. 450
15.11.9.3. Scaling ... 451
15.11.9.4. Shearing ... 451
15.11.9.5. Translation .. 451

16. Installation of EB GUIDE Studio .. 453
16.1. Background information .. 453

16.1.1. Restrictions ... 453
16.1.2. System requirements ... 453

16.2. Downloading EB GUIDE ... 454
16.3. Installing EB GUIDE ... 454
16.4. Uninstalling EB GUIDE ... 455

Glossary ... 456
Index .. 461

EB GUIDE Studio
Chapter 1. About this documentation

Page 18 of 471

1. About this documentation

1.1. Target audiences of the user documentation
This chapter informs you about target audiences involved in an EB GUIDE project and the tasks they usually
perform.

You can categorize your tasks and find the documentation relevant to you.

The following roles exist:

► section 1.1.1, “Target audience: Modelers”

► section 1.1.2, “Target audience: Extension developers”

1.1.1. Target audience: Modelers

Modelers use EB GUIDE Studio to create a human machine interface (HMI). In EB GUIDE the HMI is called
EB GUIDE model. Communication with applications is carried out through determined events using the event
mechanism, through datapool items using the datapool and through user-specific EB GUIDE Script functions.

Modelers perform the following tasks:

► Use an architecture of widgets and views to specify graphical elements on the displays

► Communicate with designers and usability experts to optimize user interfaces

► Use state machine functionality to specify when graphical elements are displayed

► Define how elements react to input from devices such as control panels or touch screens

► Define how elements receive information from hardware or software applications that offer services like
a navigation unit

► Define interfaces between model elements as well as input and output devices

Modelers have profound knowledge of the following:

► EB GUIDE Studio features

► The UML state machine concept

► The specifications and requirements of the domain

► The interchanged data and the EB GUIDE GTF communication mechanism

EB GUIDE Studio
Chapter 1. About this documentation

Page 19 of 471

► The specifications of 3D graphics, if 3D graphics are used in the project

1.1.2. Target audience: Extension developers
There may be missing features that cannot be provided through simply modeling an EB GUIDE model or adding
customer-specific applications. This is when new widgets or a specific renderer may be required.

Extension developers perform the following tasks:

► Communicate with members of the EB GUIDE development team through chapter 3, “Support“ to find out
if there are already solutions to problems

► Work on the framework and develop new features, EB GUIDE Studio extensions or EB GUIDE GTF ex-
tensions

► Write code for additional modules for the following items:

► Existing EB GUIDE GTF modules such as widgets or the shaders

► Existing EB GUIDE Studio extensions such as additional toolbar buttons

Extension developers have the profound knowledge of the following:

► EB GUIDE interfaces

► Interaction between the central modules

► Structure of the framework's data

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

EB GUIDE Studio
Chapter 1. About this documentation

Page 20 of 471

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technical parameters and tables.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
The following pictographs and signal words are used in this documentation to indicate important information.

The signal word WARNING indicates information that is vital for the success of the configuration.

WARNING Source and kind of problem
What can happen to the software?

What are the consequences of the problem?

How does the user avoid the problem?

The signal word NOTE indicates important information on a subject.

NOTE Important information
Gives important information on a subject.

The signal word TIP provides helpful hints, tips and shortcuts.

TIP Helpful hints
Gives helpful hints

Throughout the documentation you will find words and phrases that are displayed in bold or in italic or mono-
spaced font.

To find out what these conventions mean, see the following examples.

EB GUIDE Studio
Chapter 1. About this documentation

Page 21 of 471

All default text is written in Arial Regular font.

Font Description Example

Arial italics to emphasize new or important terms The basic building blocks of a configuration are
module configurations.

Arial boldface for GUI elements and keyboard keys 1. In the Project drop-down list box, select
Project_A.

2. Press the Enter key.

Monospaced font
(Courier)

for file names, directory names and
chapter names

Put your script in the function_name/abcdi-
rectory.

Monospaced font
(Courier)

for user input, code, and file directo-
ries

CC_FILES_TO_BUILD =(PROJECT_PATH)/

source/network/can_node.c CC_-

FILES_TO_BUILD += $(PROJECT_PATH)/

source/network/can_config.c

The module calls the BswM_Dcm_Re-
questSessionMode() function.

For the project name, enter Project_Test.

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE Studio user guide the following folder names are used:

► The folder to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

EB GUIDE Studio
Chapter 1. About this documentation

Page 22 of 471

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.10

► The folder for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH/platform/<platform name>.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.10/platform/win64

► The folder to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

C:/Users/[user name]/Documents/EB GUIDE 6.10/projects/

► The folder to which you export your EB GUIDE model is referred to as $EXPORT_PATH.

For example:

C:/Documents/Projects/My_exported_model

1.5. Path conventions
EB GUIDE Studio supports handling of path names with more than 260 characters in Windows 10. A full path
name can have more than 260 characters, however, single file names or directory names in the path still have
a limit of 248 characters.

EB GUIDE Studio
Chapter 2. Safe and correct use

Page 23 of 471

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by Elektrobit Automotive GmbH to implement human
machine interfaces in safety-relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety-relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact Elektrobit Automotive GmbH for clarification at chapter 3, “Support“.

EB GUIDE Studio
Chapter 3. Support

Page 24 of 471

3. Support
EB GUIDE support is available in the following ways:

► For the community edition, find comprehensive information in our articles, blogs, and user documentation.

► For the enterprise edition, contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE Studio installation. To find the version
number, open EB GUIDE Studio, go to the project center, and click Help. The version number is located in
the lower right corner of the dialog.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 25 of 471

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE product
line provides tooling and platform for graphical user interfaces. The EB GUIDE product line is intended to be
used in projects for infotainment head units, cluster instruments, and selected industry applications. Main use
cases are mass production, specification and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

► EB GUIDE arware

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

EB GUIDE TF executes EB GUIDE models created in EB GUIDE Studio. EB GUIDE TF is available for devel-
opment PCs and for different embedded platforms.

EB GUIDE arware is a software framework that enables the creation of augmented reality solutions to enhance
the driving experience.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

State machines
A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

States
States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 26 of 471

4.2.2. Modeling HMI appearance
In EB GUIDE Studio you define the graphical user interface of the EB GUIDE model.

To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that define
the look. They are mainly used to display information, for example text labels or images. Widgets also allow
users to control system behavior, for example buttons or sliders. Multiple widgets are assembled to a structure,
which is called view.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

Datapool
The datapool is an embedded database that holds all data to be displayed and further internal information.
Datapool items store and exchange data.

Event system
Events are temporary triggers. Events can be sent to both HMI and application to signal that something
specific happens.

Application software can access events and the datapool through the API.

4.2.4. Simulating the EB GUIDE model
With EB GUIDE Studio you can test the functionality of your EB GUIDE model during simulation. You start the
simulation with a mouse-click and can immediately experience the look and feel of your EB GUIDE model.

You interact with simulation using input devices like mouse, keyboard, or touch screen.

You can also control your EB GUIDE model with EB GUIDE Monitor and do the following:

► Change the displayed data by changing values of datapool items

► Simulate user input by firing events

► Track all changes in the log

► Start scripts

You can also use EB GUIDE Monitor as a stand-alone application.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 27 of 471

4.2.5. Exporting the EB GUIDE model

To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data is
exported as a set of binary, configuration, and resource files.

4.3. EB GUIDE TF
EB GUIDE TF consists of the GtfStartup executable file and a set of libraries, which are required to execute
an EB GUIDE model.

EB GUIDE GTF (EB GUIDE Graphics Target Framework) is the run-time environment executing a graphical
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. EB GUIDE models
contain element properties such as geometry and lighting. The data contained in exported EB GUIDE
models is passed to the renderer for processing and output to a digital image. The renderer is the abstrac-
tion to the real graphic system on your hardware. EB GUIDE TF supports various renderers for different
platforms.

4.3.1. Modularization

EB GUIDE provides several features that support a modular architecture of your HMI. You can create an HMI
that consists of multiple EB GUIDE models. EB GUIDE models can run independent of each other. Multiple

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 28 of 471

EB GUIDE GTF instances can run on a single target. Data can be exchanged between models running on the
same EB GUIDE GTF instance or different models running on different processes, using for example IPC.

4.4. EB GUIDE arware
EB GUIDE arware is a software framework that enables the creation of augmented reality solutions to make
driving safer, build driver trust in the vehicle and enhance the driving experience. EB GUIDE arware uses the
car’s GPS (global positioning system) and sensors to acquire and identify objects in the car’s environment.
With EB GUIDE arware you can call out these objects to the attention of the driver within the field of view on
the head-up display in real time.

EB GUIDE arware can process the following information:

► Information provided by vehicle sensors e.g. object data from an ADAS ECU

► Information provided by a map and guidance information provider e.g. ADASISv3 data

► Information computed by EB GUIDE arware from above sources e.g. by fusing map and sensor data

► Information provided by an in-vehicle infotainment system through an EB GUIDE Studio interface

EB GUIDE arware consists of two main software parts:

► Data fusion that creates a virtual model of the vehicle’s environment, correlates measurements from dif-
ferent sensors, and extrapolates to compensate latencies.

► Visualization subsystem that decides which user interface elements are shown, calculates where these
elements are shown, and renders them using the host OS graphics subsystem.

You can extend and customize the visualization subsystem of EB GUIDE arware by using EB GUIDE
Studio and EB GUIDE GTF.

EB GUIDE arware has to be integrated into a vehicle-specific application. The application is responsible for
converting the incoming data messages into a standardized format which can be processed by EB GUIDE
arware.

EB GUIDE Studio
Chapter 5. Getting started

Page 29 of 471

5. Getting started
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

The following section gives you a short overview on HMI modeling with EB GUIDE Studio. It explains you how
to start EB GUIDE Studio, how to create a project, how to model the behavior and appearance of an EB GUIDE
model, and how to simulate an EB GUIDE model.

Approximate duration: 20 minutes.

5.1. Starting EB GUIDE

Starting EB GUIDE

Prerequisite:

■ EB GUIDE is installed.

Step 1
In the Windows Start menu, select the EB GUIDE Studio version you want to start.

EB GUIDE Studio starts. The project center is displayed.

EB GUIDE Studio
Chapter 5. Getting started

Page 30 of 471

Figure 5.1. Project center

5.2. Creating a project

Creating a project

Prerequisite:

■ EB GUIDE Studio is started.
■ A folder C:/temp is created.

Step 1
In the navigation area of the project center, click New.

Step 2
In the content area, select the C:/temp folder as Location.

Step 3
Enter the project name MyProject.

Step 4
Click Create.

The project is created. The project editor opens and displays the empty project.

The Main state machine is added by default and displayed in the content area.

EB GUIDE Studio
Chapter 5. Getting started

Page 31 of 471

Figure 5.2. Project editor with Main state machine

5.3. Modeling HMI behavior
The behavior of your EB GUIDE model is defined by state machines. EB GUIDE uses a syntax similar to UML
to do that.

In the following section, you learn how to model a state machine that displays a defined view on start-up and
changes to a different view when a button is pressed.

Adding states to the state machine

EB GUIDE offers a variety of states. The following section shows three different states. An initial state de-
fines the starting point of the state machine. A view state displays a view by default. And the final state of the
state machine terminates the state machine.

Prerequisite:

■ The project MyProject is created.
■ The content area displays the Main state machine.

Step 1
Drag a View state from the Toolbox into the State machine.

Along with View state 1, a View is added to the EB GUIDE model.

EB GUIDE Studio
Chapter 5. Getting started

Page 32 of 471

Step 2
Repeat step 1.

View state 2 is added.

Step 3
Drag an Initial state from the Toolbox into the State machine.

Step 4
Drag a Final state from the Toolbox into the State machine.

The four states you added to the Main state machine are displayed both in the content area as a state chart
and in the Navigation component as a hierarchical tree view when you expand the widget tree.

Figure 5.3. Project editor with states

Adding transitions

Transitions are the connection between states and trigger state changes. There are different transition types.
The following section shows a default transition and an event-triggered transition.

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an initial state, two view states, and a final state.

Step 1
Select the Initial state. The Initial state is the source state for the transition.

EB GUIDE Studio
Chapter 5. Getting started

Page 33 of 471

A green drag point is displayed.

Step 2
Drag the drag point into the target state, View state 1.

Step 3
When the target state is highlighted green, release the mouse button.

The transition is displayed as a green arrow.

Step 4
Add a transition between View state 1 and View state 2.

Select View state 1.

The state border is highlighted green.

Step 5
Hover over the highlighted state border.

A drag point is displayed.

Step 6
Drag the drag point into View state 2 as the target state.

The transition is displayed as a green arrow.

Step 7
Select the transition between View state 1 and View state 2.

As a next step, you associate the transition to an event.

Step 8
Go to the Properties component, enter Event 1 in the Trigger combo box and click Add event.

An event called Event 1 is created and added as a transition trigger. Whenever Event 1 is fired, the tran-
sition is executed.

Step 9
Add a transition between View state 2 and the Final state.

Select View state 2 and repeat steps 4-6 for the final state as the target state.

Add a new event Event 2 as a trigger.

At this point, your state machine resembles the following figure:

EB GUIDE Studio
Chapter 5. Getting started

Page 34 of 471

Figure 5.4. States linked by transitions with events

You have defined the behavior of a basic state machine.

5.4. Modeling HMI appearance
The state machine you created in the section above contains two view states. In the following section, you
learn how to model a view.

Opening a view

Prerequisite:

■ View state 1 is added to the model.

Step 1
Double-click View state 1.

The content area displays View 1.

Adding a button to a view

With EB GUIDE Studio you have a variety of options to model the appearance of a view.

EB GUIDE Studio
Chapter 5. Getting started

Page 35 of 471

To give you one example, the next section shows you how to add a rectangle to a view. The rectangle reacts
on user input and thus functions as a button.

Prerequisite:

■ The content area displays View 1.

Step 1
Drag a Rectangle from the Toolbox into the View.

Step 2
In the Properties component, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select Touch released.

Click Accept.

The related widget feature properties are added to the Properties component.

The default touchPolicy that is selected is press then react.

The rectangle reacts on touch input in the simulation mode.

Step 4
Go to the touchShortReleased property, and click .

An EB GUIDE Script editor opens.

Step 5
Enter the following EB GUIDE Script:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 1"()

 true

 }

If the rectangle is touched in the simulation mode, Event 1 is fired after 500 milliseconds.

Step 6
Click Accept.

Step 7
In the Properties component, for the fillColor property select red.

Step 8
In the Navigation component, double-click View 2.

The content area displays View 2.

EB GUIDE Studio
Chapter 5. Getting started

Page 36 of 471

Step 9
Repeat steps 1-5.

Step 10
Enter the following EB GUIDE Script:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 2"()

 true

 }

Figure 5.5. Widget property with an EB GUIDE Script

Step 11
Click Accept.

If the rectangle is touched in the simulation mode, Event 2 is fired after 500 milliseconds.

Step 12
In the Properties component, for the fillColor property select blue.

5.5. Starting the simulation
EB GUIDE allows you to simulate your model on the PC before exporting it to the target device.

EB GUIDE Studio
Chapter 5. Getting started

Page 37 of 471

Starting the simulation

Step 1
To save the project, click in the command area.

Step 2
In the command area, click .

The EB GUIDE model starts and shows the behavior and appearance you modeled.

First, View 1 is displayed. A click on the red rectangle changes the screen to View 2. This is because the
click fires Event 1 and Event 1 executes the transition from View state 1 to View state 2.

Then, View 2 is displayed. A click on the blue rectangle in View 2 terminates the state machine. This is be-
cause the click fires Event 2 and Event 2 executes the transition from View state 2 to the final state.

The simulation window remains open. To stop the simulation, click .

EB GUIDE Studio
Chapter 6. Background information

Page 38 of 471

6. Background information
The topics in this chapter are sorted alphabetically.

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

6.1. 3D graphics
EB GUIDE Studio offers the possibility to use 3D graphics in your EB GUIDE project.

6.1.1. Supported 3D graphic formats
Only the renderers for OpenGL ES 2.0 or higher can display 3D graphics. The supported 3D graphic formats
are COLLADA (.dae) and Filmbox (.fbx). For best results, use the Filmbox format.

6.1.2. Settings for 3D graphic files
To make 3D objects appear in a view in EB GUIDE Studio, you need to create the 3D graphic file with the
following options:

► A perspective camera

► At least one object containing a mesh and at least one material

► At least one light source

TIP Gamma correction for scene graphs
The gamma property allows to adjust the luminance output of the scene graph to match the
luminance response of your monitor or display device for best visual results. The value must
be higher than 0.0 and is set to 2.2 per default, which is suitable for most displays.

To create a 3D graphic file, use third-party 3D modeling software.

3D graphic files support a wide variety of additional content, which is listed below:

EB GUIDE Studio
Chapter 6. Background information

Page 39 of 471

► 3D objects with positions, normals, binormals, tangents, and one texture channel

► Directional light sources

► Image-based light sources

► Ambient light sources

► Point light sources with constant, linear, quadratic, and cubic attenuation

► Spot light sources with cone angles, constant, linear, quadratic, and cubic attenuation

► Perspective camera support for fields of view, near plane, and far plane

► Textures: Emissive, diffuse, specular, normal map, opacity, reflection cube, and light map

NOTE Opacity maps
Opacity maps need a valid alpha channel.

6.1.3. Import of a 3D graphic file

To add a 3D graphic to a view, you need to import a 3D graphic file using a scene graph. During import EB
GUIDE Studio converts the 3D graphic file into a widget tree with scene graph as a parent node. For the content
of the 3D graphic file, for example camera, material, meshes, EB GUIDE Studio creates the respective widgets.
If the 3D scene of the imported 3D graphic file contains animations, EB GUIDE Studio imports these animations
using the linear key value interpolation curve. This curve is applied to animated properties of type float, integer,
or color. It is not possible to apply the linear key value interpolation curve in the same way the other animation
curves are applied. This curve is only used to import animations of 3D graphics.

Figure 6.1. Example of a scene graph as displayed in the Navigation component

EB GUIDE Studio
Chapter 6. Background information

Page 40 of 471

NOTE Restrictions
Note the following:

► If your 3D graphic has more than one material per mesh, during import EB GUIDE
Studio creates additional mesh for each additional material.

► During the import of an .fbx file only a default material widget is created. If your 3D
model has other types of materials, EB GUIDE Studio adds only a default material and
its properties are set to default values. In EB GUIDE Studio, you can add other types
of materials using PBR Phong material and PBR GGX material widgets.

► In EB GUIDE Studio only one material per mesh is rendered. If a mesh has several
materials added, only the topmost material widget is rendered.

► When you import an .fbx file that was exported from Blender, the emissive color is set
to (0, 0, 0) and all lights in the scene are changed to a directional light with an intensity
of 1.0. This is done because Blender does not export the necessary material and light
information.

After importing a 3D graphic file, a subfolder is created in the folder $GUIDE_PROJECT_PATH/<project
name>/resources. The subfolder is named after the imported .fbx file. Additionally date and time of creation
are added to the name of the subfolder.

Example 6.1.
Naming of the import folder

The 3D graphic file is called car.fbx. After importing a 3D graphic file in EB GUIDE Studio, in
$GUIDE_PROJECT_PATH/<project name>/resources you find a subfolder named car_-
20160102_103029.

The subfolder contains the following:

► Meshes as .ebmesh files

► Textures as .png or .jpg files

To use additional textures for your 3D graphics, copy a texture into $GUIDE_PROJECT_PATH/<project
name>/resources. As texture use .png or .jpg images.

Import of multiple 3D graphics within one scene graph is possible.

After import, you can add, modify or delete 3D widgets.

For details, see section 6.26, “Widgets”, section 15.10.3, “3D widgets”, and section 15.11.8, “3D”.

For instructions, see section 8.2.3.1, “Adding a Scene graph to a View”, and section 14.7, “Tutorial: Working
with a 3D graphic”.

EB GUIDE Studio
Chapter 6. Background information

Page 41 of 471

6.2. Animations
You can create different types of animations in EB GUIDE Studio, such as, loading screens, toggle buttons,
transitions, fade-ins, or scaling. The component that is used to create and to configure animations is called
Animation editor.

Animation in the common sense means that something that is displayed appears to be moving. In reality objects
do not move with constant speed. Opening a drawer happens quickly at first and then it slows down. A car
accelerates slowly and then the movement is steady. In HMIs this type of movement is simulated with easing.
Easing is defined with animation curves.

Any value that is represented through numbers can be animated. Even colors can be animated because colors
are defined in hexadecimal numbers. Every numerical value can be animated, whether it is a datapool item
or a widget property.

In more general terms, animation means changing a value gradually into a different value. Gradually means
that the element of time is involved in animation. Animation means changing a value over a defined time.

Animation curves bring all of this together. They define which value is the target of the animation, towards which
value it changes, the duration of the animation, and the easing.

Animations are available for datapool items, widget properties, user-defined properties, and widget feature
properties of the following data types:

► Boolean

► Color

► Float

► Integer

► For more information about the animation curves, see section 15.10.2.2, “Animation”.

► To create a custom animation curve, see section 6.2.6, “Script curve”.

► When you add an animation to a view, the view has additional properties for animations. For more infor-
mation, see section 15.10.1, “View”.

► To find out how animations in imported 3D graphics are handled, see section 6.1.3, “Import of a 3D graphic
file”.

6.2.1. Execution of animations
You can control animations for example with the following EB GUIDE Script functions:

► animation_play

EB GUIDE Studio
Chapter 6. Background information

Page 42 of 471

► animation_pause

► animation_cancel

NOTE Simultaneous animations
In EB GUIDE, animations can be executed simultaneously. That means, an animation target
can be the target of several animation curves that are executed at the same time. In this
case, the curves overwrite the target's value at the same time.

6.2.2. Widget animation

Animating widget means applying animation curves to the values of widget properties. You can move widgets,
change their size, or fade them in and out. Animation is available for widget properties, user-defined properties,
and widget feature properties of the following data types:

► Boolean

► Color

► Float

► Integer

For instructions, see section 8.2.2.7.1, “Animating a widget”.

6.2.3. Datapool item animation

Animating datapool items means applying animation curves to the values of datapool items. Animation is avail-
able for datapool items of the following data types:

► Boolean

► Color

► Float

► Integer

For instructions, see section 8.2.2.7.4, “Animating a datapool item”.

6.2.4. View transition animation

EB GUIDE Studio
Chapter 6. Background information

Page 43 of 471

If you want to execute an animation when a view is entered or exited, use view transition animation (VTA). VTA
is triggered by a view change. You can define view transition animations for view states and view templates.
Every time you re-use the view template, the instance inherits the view transition animations of the template.
The following types of VTA are available.

Table 6.1. Animation types

Animation type Description

Entry animation The animation is played when the view state with the animation
is entered. The animation can only manipulate the widget prop-
erties and the widget feature properties of the added view.

Exit animation Animation is played when the view state with the animation is
exited. The animation can only manipulate the widget properties
and the widget feature properties of the added view.

Change animation The animation is played on view state change. The animation
can manipulate the properties of source and destination view.
The source view is the view state the animation is added to. The
destination view can be another view state or view template.
When you use the VTA change animation, be aware that during
the lifetime of the VTA, both views are visible and drawn in the
same location. The destination view is drawn on top of the start
view.

Pop-up on animation Only available for view templates and dynamic state machine
views. The animation is played when the respective dynamic
state machine is activated (pushed dynamic state machine).
The animation can manipulate the properties and the widget
properties of the added view.

Pop-up off animation Only available for view templates and dynamic state machine
views. The animation is played when the respective dynamic
state machine is exited (popped dynamic state machine). The
animation can manipulate the properties and the widget proper-
ties of the added view.

VTA is available for datapool items, widget properties, user-defined properties, and widget feature properties
of the following data types:

► Boolean

► Color

► Float

► Integer

For instructions, see section 8.2.2.7.2, “Animating a view transition”.

EB GUIDE Studio
Chapter 6. Background information

Page 44 of 471

6.2.5. Color animation
Animating colors means fading colors into different colors, into shades of the same color, or fading something in
or out. To create this effect in EB GUIDE you can apply animation curves to properties or datapool items of the
color data type. The color format used in EB GUIDE is RGBA8888. The values are in hexadecimal digits. Color
animation changes the hexadecimal digits according to the properties of the animation curve. This means, that
during color animation all of the colors that are between the start and end colors are displayed. For instructions,
see section 8.2.2.7.5, “Animating colors”.

For more information about color animation in 3D graphics, see section 6.1.3, “Import of a 3D graphic file”.

6.2.6. Script curve
For cases where the default animation curves are not suitable to handle your animation use case, you can
define your own animation curve. This feature is called script curve. The script curve is an animation curve that
provides a scripted curve property where you can enter your curve equation in EB GUIDE Script. This curve's
script provides two time values that are updated while the animation is executed:

► v:diff: The time in ms since the last execution.

► v:t_anim: The time in ms since the start of the animation.

For instructions, see section 8.2.2.7.3, “Animating with a script curve”. For a tutorial, see section 14.10, “Tutorial:
Using script curves for animations”.

6.3. Anti-aliasing
In EB GUIDE Studio you can enable anti-aliasing for an entire scene or for each scene graph separately. So,
you can enable or disable anti-aliasing globally, and at the same time you can enable and configure it for scene
graphs separately to override the global configuration.

Settings for anti-aliasing are hardware-dependent. If the required settings are not possible from hardware side,
the console log displays an error message and information about what is not supported.

Consider that the higher the resolution for anti-aliasing is the better the quality of the rendering result. However,
be aware that anti-aliasing decreases the rendering performance, especially on a target device. So start with
no anti-aliasing and, if the performance is good, try the settings 2x or 4x anti-aliasing. If there is no visible
difference in quality with higher anti-aliasing, use a lower setting. Also consider, the improvements anti-aliasing
brings, will have only small significance on small displays with high resolution.

For instructions, see section 8.9, “Enabling anti-aliasing”.

EB GUIDE Studio
Chapter 6. Background information

Page 45 of 471

6.4. Application programming interface between
application and model
EB GUIDE abstracts all communication data between an application and EB GUIDE TF in an application pro-
gramming interface (API). An application is for example a media player or a navigation.

The API is defined by datapool items and events. Events are sent between HMI and application.

Example 6.2.
Contents of an API

► Event START_TRACK that is sent to the application and that contains the parameter track for the
number of the track that should be played

► Event TRACK_STOPPED that is sent from the application to the HMI when the played track has
ended

► The dynamic datapool item MEDIA_CURRENT_TRACK that is written by the application

► The dynamic datapool item MEDIA_PLAY_SPEED that defines the speed for playing and is set by
the user in the HMI

6.5. Communication context
The communication context describes the environment in which communication occurs. An example for a com-
munication context is a media or a navigation application which communicates with an HMI model. Changes
made by one communication context are invisible to other communication contexts until the changes are pub-
lished by the writer application and updated by the reader application.

A communication context is identified by a unique name in the project configuration.

For instructions, see section 9.3.4, “Establishing external communication”.

6.6. Components of the graphical user interface

6.6.1. Graphical user interface of EB GUIDE Studio
The graphical user interface of EB GUIDE Studio is divided into two components: the project center and the
project editor. In the project center, you administer your EB GUIDE projects, configure options, and export EB
GUIDE models for copying to the target device. In the project editor, you model HMI appearance and behavior.

EB GUIDE Studio
Chapter 6. Background information

Page 46 of 471

6.6.1.1. Project center

The project center is the first screen that is displayed after starting EB GUIDE Studio. All project-related func-
tions are located in the project center. The project center consists of two parts: the navigation area and the
content area.

1 2

Figure 6.2. Project center with navigation area (1) and content area (2)

6.6.1.1.1. Navigation area

The navigation area of the project center consists of function tabs. You click a tab in the navigation area and
the content area displays the corresponding functions and settings.

Find the following functions and settings in the tabs:

New
In the New tab, you can create a new project.

Open
In the Open tab, you can open an existing project.

Configure
In the Configure tab, you can configure settings for e.g. Profiles, Skins, etc.

Export
In the Export tab, you can export an EB GUIDE model.

EB GUIDE Studio
Chapter 6. Background information

Page 47 of 471

Help
In the Help tab, you find links to user documentation.

Options
In the Options tab, you can switch the user interface language of EB GUIDE Studio.

Plug-ins
In the Plug-ins tab, all loaded plug-ins are listed.

6.6.1.1.2. Content area

The content area of the project center is where project management and configuration takes place. For ex-
ample, you select a folder to save a project or define the start-up behavior for your EB GUIDE model. The
appearance of the content area depends on the tab selected in the navigation area.

6.6.1.2. Project editor

After creating a project, the project editor is displayed. In the project editor you model the behavior and the
appearance of the HMI: you model state machines, create views, and manage events and datapool items. All
components of the project editor can either be docked or floating and placed at any position of the project editor
except the content area. The project editor consists of the following areas and components.

1 2 3 4 5 6 7

8

9

10

12

11

Figure 6.3. Project editor with its areas and components

EB GUIDE Studio
Chapter 6. Background information

Page 48 of 471

(1) Navigation component

(2) Toolbox component

(3) Templates component

(4) Properties component

(5) Command area

(6) Content area

(7) Datapool component

(8) Search box

(9) Events component

(10) Assets component

(11) Problems component

(12) Outline component

6.6.1.2.1. Navigation component

The Navigation component displays the model elements such as states, views, animations and transitions of
your EB GUIDE model as a hierarchical structure and allows you to navigate to any element. Double-clicking
a model element displays the model element in the content area.

The Navigation component gives you an overview of all graphical and non-graphical elements of the EB GUIDE
model and reflects the state machine hierarchy.

It is also where you add elements to your EB GUIDE model, such as state machines, and dynamic state
machines. You can add elements from the Toolbox such as widgets and animations using a drag-and-drop
operation.

EB GUIDE Studio
Chapter 6. Background information

Page 49 of 471

TIP Filtering and searching
At the top of the component you find a filter box to search for any element within the com-
ponent.

To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

Figure 6.4. Navigation component in project editor

6.6.1.2.2. Outline component

The Outline component lists the structure and model elements that are currently displayed in the content area.

EB GUIDE Studio
Chapter 6. Background information

Page 50 of 471

TIP Filtering and searching
At the top of the component you find a filter box to search for any element within the com-
ponent.

To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

6.6.1.2.3. Toolbox component

All tools you need for modeling are available in the Toolbox component, also referred to as Toolbox. Depending
on the element that is displayed in the content area, the Toolbox offers a different set of tools, which can
be dragged into the content area or the Navigation component. The Toolbox can for example contain the
following:

► If the content area displays a state machine, the Toolbox contains states you can add to the state machine.

► If the content area displays a view, the Toolbox contains widgets you can arrange in the view.

► If the content area displays a scripted value property, the Toolbox contains EB GUIDE Script functions
you can insert.

Figure 6.5. Toolbox in project editor

6.6.1.2.4. Properties component

EB GUIDE Studio
Chapter 6. Background information

Page 51 of 471

The Properties component displays the properties of the selected model element, for example of a widget or
a state. The properties are grouped by categories and can be edited in the Properties component.

TIP Searching for an element
To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

Figure 6.6. Properties component displaying properties of a widget

6.6.1.2.5. Content area

What is displayed in the content area depends on the selection in the Navigation component. To edit a model
element, you double-click the model element in the Navigation component and the content area displays it.
For example, you model the states of a state machine, you arrange widgets in a view, or you edit an EB GUIDE
Script in the content area.

EB GUIDE Studio
Chapter 6. Background information

Page 52 of 471

Figure 6.7. Content area in project editor

If in the content area you have an open view and the view contains an animation, the Animation editor is
opened. In the Animation editor you can add curves to widget properties. You can also edit the delay and
duration properties of the curves by moving the handles in the preview.

Figure 6.8. Animation editor

EB GUIDE Studio
Chapter 6. Background information

Page 53 of 471

TIP Searching for an element
To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

6.6.1.2.6. Events component

Here you can add events to a selected namespace, move events between namespaces, and edit the properties
such as Name, Group, Parameter name and Type in the event table.

Root namespace and user-defined namespaces are visible in the Events component only if they have at least
one event added to them.

TIP Filtering and searching
At the top of the component you find a filter box to search for any element within the com-
ponent.

To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

TIP Multiple selection of model elements
To select multiple elements, hold down Ctrl while clicking the elements you want to select.
You can also hold down Shift while clicking the respective elements or use the Up arrow
or Down arrow keys.

6.6.1.2.7. Datapool component

Here you can add datapool items to a selected namespace, move datapool items between namespaces, and
edit the properties such as Name and Value. You can also add a link to a datapool item, convert a value to
a script, and add language and skin support.

Root namespace and user-defined namespaces are visible in the Datapool component only if they have at
least one datapool item added to them.

At the top of the component you find a tag filter box and a keyword filter box.

Using the tag filter box, you can filter the datapool items according to the categories: data types, namespaces,
and model interfaces. Search for a tag and select it under the corresponding category, for example search for
the Color tag and select it under the Data types category. If you enter several tags from one category, the
filter will display all elements that have at least one of the tags (OR disjunction). If you select several tags from

EB GUIDE Studio
Chapter 6. Background information

Page 54 of 471

different categories, the filter will display all elements that have all of the tags (AND conjunction). To reset the

filter, click next to the tags.

Using the keyword filter, you can filter for the names of the datapool items. To filter for several keywords, use
space between them. To exclude a keyword, use the ! operator.

TIP Searching for an element
To start a reference search, select an element in the component and press F3. The search
results window opens and lists all occurrences of the selected element in the EB GUIDE
model.

TIP Multiple selection of model elements
To select multiple elements, hold down Ctrl while clicking the elements you want to select.
You can also hold down Shift while clicking the respective elements or use the Up arrow
or Down arrow keys.

6.6.1.2.8. Assets component

Here you can add resources such as images, fonts, .ebmesh, .psd, and .ebibl files. All resource files are
located in $GUIDE_PROJECT_PATH/<project name>/resources and its subfolders are displayed in the
preview area of the component.

TIP Filtering
At the top of the component you find a filter box to search for any element within the com-
ponent.

6.6.1.2.9. Namespaces component

Here you can create, move and delete namespaces. A root namespace is added by default.

TIP Default layout
The Namespaces component is not in the default layout. To open it, select menu Layout
> Namespaces.

6.6.1.2.10. Command area

EB GUIDE Studio
Chapter 6. Background information

Page 55 of 471

In the command area, you find:

► The button that opens the project center

► Search box to search for elements of the model and jump to them

► Further menus

Search box
Model elements can be found with the help of the search box. Use the search box as follows:

► Click the search box or use the Ctrl+F shortcut to jump into the search box. Enter the name of the
model element to be searched.

Alternatively, you can select a model element and press F3. Search results window opens and search
results are shown.

► Jump to a model element by double-clicking it in the hit list.

The left part of the search results window lists the model elements that are found grouped by categories.
Use the filter buttons above to show or hide categories. Select a model element to get a preview or to see
the properties of the model element in read-only mode.

When closing the search results window the last search term, filter settings and corresponding hit list are
saved and shown when the search results window is opened again. When model elements were changed

in between, the search needs to be executed again. To refresh the search results, click .

The search is not case sensitive.

When using the asterisk * for wildcard search the following rules apply:

► Search entry t returns all element names containing a t.

► Search entry *t returns all element names ending with t.

► Search entry t* returns all element names starting with t.

You can search for the following model element categories.

Table 6.2. Categories in search box

Category Description

States The hit list also shows the parent states of the states found.

Views The hit list also shows the parent states of the views found.

Templates The hit list also shows the parent states and parent widgets of
the templates found.

Events The preview shows the properties of the event.

Datapool items The preview shows the properties of the datapool item.

EB GUIDE Studio
Chapter 6. Background information

Page 56 of 471

Category Description

Scripts The preview shows the content of the scripts containing the
text. The found text is highlighted.

Properties The preview shows the widget to which the property belongs.

View transition animations The preview shows the view to which the view transition ani-
mation belongs.

6.6.1.2.11. Problems component

In the Problems component you can check if your model is valid. It displays possible errors and warnings of
the currently opened EB GUIDE model. To jump directly to the part where the problems occur, double-click
the description.

6.6.1.2.12. VTA component

In the VTA (view transition animations) component you can edit view transition animations of a view state or
a view template. You can select different animation types. All relevant animation types such as the first one of
each animation type with condition true start at the same time.

The VTA component is not shown in the default layout. To open the VTA component, select VTA (view tran-
sition animations) in the Layout menu.

6.6.1.2.13. Templates component

In the Templates component you can create widget templates. Templates are useful when you want to reuse
a widget in your EB GUIDE model.

Figure 6.9. Templates component in project editor

6.6.2. Graphical user interface of EB GUIDE Monitor
In EB GUIDE Monitor, you can rearrange components and add new components according to your project's
needs. You can also dock and undock components within the EB GUIDE Monitor window.

EB GUIDE Studio
Chapter 6. Background information

Page 57 of 471

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

1 2 3 4 5 6

Figure 6.10. EB GUIDE Monitor with default layout

(1) File menu

(2) Layout menu

(3) Events component

(4) Datapool component

(5) Logger component

(6) State machines component

EB GUIDE Monitor contains the following components:

► In the Events component you can add and fire events. If an event has parameters, you can change the
parameters and then fire this event.

EB GUIDE Studio
Chapter 6. Background information

Page 58 of 471

► In the Datapool component you can add datapool items and change their values.

► In the Logger component all changes, information messages, errors, and warnings are tracked. At the top
of the component you find filter buttons to filter entries within the component. To change the auto-scrolling

functionality, click or .

► In the State machines component the currently active state and state machine are shown.

► In the Scripting component you can start scripts and see the output script messages. Note that the Script-
ing component is not in the default layout. To add the component, click Layout > Scripting.

It is also possible to change the language and the skin using the drop-down boxes in the command area.

For more information on EB GUIDE Monitor, see section 6.9, “EB GUIDE Monitor”.

For instructions, see chapter 11, “Working with EB GUIDE Monitor“.

6.6.3. Dockable components
You can dock all components of the project editor in EB GUIDE Studio and of EB GUIDE Monitor as tabs or
undock as floating components. You can drag a component as floating component to any part of the project
editor except the content area.

The arrows of the docking control help you to select a docking location and the live preview shows you how
the layout is going to look like.

Figure 6.11. Docking control and live preview

EB GUIDE Studio
Chapter 6. Background information

Page 59 of 471

TIP Default layout
To restore the default layout, go to the command area and select Layout > Reset to default
layout.

TIP Auto-hide
To gain more space in the project editor, you can hide components.

► To hide a component or a component group, click the pin symbol.

► To display a hidden component, hover over the tab with the mouse and click the pin
symbol again.

6.7. Datapool

6.7.1. Concept
During the execution, a model communicates with different applications. To enable the communication, your EB
GUIDE model has to provide an interface. The datapool is an interface which allows access to datapool items
to exchange data. Datapool items store values and communicate between HMI and applications. Datapool
items are defined in the EB GUIDE model.

6.7.2. Datapool items
Datapool items are model elements that are used to do the following:

► Sending data from the applications to the HMI.

► Sending data from the HMI to the applications.

► Storing data that is only used in either HMI or applications.

► Storing data persistently.

► Storing data that is skin or language dependent.

► Storing data that needs to be exchanged between EB GUIDE model and application.

► Storing data that needs to be exchanged between EB GUIDE models.

► Storing data that needs to be exchanged between EB GUIDE GTF instances over IPC.

For instructions, see section 9.3.1, “Adding a datapool item”.

EB GUIDE Studio
Chapter 6. Background information

Page 60 of 471

To channel communication, you use writer and reader applications.

Internal communication is used to store data. Using two different applications establishes external communi-
cation.

For instructions, see section 9.3.4, “Establishing external communication”.

For more information, see section 6.16, “Linking”.

6.7.3. Windowed lists
The EB GUIDE product line supports the concept of windowed lists. The windowed list operating mode is often
used to reduce memory consumption for the display of large lists, for example all MP3 titles in a folder. Those
lists are typically provided by one application, for example media application, and are only partially displayed
by another application, for example HMI.

The writer application defines a virtual list length and a number of windows, which possibly contain only parts
of the list. The reader application reads data only from locations that are covered by windows. Reading from
other locations fails. In such a use case, the reader application has to inform the writer application about the
currently required parts of the list. For example, HMI can make application calls that provide the current cursor
position within the complete list.

Example 6.3.
Windowed list

The MP3 title list of an audio player device has 1,000,000 elements. The HMI has to display this list on
three different displays in parallel: head unit display, cluster instrument display, and head-up display.

Each display is controlled separately, has a different number of display lines and has a different cursor
position within the complete list.

Whenever one of the three cursors moves, the HMI sends the new position asynchronously to the me-
dia application through an event. The media application provides a list with three windows. Each of the
three windows is associated to one of the three displays. Window updates delay a little bit after the cur-
sor moves. Therefore it is advisable to use window positions and window sizes which cover an extend-
ed range around the lines that are shown by the specific display.

6.8. EB GUIDE model and EB GUIDE project
An EB GUIDE model is the sum of all elements that describe the look and behavior of an HMI. It is built entirely
in EB GUIDE Studio. You can simulate the EB GUIDE model on your PC.

EB GUIDE Studio
Chapter 6. Background information

Page 61 of 471

To execute an EB GUIDE model on a target device, you export the EB GUIDE model and copy the resulting
binary files to the target device.

An EB GUIDE project consists of an EB GUIDE model and settings that are needed for running the EB GUIDE
model on the target device. Exported EB GUIDE models can communicate with each other on the target device
through defined model elements. You can define these model elements in the model interface.

An EB GUIDE project contains objects that are configured and linked within an EB GUIDE model. These objects
are called EB GUIDE model elements. Examples for EB GUIDE model elements are as follows:

► Datapool item

► Event

► State

► State machine

► Widget

► Resource

► Language

6.8.1. Storage format
The EB GUIDE project is stored in multiple files of the EB GUIDE-proprietary file format. The file format is
represented by two file extensions:

► .ebguide for the EB GUIDE project file

► .gdata for all other project files

The EB GUIDE Studio storage format is defined by the following pseudo-EBNF syntax:

INT = [0-9]+ ;

HEXINT = '0' ('x' | 'X') [a-fA-F0-9]+

FLOAT = <as represented in the C# specification> ;

STRING = " " ; //escape characters are supported as specified in MSDN

SUFFIX = [a-zA-Z_-][a-zA-Z0-9_-]* ;

COLOR = [a-fA-F0-9]{8} ;

IDENTIFIER = ('_' | [a-zA-Z]) ([a-zA-Z] | [0-9] | '_' | '$' | '.')* ;

file = header object ;

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#real-literals
https://docs.microsoft.com/en-us/cpp/c-language/escape-sequences?view=vs-2017

EB GUIDE Studio
Chapter 6. Background information

Page 62 of 471

header = 'EBGUIDE' INT '.' INT '.' INT '.' INT SUFFIX ';' ;

object = type '(' objectId ')' '{' propertyList '}' ;

type = identifier ['<' type { ',' type } '>'] ;

property = identifier ':' value ;

value = bool

 | int

 | float

 | string

 | color

 | object

 | externalObject

 | nullObject

 | objectReference

 | propertyReference

 | list ;

string : STRING { '\' STRING } ;

int = ['+' | '-'] INT

 | HEXINT ;

color = '#' COLOR ;

float = ['+' | '-'] FLOAT ;

bool = 'true' | 'false' ;

externalObject = '(' objectId ')' ;

nullObject = type '(' 'none' ')' ;

objectReference = '@' objectId '(' type ')' ;

propertyReference = identifier '@' objectId '(' type ')' ;

list = type '[' [value { ',' value }] ']' ;

identifier = IDENTIFIER | STRING ;

objectId = GUID ; //encoded as hex digits in

 //the XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX format

EB GUIDE Studio
Chapter 6. Background information

Page 63 of 471

The EB GUIDE project folder $GUIDE_PROJECT_PATH/<project name>/ contains the following:

► The .ebguide folder that contains .json files with the project- and user-relevant settings for both EB
GUIDE Studio and EB GUIDE Monitor. For example what filter are activated, how tables are sorted. This
folder is created once you create an EB GUIDE project. If you delete this folder and re-start EB GUIDE
Studio, the settings will be reset and a new .ebguide folder is created.

NOTE .ebguide folder
Exclude the $GUIDE_PROJECT_PATH/<project name>/.ebguide folder from the
revision control system because it contains user-relevant settings.

► Folders with files that are relevant for the following:

► Configuration

► Model interfaces

► Namespaces

► State machines

► Templates

► View transition animations

► The resource folder with the project-specific resources. For more information, see section 6.20, “Re-
source management”.

► The .gdata files that contain data for contexts, datapool, event system, languages, and skins.

► The .txt files that contain information about the loading errors, migration or import messages for .xliff
files, .psd files, and .fbx files.

6.8.2. Export format

After exporting an EB GUIDE project, the exported files are created at the user-defined location. For instructions
on how to export a project, see section 10.5, “Exporting an EB GUIDE model”.

At $EXPORT_PATH you find the following:

► .json configuration files

► .gtf files

► Resource files. For more information, see section 6.20, “Resource management”.

► Global and local header files for datapool items and events

► Header files for aspects, i.e. languages and skins

EB GUIDE Studio
Chapter 6. Background information

Page 64 of 471

6.8.3. Naming of model elements

For the names of the model elements, state machines, etc. EB GUIDE Studio supports all possible characters,
but the following characters are recommended for use: a-z, A-Z, 0-9, space, and underscore.

During the export of EB GUIDE model, the export files are created. In this files the model element names
are transferred to variable names. If for the names you used characters outside the recommended range, the
export files contain auto-generated names.

Example 6.4.
Naming of model elements

Model elements in EB GUIDE Studio Entries in the export files

Datapool items #define LOCAL_DP_ID_INT_A ((uint32_t)

0x00000002)

#define LOCAL_DP_ID_INT_A1 ((uint32_t)

0x00000000)

#define LOCAL_DP_ID_INT_ ((uint32_t)

0x00000003)

#define LOCAL_DP_ID_GENERATED_DPITEM_NAME_-

((uint32_t) 0x00000001)

Events #define LOCAL_EVENT_MSG_ID_EVENT_A ((uint32_-

t) 0x00000000)

#define LOCAL_EVENT_MSG_ID_EVENT_A1

((uint32_t) 0x00000001)

#define LOCAL_EVENT_MSG_ID_EVENT_ ((uint32_-

t) 0x00000002)

#define LOCAL_EVENT_MSG_ID_GENERATED_EVENT-

NAME_ ((uint32_t) 0x00000003)

For instructions on how to export a project, see section 10.5, “Exporting an EB GUIDE model”.

6.8.4. Validation criteria for EB GUIDE project

EB GUIDE Studio performs two types of validation check for an EB GUIDE project.

EB GUIDE Studio
Chapter 6. Background information

Page 65 of 471

6.8.4.1. Validation while opening an EB GUIDE project

When you open your EB GUIDE project, EB GUIDE Studio performs several structural verifications, for example
as follows:

► If the .ebguide project file does not exist, or several .ebguide files are located in the same folder

► If the object IDs are duplicated

► If child objects are missing within the EB GUIDE project

► If there are duplicate property names

► If values of list items are inconsistent

► If the EB GUIDE Studio version number in the .gdata files does not correspond with the EB GUIDE
Studio version number in the .ebguide file

► If an unknown type is referenced

If one of these criteria is met, the EB GUIDE project cannot be opened and a log file with the type of error and
the position of this error inside the project files is created in $GUIDE_PROJECT_PATH/<project name>/
<project name>_LoadingErrorLog.txt.

For instructions on how to open an EB GUIDE project, see section 10.2, “Opening a project”.

6.8.4.2. Validation using the Problems component

When the EB GUIDE project is already opened, you can validate the EB GUIDE model in the Problems com-
ponent. The errors are, for example, as follows:

► If the EB GUIDE Script usage is not valid

► If a default transition is missing

► If a target of a linked item is missing

If any errors are found, you cannot simulate and export the EB GUIDE model.

For instructions on how to validate an EB GUIDE model, see section 10.4, “Validating and simulating an EB
GUIDE model”.

6.9. EB GUIDE Monitor
EB GUIDE provides the tool EB GUIDE Monitor to observe and control an EB GUIDE model during the simu-
lation. EB GUIDE Monitor includes mechanisms for the communication with datapool, the event system, and
the state machines of the EB GUIDE model.

EB GUIDE Studio
Chapter 6. Background information

Page 66 of 471

EB GUIDE Monitor is started automatically in EB GUIDE Studio during the EB GUIDE model simulation. You
can also use EB GUIDE Monitor as a stand-alone application, if you want to control your exported EB GUIDE
model.

For more information on EB GUIDE Monitor GUI, see section 6.6.2, “Graphical user interface of EB GUIDE
Monitor”.

For instructions, see chapter 11, “Working with EB GUIDE Monitor“.

For the EB GUIDE Monitor API, see $GUIDE_INSTALL_PATH/doc/monitor/monitor_api.chm.

You can enhance EB GUIDE Monitor with additional functionalities by creating a customized extension. The fol-
lowing ready-to-use EB GUIDE extension examples show you how to create an EB GUIDE Monitor extension:

► MonitorRemoteViewPlugin

► MonitorUiExtension

► MonitorUiExtensionEvents

► MonitorUiExtensionDatapool

► MonitorUiExtensionTargetViewer

Download the EB GUIDE extension examples from https://github.com/Elektrobit/eb-guide-examples. For in-
structions, see the readme.md files enclosed.

6.10. Event handling

6.10.1. Event system

The event system is an asynchronous mechanism for communication within or between applications.

The EB GUIDE event system delivers all events exactly in the order they were sent. There is no pre-defined
order for delivering an event to different subscribers.

6.10.2. Events

An event in EB GUIDE is a model element that has a unique numerical event ID and belongs to an event group.
The event ID is used by EB GUIDE GTF to send and receive the event.

https://github.com/Elektrobit/eb-guide-examples

EB GUIDE Studio
Chapter 6. Background information

Page 67 of 471

NOTE Duplicate event IDs
Event IDs in an event group must be unique. When you import several model interfaces,
validation errors occur in case there are duplicate IDs of events that belong to different
model interfaces but are within the same event group.

Since you cannot change the event IDs of the imported events in EB GUIDE Studio, revert
the import, change the event IDs in the source model, export and import again. It is advisable
to define event ID ranges for all EB GUIDE models beforehand.

Example 6.5.
Usage of events

In an HMI that has a rotary button or a set of hard keys, for example left, right, up, down, enter, it may
not be clear with which element a user should interact next. Therefore, these systems typically high-
light the currently active display element. For example, a YES button is marked as active with a colored
border. In EB GUIDE Studio you model this highlighting feature using the Focused widget feature. The
element that is currently focused, i.e. the focused property is set to true, is the element that is also
active. Also the parents of this element, which form the focus path, are also active. If the focused ele-
ment cannot handle a key or rotary input, the input is processed along the focus path in backwards di-
rection, i.e. towards the root element. If one of the elements of the focus path handles the input, the fo-
cus is considered as processed.

In an HMI with touch input, the interaction is done with an element at a certain position. For example,
when you press a YES button on a touch screen, the input is not ambiguous. The reason for this is that
based on the location on the display which has been pressed, the system knows that the interaction
was done with the YES button.

Event group IDs are numerical IDs. The event group IDs between 0 and 65535 are reserved for the internal
use within the EB GUIDE product line. The event group IDs greater than 65535 are free for the external use
and can be used for custom event groups.

The following figure shows how you can model the touch, key, and rotary events in EB GUIDE Studio.

EB GUIDE Studio
Chapter 6. Background information

Page 68 of 471

Figure 6.12. Example of event groups and event IDs

The remaining range of group IDs is available for customer-specific applications.

For instructions, see the following:

► section 9.2.1, “Adding an event”

► section 9.2.3, “Addressing an event”

For references, see section 15.5, “Events”.

6.11. Extensions

6.11.1. EB GUIDE Studio extension

EB GUIDE Studio
Chapter 6. Background information

Page 69 of 471

An EB GUIDE Studio extension is a supplement to EB GUIDE Studio and is valid for all EB GUIDE models.
An EB GUIDE Studio extension does not concern EB GUIDE GTF. Typical EB GUIDE Studio extensions are
custom EB GUIDE model elements or custom UI elements. For instructions and more information, see chap-
ter 12, “Extending EB GUIDE Studio“.

6.11.2. EB GUIDE GTF extension
An EB GUIDE GTF extension is a supplement to EB GUIDE GTF which provides additional features in EB
GUIDE Studio, but is only valid for one EB GUIDE model. The EB GUIDE GTF extension is based on the EB
GUIDE GTF.

Typical EB GUIDE GTF extensions are:

► New widget features

► New EB GUIDE Script functions

EB GUIDE GTF extensions are dynamic link library (.dll) or shared object (.so) files.

Place the EB GUIDE GTF extension, including their third party libraries in: $GUIDE_PROJECT_PATH/
<project name>/resources/target

For more information and instructions, see EB GUIDE GTF user guide.

You can customize the visual appearance and behavior of your EB GUIDE model by creating a customized EB
GUIDE GTF extension. A collection of ready-to use EB GUIDE examples show you how to create your own
EB GUIDE GTF extensions. Download the EB GUIDE extension examples from https://github.com/Elektrobit/
eb-guide-examples. For instructions, see the readme.md files enclosed.

For more information on classes and interfaces, see EB GUIDE GTF API documentation.

6.11.3. EB GUIDE Monitor extensions
A EB GUIDE Monitor extension provides additional functionalities to EB GUIDE Monitor.

Typical EB GUIDE Monitor extensions are:

► Additional components for EB GUIDE Monitor

► Extensions to create screenshots during the simulation

You can create your own customized extension. A collection of ready-to use EB GUIDE examples show you
how to create your own EB GUIDE Monitor extensions. Download the EB GUIDE extension examples from
https://github.com/Elektrobit/eb-guide-examples. For instructions, see the readme.md files enclosed.

https://github.com/Elektrobit/eb-guide-examples
https://github.com/Elektrobit/eb-guide-examples
https://github.com/Elektrobit/eb-guide-examples

EB GUIDE Studio
Chapter 6. Background information

Page 70 of 471

For more information on classes and interfaces, see EB GUIDE Monitor API documentation.

6.12. Focus handling
In EB GUIDE Studio you model the focus management of the widgets using the Focus widget features: Auto
focus and User-defined focus.

For more information about widget features, see section 6.26.5, “Widget features”. For instructions, see sec-
tion 8.4, “Extending a widget by widget features”. For more information about the focus-related widget features,
see section 15.11.3, “Focus”.

The following two focus directions are available:

1. Forward direction: The next focusable widget is focused.

2. Backward direction: The previous focusable widget is focused.

The Auto focus and User-defined focus widget features provide a configuration for how the focus is handled
for the forward direction. For the backward directions, the same focus order is used but only in reverse direction.

The Focus widget features have the following characteristics:

Auto focus
In this policy the focus is distributed between the focusable widgets from left to right starting with the top
row. The order is defined through the structure of the widget tree.

Figure 6.13. The policy of the Auto focus widget feature

Focusable child widgets cannot be skipped. Invisible widgets, widgets with disabled focused property,
and widgets without the Focused widget feature are not recognized as valid focusable widgets. Thus they
are skipped over when the currently focused widget is determined.

User-defined focus
Due to view complexity the focus sequencing through the auto focus policy may be quite difficult. In this
case it is useful to determine a user-defined focus order.

EB GUIDE Studio
Chapter 6. Background information

Page 71 of 471

Figure 6.14. The policy of the User-defined focus widget feature

In figure 6.14, “The policy of the User-defined focus widget feature”, (a) shows the view, while (b) shows
the focus order. The order, in which the focus changes are processed, may differ from the widget tree
structure.

When widgets within a widget hierarchy are marked as focusable, they are part of a focus hierarchy. This focus
hierarchy consists of focusable widgets and a focus policy, the Auto focus widget feature or the User-defined
focus widget feature, that defines how the focus is handled within the hierarchy. It is possible to nest focus
hierarchies.

6.13. Gamma-correct rendering

6.13.1. Concepts

Gamma correction plays an important role in the rendering pipeline. Gamma correction affects color reproduc-
tion on the screen as well as image color storage. Gamma expresses the relationship between color values
and the perceived intensities on the screen, for an example of gamma see figure 6.15, “Example of gamma ”.

The human visual system (HVS) exhibits a similar behavior. It is more sensitive to luminance differences in
dark image regions than to luminance differences in bright image regions. Common 8-bit image formats (JPEG,
PNG) exploit this fact and store colors in the sRGB color space that uses a non-linear transfer function in order
to increase the precision in image dark regions. This affects 3D lighting computations as well as textured al-
pha-blending, because they rely on linear texture color input. For this reason EB GUIDE employs gamma-cor-
rect rendering to counter these effects as shown in figure 6.16, “Example of an sRGB textures”.

EB GUIDE Studio
Chapter 6. Background information

Page 72 of 471

Figure 6.15. Example of gamma

(a) Values below the colored squares denote gray levels. Due to the non-linear relationship between color
values and displayed luminance, 50% brightness is approximately reached at a 0.7 gray level for a correctly
calibrated monitor. Note that despite the non-linear luminance response of the screen, the relative differences
are perceptually uniform.

(b) Color values that have been gamma encoded prior to display. Because the encoding gamma cancels out
the display’s gamma, 50% brightness is reached at a 0.5 gray level.

Figure 6.16. Example of an sRGB textures

(a) sRGB texture remains uncorrected in lighting computations and output is not gamma corrected. The lighting
is oversaturated and details are washed out.

(b) sRGB textures are linearized before lighting and the result is gamma corrected. Details and surface structure
become visible.

6.13.2. Gamma correction in EB GUIDE Studio
In EB GUIDE Studio gamma-correct rendering requires from you to configure the rendering pipeline as follows:

► The output configuration controls gamma encoding for the display itself.

► The input configuration tells EB GUIDE Studio which image and texture resources shall be treated as
sRGB images in order for the rendering pipeline to properly linearize them for rendering operations.

EB GUIDE Studio
Chapter 6. Background information

Page 73 of 471

To configure the input encoding, it has to be configured for each image or texture that is used. Note that the
image format itself does not provide the information about sRGB encoding. You need to acquire this information
beforehand. For instructions, see section 14.8, “Tutorial: Rendering gamma correctly”

6.14. Image-based lighting
Image-based lighting (IBL) is a technique that makes it possible to use an image as light for 3D objects. In
EB GUIDE Studio, IBL is applied with the image-based light widget. You can apply this widget to scene graph
nodes. It is not possible to have more than one image-based light per scene graph. If you add more than one,
only the first image-based light in the hierarchy is used in the scene.

Figure 6.17. Example of image based lighting. Left: A teapot with a ceramic PBR GGX material lit by three-point-
light sources. Center: Using image-based lighting (IBL), the teapot is lit by a virtual environment and the ceramic

PBR GGX material appears realistic. Right: Additionally, textures are used to spatially vary the material parameters.

For more information on the ibl datatype, see section 15.3.7, “Ibl”. For more information on the Image-based
light widget, see section 15.10.3.4, “Image-based light”.

6.14.1. IBLGenerator, file formats and importing
Storing lighting information requires an image format that supports high dynamic range image data. EB GUIDE
Studio supports two IBL formats:

► Portable float map (.pfm)

► RGBE (.hdr)

For the RGBE format, EB GUIDE does not support the XYZ color space. Only the -Y +X orientation is
supported.

To use these IBL files in EB GUIDE Studio, you need to transform them into the .ebibl format. Do this with
IBLGenerator. IBLGenerator is controlled through the command line and it is included in your installation in
$GUIDE_INSTALL_PATH\tools. For instructions, see section 8.2.6, “Importing IBL files”.

EB GUIDE Studio
Chapter 6. Background information

Page 74 of 471

IBL files can contain images in either cube, sphere, or latitude-longitude parametrization. In IBLGenerator you
can choose the parametrization type. To see all of the options, that IBLGenerator provides, type the following
in the command line: IBLGenerator.exe -h

6.14.2. Limitations to IBL with an OpenGL renderer
An OpenGL 3 renderer always supports IBL. But if you use the OpenGL renderer, your OpenGL ES 2.0 dri-
ver must support the following OpenGL extensions. If one of the following extensions is not supported, the
image-based light widget is ignored:

► GL_EXT_shader_texture_lod

► GL_EXT_texture_rg

► GL_OES_texture_float

► GL_OES_texture_half_float

6.15. Languages

6.15.1. Display languages in EB GUIDE Studio
EB GUIDE Studio offers different display languages for the graphical user interface. You select the display
language in the project center, in the tab Options.

For instructions, see section 10.6, “Changing the display language of EB GUIDE Studio”.

6.15.2. Languages in the EB GUIDE model
Most human machine interfaces offer the possibility to display texts in the user's preferred language. Such
language management is also provided by EB GUIDE Studio.

In the project configuration you add a language for your EB GUIDE model. You can then export the texts, send
them to your localization service provider and import the translated texts back into your EB GUIDE model.

It is possible to add language support to all datapool item types and thus enable your EB GUIDE model to
display texts in different languages. A datapool item defines a value for each language. The language of the
exported EB GUIDE model can be changed during run-time.

EB GUIDE Studio
Chapter 6. Background information

Page 75 of 471

NOTE No skin support available
When you have defined a language support for a datapool item, it is not possible to add a
skin support to the same item.

For more information, see section 8.6.1, “Adding a language to the EB GUIDE model” and section 6.15.3,
“Export and import of language-dependent texts”.

Example 6.6.
Language-dependent texts for a multilingual user interface

In the project configuration three languages are added: English, German, and French. You can now
model a label that changes, when the language of the user interface is changed. For this, link the
label's text property to a datapool item with the value Welcome in English and the values Willkom-
men in German and Bienvenue in French.

For instructions, see section 14.6, “Tutorial: Adding a language-dependent text to a datapool item”.

When you export an EB GUIDE model, the export also contains the languages. They are listed in file lan-
guages.h. Usually, all of the languages in the default set are exported. The default set lists all of the languages
in the EB GUIDE model. If you want to export only specific languages instead of all of them, you can define an
export set. An export set defines which sub-set of languages are exported. For instructions, see section 8.6.4,
“Creating an export set for languages”.

6.15.3. Export and import of language-dependent texts

Use the export and import functionality in EB GUIDE Studio to export, edit, translate, and import all language-de-
pendent texts. The texts are exported to an .xliff file. .xliff (XML Localization Interchange File Format)
is an XML-based format to store extracted text and carry the data from one step to another in the localization
process. The .xliff can be sent to your localization service provider and understood by any translation tool.

After translation, you import the translated .xliff file back into your EB GUIDE model.

For instructions, see section 10.8, “Exporting and importing language-dependent texts”.

The .xliff file is structured as follows:

► The header contains metadata about the source and target language:

► The source-language and the target-language tag consist of a language code that follows the
ISO 639 standards for representing language names and a language region that follows ISO 3166-1
standards for representing country codes. For example, the en-US language tag means English
language in region United States.

EB GUIDE Studio
Chapter 6. Background information

Page 76 of 471

► A unique alphanumeric sourcelanguageid and targetlanguageid is created for every project
and language pair. These IDs prevent unintentional import of an .xliff file from another project or
target language.

► The trans-unit elements contain the localizable data. Each trans-unit element holds a source
element to store the source text, and a target element to store the translated text. When a new language
is added to the EB GUIDE model, the target elements are filled with the source language. Therefore,
when exporting an .xliff file, all the target elements that were not translated yet show the source
language.

6.16. Linking
In many cases elements of an EB GUIDE model depend on other elements. For example, you want to make
sure that some elements have exactly the same height, or when elements change in a scene you want other
elements to change in the same way. For this purpose, values can be linked. This section explains what linking
means and which limitations you need to consider.

For more information, see section 6.7, “Datapool” and section 6.26.3, “Widget properties”.

The following applies:

► Model elements that can share data are datapool items and widgets using their properties.

► Model elements that you want to link must have the same data type. For example, you can link a datapool
item of type integer only to another datapool item of type integer. Data type can be a simple data type,
such as integer or boolean, or of a list type, such as integer list or boolean list. For more information, see
section 15.3, “Data types”.

► You can link to a list element. List elements that you want to link must have the same data type. For
example, you can link a datapool item of type integer to a list element of another datapool item of type
integer list.

► You cannot link model elements of type Conditional script.

► You cannot link scripted values.

► You cannot link a widget property to a widget property in a different view.

► You cannot link to the direct child widgets of an instantiator. It cannot be assured that the children of an
instantiator exist at all times.

Example 6.7.
Linking Instantiator

This example shows you which possibilities there are to link to or from the Instantiator or its child
widgets.

EB GUIDE Studio
Chapter 6. Background information

Page 77 of 471

Figure 6.18. Widget tree

You can link as follows:

► A property of Rectangle 1 can be linked to a property of Instantiator 1.

► A property of Rectangle 2 can be linked to a property of Rectangle 1.

► A property of Rectangle 4 can be linked to a property of Rectangle 3.

You cannot link the following properties:

► A property of Rectangle 1 cannot be linked to a property of Rectangle 2, Rectangle 3,
or Rectangle 4.

► A property of Rectangle 2 cannot be linked to a property of Rectangle 3.

► A property of Rectangle 4 cannot be linked to a property of Rectangle 2.

EB GUIDE Studio supports bidirectional linking, this means data can be changed both from the source element
and from the target element. When one of the elements changes, so does the other element. But this behavior
depends on the data type of the linked elements. Consider the following:

► If the linked model element are both either of a simple data type or of a list type, you can change their
value directly in the EB GUIDE Studio UI. For instructions, see section 8.3.3, “Linking between widget
properties” and section 8.3.4, “Linking a widget property to a datapool item”.

EB GUIDE Studio
Chapter 6. Background information

Page 78 of 471

► If the linked model elements are of a simple data type and of a list type, you can change their value in the
EB GUIDE Studio UI only from the side of the list type element. To change their value from the side of the
simple type element, use EB GUIDE Script. For instructions, see section 8.3.5, “Linking to a list element”.

NOTE Storage format
If a widget property is linked to a datapool item, the value is stored in the $GUIDE_-
PROJECT_PATH/datapool.gdata file. In the $GUIDE_PROJECT_PATH/statema-
chines folder, the views/*.gdata files contain only references to the datapool item. For
this objectref<type> is used.

The following applies to the linking direction:

► An element can only be the source of one link, but the target of many links. The source widget property

in the Properties component has either or next to it. The source datapool item in the Datapool

component has next to it.

► A datapool item can link to a widget property and to another datapool item at the same time. In this case,
the datapool item is the target of two links.

► You cannot link one widget property to another widget property and a datapool item at the same time.
Adding a link to a datapool item deletes the link to a widget property and vice versa.

The following image shows an example overview for linked model elements.

EB GUIDE model

Datapool

A
p

p
lica

tio
n

Widget

Widget

Widget

Datapool item

Datapool item

Datapool item

Property

Property

Property

Property

Property

Property

Datapool item

Figure 6.19. Example: Linked elements overview within a model and between a model and an application

6.17. Namespaces

EB GUIDE Studio
Chapter 6. Background information

Page 79 of 471

In EB GUIDE Studio, with namespaces you create groups of model elements like datapool items and events.
These groups have usually a defined functionality. Each namespace creates a naming scope for model ele-
ments so that model elements in different namespaces can have the same name.

Each model element belongs exactly to one namespace.

The root namespace is the default namespace and can neither be deleted nor renamed. The root namespace
has the same name as the EB GUIDE project. All other namespaces are derived from this namespace. Model
elements are always added to the default namespace in the following cases:

► If from the context menu you select Add link to a datapool item and create a new datapool item

► If you create an event in the Trigger combo box for a transition or an internal transition

You can move model elements between the namespaces.

NOTE Moving model elements
If you move model elements from one namespace to another and the target namespace
already contains an element with the same name, the move operation is not successful and
an error message is shown.

Example 6.8.
Namespace tree

In figure 6.20, “Example of a namespace tree”, an example for a namespace tree is shown. The
myProject namespace is the default namespace and also the name of the EB GUIDE project. Some
namespaces are nested inside other namespaces.

Figure 6.20. Example of a namespace tree

For more information, see section 6.6, “Components of the graphical user interface”.

For instructions, see section 9.1, “Working with namespaces”.

EB GUIDE Studio
Chapter 6. Background information

Page 80 of 471

6.18. Model interfaces
With EB GUIDE it is possible to have an HMI that consists of multiple EB GUIDE models that can be developed,
tested, maintained, and run separately. To make this possible, you can export one or more interfaces of an EB
GUIDE model. These interfaces can then be imported into other EB GUIDE models. You can import several
model interfaces from different EB GUIDE models.

Fundamentally, these interfaces consist of events and datapool items. Events and datapool items are what
makes the communication between models possible. You can define the events and datapool items that the
interface consists of.

Every model has an empty default model interface. But you can create and define a model interface yourself.
Export and import is accomplished using .json files. Consider that an EB GUIDE model that imports an
interface cannot change the imported interface.

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

For instructions on how to create an interface, how to add events and datapool items to a model interface, and
how to import and export a model interface, see section 10.9, “Working with model interfaces”.

6.18.1. Import of datapool items

An EB GUIDE model can read or write the value of the datapool items of an imported model interface, but it

cannot rename or remove these datapool items. Imported datapool items do not have the button.

If a datapool item does not belong to any namespace in the source model, during import a namespace named
after the corresponding model interface is created and this datapool item is added to it.

For instructions on how to add a datapool item to a model interface, see section 9.3.6, “Adding datapool items
to a model interface”.

6.18.2. Import of events

An EB GUIDE model can trigger events of an imported model interface, but it cannot modify, rename, or remove

these events. Imported events do not have the button.

EB GUIDE Studio
Chapter 6. Background information

Page 81 of 471

NOTE Duplicate event IDs
Event IDs in an event group must be unique. When you import several model interfaces,
validation errors occur in case there are duplicate IDs of events that belong to different
model interfaces but are within the same event group.

Since you cannot change the event IDs of the imported events in EB GUIDE Studio, revert
the import, change the event IDs in the source model, export and import again. It is advisable
to define event ID ranges for all EB GUIDE models beforehand.

If an event does not belong to any namespace in the source model, during import a namespace named after
the corresponding model interface is created and this event is added to it.

For instructions on how to add an event to a model interface, see section 9.2.5, “Adding events to a model
interface”.

6.18.3. Import of event groups
When you import a model interface with event groups, ownership of event groups is shared with the model
where the interface is imported. So event groups have a special handling in connection with model interfaces:

► It is not possible to change an event group for an event that is part of an imported model interface.

► It is not possible to delete an event group that is used by at least one event that is part of an imported
model interface.

► When you delete a model interface, event groups that were imported with this interface are not deleted.

► When you update and reimport a model interface with renamed event groups, the event groups are re-
named in the model where you are importing the interface. Also the event group IDs are updated.

► When you import an event group with an ID that matches an already existing event group, these event
groups are not combined. The reason for this is that the UUIDs (universally unique identifiers) of these
event groups in the source files are different from the event group IDs that are used in the EB GUIDE
Studio UI. UUIDs are used as the main distinguishing ID in the model.

6.18.4. Import of namespaces
If the imported model interface has events or datapool items that belong to specific namespace, these name-
spaces are also imported. These namespaces are read-only. This means that the following restrictions apply:

► You cannot change the names and the content, i.e. datapool items or events, of the imported namespaces.

► You cannot delete the imported namespaces.

► You cannot add sub-namespaces to the imported namespaces.

EB GUIDE Studio
Chapter 6. Background information

Page 82 of 471

► You cannot move any datapool item or an event to the imported namespaces.

6.19. Photoshop file format support
EB GUIDE Studio supports all common .psd file formats. The supported color spaces are 8-bit, 16-bit, and
32-bit RGB as well as CMYK. You can import a .psd file directly or you can extract the images from the .-
psd file. .psb files are not supported.

Importing
Elements from the .psd file are put directly into your model and a widget tree is created. The widget tree
consists of containers, images, and labels derived from the layers of the .psd file. For instructions, see
section 8.2.4, “Importing a .psd file to a View”. Note the following:

► If a layer in the .psd file is set to invisible, the check box next to the visible property of the corre-
sponding container or image is cleared.

► Text layers in .psd files are imported as Label.

► Image layers in .psd files are imported as Image.

► Group layers in .psd files are imported as Container. Containers are named after the group layers.
Containers can contain images, labels, or other containers.

Extracting
A subfolder is created that contains the images from the .psd file but the EB GUIDE model that you are
working on is not changed. For instructions, see section 8.2.5, “Extracting images from a .psd file”.

Limitations
EB GUIDE Studio does not support the following features of the Photoshop file format:

► Layer effects, filters, and textures

► Color models other than RGB or CMYK

► Masks

► Multiple masks applied to a layer (layer mask and vector mask)

► Text styling and fonts

► Only color channels are used

6.20. Resource management
Resources are content that is not created within EB GUIDE but is required by your projects. Locate all resources
of an EB GUIDE project in the resources folder.

The resources folder is located at $GUIDE_PROJECT_PATH/<project name>/resources.

EB GUIDE Studio
Chapter 6. Background information

Page 83 of 471

EB GUIDE supports the following types of resource files:

1. Fonts

2. .ebibl file format for 3D graphics

3. Images

4. Meshes for 3D graphics

5. .psd file format

To use resources in the project, add the resource files to $GUIDE_PROJECT_PATH/<project name>/re-
sources.

6.20.1. Fonts
To use a font in the project, add the font to $GUIDE_PROJECT_PATH/<project name>/resources.

Supported font types are TrueType fonts (*.ttf, *.ttc), OpenType fonts (*.otf), and bitmap fonts (*.fnt).

Replacement character

The replacement character is used in case the dedicated font character is not found in the current font. The
default replacement character is the Unicode character 0FFFD. Note that different fonts have different repre-
sentation of this character, e.g. a rectangle, a question mark, a space.

If you want to define the replacement character, define the value of the gtf.model.textengine.replace-
mentGlyph configuration item in the model.json configuration file. For more information on configuration
files, see the EB GUIDE TF user documentation.

For instructions on how to work with fonts, see section 8.5, “Changing the Label settings”.

6.20.1.1. Bitmap fonts

EB GUIDE Studio supports the *.fnt bitmap fonts from Angelcode in version 3.0. To create a bitmap font, use
a third-party font generator, for example Angelcode Bitmap Font Generator. For more information, see http://
www.angelcode.com.

Make sure that the generated font has the following settings:

► The desired font size is defined.

► The character set is Unicode.

► The font descriptor is binary.

http://www.angelcode.com
http://www.angelcode.com

EB GUIDE Studio
Chapter 6. Background information

Page 84 of 471

► The textures are provided as 8-bit .png files.

Note the following:

► In EB GUIDE Studio you are not able to change the font size of a bitmap font using the font property of
a label. That means that you need to define the size when you generate your .fnt font.

► The Stroke widget feature does not apply to bitmap fonts. If you need a specific outline for your font, define
it when you generate your .fnt font.

► In the $GUIDE_PROJECT_PATH/resources folder, create a subfolder for your .fnt bitmap font and .-
png texture files that you generated with a third-party tool. EB GUIDE Studio expects to find the .png
files in same folder as the .fnt file.

If you have several bitmap fonts, create a subfolder for each of these fonts.

6.20.1.2. Multifont support

In EB GUIDE Studio you can create your own font combinations using the multifont support. This feature is
useful, for example, if the font that you selected does not provide all necessary characters. In this case you
can replace missing characters with characters from a different font.

The multifont support can be added to the following model elements:

► Properties of type font and entries of font list

► User-defined properties of type font and entries of font list

► Datapool items of type font or entries of font list

Figure 6.21. Example of a property of type font with multifont support

You define the following:

Priority
Priority defines which font entry should be used in case the Unicode character fits into more than one
range. The lowest number has the highest priority for the evaluation. In case the character does not fit in
any range, the default entry is used.

Font
Select the font that is available in $GUIDE_PROJECT_PATH/resources and define the size of the se-
lected font.

EB GUIDE Studio
Chapter 6. Background information

Page 85 of 471

Range
You can define the Unicode character range, for which you want to use the specified font, as follows:

► With a single Unicode character, for example 0000.

► With several Unicode characters separated by comma, for example 0000, 0001.

► With a range of Unicode characters, for example 0000-FFFF.

► With several ranges separated by comma, for example 0000-0022, 0045-0055.

The characters are specified using the hexadecimal number format.

Default font

When you add multifont support, automatically a default value is added. You cannot delete the default value
nor edit its priority and range. However, you can edit size and font for the default value.

As the baseline of the label, the baseline of the default font is used.

Performance

If a label has a multifont support added, the text is split internally into smaller parts depending on how many
fonts are used. Each part is shaped separately using the defined font and size, then combined to one label
and rendered together. This means that the number of the character ranges and the number and type of fonts
affects the performance of your EB GUIDE model:

► If you define many ranges, it takes longer to find out to which font the current character belongs. The
search is performed top-down according to the priority.

► Mixing many fonts and alternating between them leads to an increase of complexity.

Note the following:

► For better performance, instead of defining a font for a single Unicode character use character ranges or
combination of character ranges. For example use 0000, 0001 or 0000-FFFF.

► For the font that is used for the most characters, define the highest priority.

NOTE Valid font
EB GUIDE Studio does not validate font files. In case the font definition is faulty, the char-
acter may not be rendered at all.

For instructions on how to use the multifont support, see section 8.5.5, “Managing multifont support”.

EB GUIDE Studio
Chapter 6. Background information

Page 86 of 471

6.20.2. Image-based lighting for 3D graphics

It is possible to use image-based lighting in EB GUIDE Studio. The external command line tool IBLGenerator
takes a .pfm or .hdr file as input data and creates an .ebibl file which represents an IBL resource. The IBL
resource is used by the ibl property of the image-based light widget.

For instruction, about how to get an .ebibl file, see section 8.2.6, “Importing IBL files”.

For background information, see section 6.14, “Image-based lighting”.

6.20.3. Images

To use an image in the project, add the image to $GUIDE_PROJECT_PATH/<project name>/resources.
If you select an image from a different folder, the image is copied to the project folder.

The supported image formats are Portable Network Graphic (*.png), JPEG (*.jpg) and 9-patch images (*.-
9.png).

For instructions, see section 8.2.2.3, “Adding an Image”.

6.20.3.1. 9-patch images

EB GUIDE Studio supports images with additional meta information according to the 9-patch image approach.
9-patch images are stretchable .png images. 9-patch images contain two black markers, one at the top and
one at the left side of the image. Areas that are not marked are not scaled. Marked areas are scaled. Markers
are not displayed in EB GUIDE Studio.

EB GUIDE Studio
Chapter 6. Background information

Page 87 of 471

Figure 6.22. 9-patch example

When you work with 9-patch images, consider the following:

► 9-patch processing works only with the renderers for OpenGL ES 2.0 or higher.

► 9-patch processing works with .png images only.

► The *.9.png extension is mandatory for 9-patch images.

► It is possible to specify none, one, or more than one marker at the top and the left side. The 9-patch
definition also includes markers for text areas at the right side and at the bottom of the image. These
markers are not evaluated in EB GUIDE Studio.

For instructions, see section 8.2.2.3, “Adding an Image”.

6.20.4. Meshes for 3D graphics
It is possible to import 3D graphic files in EB GUIDE Studio. After you have imported a 3D graphic file in EB
GUIDE Studio, in $GUIDE_PROJECT_PATH/<project name>/resources, you find a subfolder. Meshes
as defined in the 3D graphic file are imported as .ebmesh files. For details, see section 6.1.3, “Import of a
3D graphic file”.

For instructions, see section 8.2.3.1, “Adding a Scene graph to a View”.

EB GUIDE Studio
Chapter 6. Background information

Page 88 of 471

6.21. Scripting language EB GUIDE Script
EB GUIDE Script is the built-in scripting language of EB GUIDE. This chapter describes EB GUIDE Script
language features, syntax, and usage.

6.21.1. Capabilities and areas of application
You can use EB GUIDE Script in a variety of places in a project, for example:

► In a widget property

► In the state machine as part of a transition or state

► In a datapool item

Not all features of EB GUIDE Script are available in all cases. For example access to local widget properties is
only allowed when the script is part of a widget. Access to the datapool, on the other hand, is always allowed.

With EB GUIDE Script you can directly manipulate model elements, for example to do the following:

► Fire events

► Write datapool items

► Modify widget properties

6.21.2. Prefixes and identifiers
In EB GUIDE, it is possible to give identical names to different kinds of objects. For example, you can name
both an event and a datapool item Napoleon. To make this possible, every identifier, i.e. name of an object,
in EB GUIDE Script must have a prefix. The prefix defines the type of an object, followed by a colon.

The set of prefixes is fixed in EB GUIDE Script, you cannot introduce new prefixes. The following prefixes exist:

► ev: events

► dp: datapool items

► f: user-defined actions (foreign functions)

► v: local variables

For example, ev:Napoleon specifies the event named Napoleon while dp:Napoleon specifies the datapool
item named Napoleon.

Identifiers without a prefix are string constants.

EB GUIDE Studio
Chapter 6. Background information

Page 89 of 471

Identifiers in EB GUIDE contain many characters including spaces and punctuation. Thus it can be necessary
to quote identifiers in EB GUIDE Script. If an identifier does not contain special characters, for example a valid
C identifier consisting only of letters, numbers and underscores, it does not have to be quoted.

Example 6.9.
Identifiers in EB GUIDE Script

dp:some_text = foo; // foo is a string here

dp:some_text = "foo"; // this statement is identical to the one above

dp:some_text = v:foo; // foo is the name of a local variable

// of course you can quote identifiers, even if it is not strictly necessary

dp:some_text = v:"foo";

// again, a string constant

dp:some_text = "string with spaces, and -- punctuation!";

// identifiers can also contain special characters, but you have to quote them

dp:some_text = v:"identifier % $ with spaces @ and punctuation!";

6.21.3. Comments
EB GUIDE Script has two kinds of comment: C style block comments and C++ style line comments. Block
comments must not be nested.

Example 6.10.
Comments in EB GUIDE Script

/* this is a C style block comment */

// this is a C++ style line comment

For every EB GUIDE Script comment that contains a string todo, EB GUIDE Studio shows a warning in the
Problems component when you validate a project. Use this feature to mark all your open tasks and display
them at a glance.

NOTE Default comment for conditional scripts
By default, a datapool item or a property of type Conditional script contains a com-
ment // todo: auto generated return value, please adapt. To eliminate
the warning, delete the todo string from the comment once you entered the required EB
GUIDE Script code.

6.21.4. Types
EB GUIDE Script is a strongly-typed and statically-typed programming language. Every expression has a well
defined type. Supplying an unexpected type results in an error.

EB GUIDE Studio
Chapter 6. Background information

Page 90 of 471

EB GUIDE Script supports the following types:

► Integer

► Unicode strings (string)

► Objects with reference counting

► Type definitions to the above listed types and to the following:

► Color (integer for 32-bit RGBA value)

► Boolean

► IDs of different model elements: datapool items, views, state machines, pop-ups (all of type integer)

► Void, also known as the unit type. This type has a role as in functional programming, for example Haskell.

► Widget and event references. These are record types, the fields of which you may access by using the dot
notation, as known in C or Java. You cannot directly create new objects of these kinds, they are created
automatically where appropriate.

All types and type definitions are incompatible with each other and there are no typecasts. This feature ensures
type safety once a script is successfully compiled.

6.21.5. Expressions
EB GUIDE Script is expression-based. Every language construct is an expression. You form larger expressions
by combining smaller expressions with operators.

To evaluate an expression means to replace it by its value.

Example 6.11.
Evaluation of an integer value

1 + 2 // when this expression is evaluated, it yields the integer 3

6.21.6. Constants and references
The basic expressions are integer, color, boolean, and string constants and references to model elements.

The void type also has a value constant that can be written in two different but semantically equivalent ways:

► With the opening curly brace followed by the closing curly brace {}

► With the keyword unit

Example 6.12.

EB GUIDE Studio
Chapter 6. Background information

Page 91 of 471

Usage of constants

"hello world" // a string constant

true // one of the two boolean constants

ev:back // the event named "back" of type event_id

dp:scrollIndex // the datapool item named "scrollIndex",

 // the type is whichever type the dp item has

5 // integer constants have a dummy type "integer constant"

5::int // typecast your constants to a concrete type!

color:255,255,255,255 // the color constant for white in RGBA format

 // the following are two ways to express the same

 if(true)

{

}

else

{

}

if(true)

 unit

else

 unit

6.21.7. Arithmetic and logic expressions
EB GUIDE Script supports the following arithmetic expressions:

► Addition (+), subtraction (-), multiplication (*), division (/), and modulo (%) can be applied to ex-
pressions of type integer.

► The logical operators or (||), and (&&), not (!) can be applied to expressions of type boolean.

► Integers and strings can be compared with the comparison operators greater-than (>), less-than (<),
greater-than-or-equal (>=), less-than-or-equal (<=).

► Data types can be compared with the equality operators: equal to (==) and not equal to (!=).

Strings can be compared without case sensitivity with the equality operator (=Aa=).

NOTE Availability of equality operators
Events and resource data types, for example 3D graphics, fonts and images, do not
support the equality operators (==) and (!=).

► Strings can be concatenated with the (+) operator.

EB GUIDE Studio
Chapter 6. Background information

Page 92 of 471

Example 6.13.
Arithmetic and logic expressions

10::int + 15::int // arithmetic expression of type int

dp:scrollIndex % 2 // arithmetic expression of type int,

 // the concrete type depends on the type

 // of dp:scrollIndex

"Morning Star" == "Evening Star" // type bool and value false (wait, what?)

"name" =Aa= "NAME" // type bool and value true

!true // type bool, value false

!(0 == 1) // type bool, value true

// as usual, parenthesis can be used to group expressions

((10 + dp:scrollIndex) >= 50) && (!dp:buttonClicked)

// string concatenation

"Napoleon thinks that " + "the moon is made of green cheese"

f:int2string(dp:speed) + " km/h" // another string concatenation

6.21.8. L-values and r-values
There are two kinds of expressions in EB GUIDE Script: l-values and r-values. L-values have an address
and can occur on the left hand side of an assignment. R-values do not have an address and may never occur
on the left hand side of an assignment.

► L-values are datapool references, local widget properties, and local variables.

► R-values are event parameters and constant expressions such as string or integer constants.

6.21.9. Local variables
The let expression introduces local variables. It consists of a list of variable declarations and the in expres-
sion, in which the variables are visible. Variables are l-values, you can use them on the left hand side of as-
signments. Variables have the prefix v:. The syntax of the let expression is as follows:

let v:<identifier> = <expression> ;

 [v:<identifier> = <expression> ;]...

in

 <expression>

The type and value of the let expression are equal to the type and value of the in expression.

let expressions may be nested, variables of the outer let expressions are also visible in the inner expres-
sions.

EB GUIDE Studio
Chapter 6. Background information

Page 93 of 471

Example 6.14.
Usage of the let expression

// assign 5 to the datapool item "Napoleon"

let v:x = 5 in dp:Napoleon = v:x;

// define several variables at once

let v:morning_star = "Venus";

 v:evening_star = "Venus";

in

 v:morning_star == v:evening_star; // Aha!

let v:x = 5;

 v:y = 20 * dp:foo;

in

{

 // Of course you may have a sequence as the in expression,

 // but parenthesis or braces are required then.

 v:x = v:y * 10;

 dp:foo = v:x;

}

// Because let expression also have types and values, we can have them

// at the right hand side of assignments.

dp:x = let v:sum = dp:x + dp:y + dp:z

 in v:sum; // this is the result

 // of the let expression

// A nested let expression

let v:x = dp:x + dp:y;

v:a = 5;

in

{

 let v:z = v:x + v:a;

 in

 {

 dp:x = v:z;

 }

}

6.21.10. While loops

while loops in EB GUIDE Script have a syntax similar to that in C or Java, they consist of a condition expression
and a do expression. The syntax is as follows:

EB GUIDE Studio
Chapter 6. Background information

Page 94 of 471

while (<condition expression>) <do expression>

The do expression is evaluated repeatedly until the condition expression yields false. The condition ex-
pression must be of type boolean, the do expression must be of type void. The while expression is of type
void and must not occur at the left or right hand side of an assignment.

Example 6.15.
Usage of the while loop

// Assume dp:whaleInSight is of type bool

while(! dp:whaleInSight)

{

 dp:whaleInSight = f:lookAtHorizon();

}

6.21.11. If-then-else

if-then-else in EB GUIDE Script behaves like the ternary conditional operator (?:) in C and Java.

The if-then-else expression consists of the following sub-expressions:

► condition expression

► then expression

► else expression

The syntax is as follows:

if (< condition expression>) <then expression> else <else expression>

if-then-else is processed as follows:

1. First, the condition expression is evaluated. It must be of type boolean.

2. If the condition is true, the then expression is evaluated.

3. If the condition is false, the else expression is evaluated.

if-then-else itself is an expression. The type of the whole expression is the type of the then expression and
the else expression, which must be identical. The value of if-then-else expressions is either the value of
the then expression, or the value of the else expression, in accordance with the rules above.

EB GUIDE Studio
Chapter 6. Background information

Page 95 of 471

NOTE Short-circuit evaluation
EB GUIDE Script does not support short-circuit evaluation (minimal evaluation).

If the if expression consists of several sub-conditions that are concatenated by && or ||,
EB GUIDE Script, unlike some other programming languages, evaluates all sub-conditions.
This means that, if a sub-condition is false and hence the whole condition is false, all sub-
conditions will still be evaluated.

There is a special form of if-then-else, in which you may omit the else branch. This special form is of
type void and cannot be used to return values from scripts.

Example 6.16.
Usage of if-then-else

// Assume dp:whaleInSight is of type bool

// and dp:user is of type string.

if(dp:whaleInSight && dp:user == "Captain Ahab")

{

 dp:mode = "insane";

}

else

{

 dp:mode = "normal";

}

// Because if-then-else is also an expression,

// we may simplify the previous example:

dp:mode = if(dp:whaleInSight && dp:user == "Captain Ahab")

 "insane"

 else

 "normal"

if (<expression>) <expression> // This is the reduced way of

 writing if-then-else

 //It is an alternative to the following

 if(<expression>) { <expression> ; {} } else {}

6.21.12. Foreign function calls

You can extend EB GUIDE Script with functions written in C, so-called foreign functions.

An identifier prefixed by f: is the name of a foreign function. Foreign functions have an argument list and a
return value, as they do in C. The syntax of foreign function calls is as follows:

EB GUIDE Studio
Chapter 6. Background information

Page 96 of 471

f:<identifier> (<expression> [, <expression>] ...)

Example 6.17.
Calling foreign functions

// write some text to the connection log

f:trace_string("hello world");

// display dp:some_index as the text of a label

v:this.text = f:int2string(dp:some_index);

// passing different parameters of matching type

f:int2string(v:this.x)

f:int2string(4)

f:int2string(dp:myInt)

f:int2string(v:myVar)

//passing parameters of different types

// starts an animation (parameter type GtfTypeRecord) from a script

// located in its parent widget

f:animation_play(v:this->Animation);

// checks the number of child widgets of a widget (parameter type widget)

f:widgetGetChildCount(v:this);

// traces debugging information about a datapool item (parameter type dp_id)

// to the connection log; uses the address of the datapool item as parameter

f:trace_dp(&dp:myFlag);

6.21.13. Datapool access
Scripts written in EB GUIDE Script can read and write datapool items. An identifier with the prefix dp: is called
datapool item expression. Its type is datapool item of type X, where X is the type of the datapool entry it
refers to. Identifier may include only the name of the datapool item, or, if the datapool item is not in the default
namespace, the name of the namespace followed by the name of the datapool item.

If a datapool item of type X occurs on the left hand side of an assignment, and an expression of type X occurs
on the right hand side of the assignment, the value of the datapool item is written.

If a datapool item occurs somewhere in a program but not on the left hand side of an assignment, the value
of the datapool item is read.

Example 6.18.
Assignment of datapool values

// Assume intA to be of type int. Assign 10 to it.

EB GUIDE Studio
Chapter 6. Background information

Page 97 of 471

dp:intA = 10;

// Assume strA to be of type string. Assign the string "blah" to it.

dp:strA = blah; // Yes, we can omit the quotes, remember?

dp:strA = 42; // Error: integer cannot be assigned to string

// Assign the value of the datapool item intB to intA.

// Both datapool items must have the same type.

dp:intA = dp:intB;

// Multiply the value of intB by two and assign it to intA.

dp:intA = 2 * dp:intB;

// Use the value of a datapool item in an if-clause.

if(dp:speed > 100)

{

 // ...

}

The following operators can be applied to the datapool items:

► The reference operator (&) can be applied to datapool items. It refers to the address of a datapool item
rather than to its value. The reference operator is used in foreign function calls to pass parameters of
type dp_id.

► The redirect-link operator (=>) changes the link target of a datapool item. Link source can only be a datapool
item that was already linked.

6.21.14. Widget properties

If a script is part of a widget, it can access the properties of that widget. EB GUIDE Script creates a variable
called v:this to access the properties using the dot notation.

A script is part of a widget if it is attached to a widget property, for example as an input reaction such as click
or button press.

Example 6.19.
Setting widget properties

// assume this script is part of a widget

v:this.x = 10; // if the widget has an x-coordinate

v:this.text = "hello world"; // if the widget is a label and has a text property

// assume testEvent has one integer parameter

fire ev:testEvent(v:this.x);

If a script is part of a widget, it can also access properties of other widgets in the widget tree.

EB GUIDE Studio
Chapter 6. Background information

Page 98 of 471

The go-to operator (->) is used to refer to other widgets within the widget tree. The syntax is as follows:

<expression> -> <expression>

The expression on the left hand side must refer to a widget and the expression on the right hand side must
be a string, the name of a child widget. To navigate to the parent widget, use the symbol ^ on the right hand
side. The whole go-to expression refers to a widget.

Navigating the widget tree might affect run-time performance. Widgets are assigned to variables for the efficient
manipulation of multiple properties.

Example 6.20.
Accessing widget properties

v:this.x // access the properties of the current widget

v:this->^.x // access the x property of the parent widget

v:this->^->caption.text // access the text property of a label called caption,

 // read: "go-to parent, go-to caption, text"

// Modify several properties of the caption.

// This way, the navigation to the caption is only performed once.

let v:cap = v:this->^->caption

in

{

 v:cap.textColor = color:0,0,0,255;

 v:cap.x += 1;

 v:cap.y += 1;

}

6.21.15. Lists
Datapool items and widget properties can hold lists. The subscript operator ([]) accesses list elements. The
syntax is as follows:

<expression> [<expression>]

The first expression must evaluate to a list type, the second expression must evaluate to an integer value. If
the list is of type list A, the whole list subscript expression must be of type A.

If the list subscript expression occurs at the left hand side of an assignment, the value of the referred list
element is written.

The length keyword returns the number of elements of a list. If it is put in front of a list expression, the whole
expression must be of type integer.

Example 6.21.

EB GUIDE Studio
Chapter 6. Background information

Page 99 of 471

Lists

// Assume this widget is a label and dp:textList is a list of strings

v:this.text = dp:textList[3];

dp:textList[1] = v:this.text; // writing the value of the list element

v:this.width = length dp:textList;// checking the length of the list

dp:textList[length dp:textList - 1] = "the end is here";

Adding elements to and removing elements from lists is currently not supported in EB GUIDE Script.

Trying to access list elements beyond the end of a list stops the execution of the script immediately. Make sure
that all your list accesses are in range.

6.21.16. Events
EB GUIDE Script offers the following expressions to handle events:

► The fire expression sends events. The syntax is as follows:

fire ev:<identifier> (<parameter list>)

Events can, but do not need to have parameters. The parameter list of the fire expression must match
the parameters of the fired event. If an event has no parameters, the parentheses must be empty.

Example 6.22.
Using the fire expression

fire ev:toggleView(); // the event "toggleView" has no parameters

fire ev:mouseClick(10, 20); // "mouseClick" has two integer parameters

fire ev:userNameEntered("Ishmael"); // string event parameter

► The fire_delayed expression sends events after a specified time delay. The syntax is as follows:

fire_delayed <time> , ev:<identifier> (<parameter list>)

The time parameter is an integer value that specifies the delay in milliseconds.

Example 6.23.
Using the fire_delayed expression

fire_delayed 3000, ev:mouseClick(10, 20); // send the event "mouseClick"

 //in 3 seconds.

► The cancel_fire expression cancels the delayed event. The syntax is as follows:

EB GUIDE Studio
Chapter 6. Background information

Page 100 of 471

cancel_fire ev:<identifier>

► The match_event expression checks whether the execution of a script has been triggered by an event.
The syntax is as follows:

match_event v:<identifier> = ev:<identifier>

in

 <expression>

else

 <expression>

The type of the match_event expression is the type of the in expression and the else expression,
which must be identical.

There is a special form of the match_event expression, in which you can omit the else branch. This
special form is of type void and cannot be used to return values from scripts.

Example 6.24.
Using the match_event expression

match_event v:theEvent = ev:toggleView in

{

 // this code will be executed when the "toggleView" event

 // has triggered the script

 dp:infoText = "the view has been changed";

}

else {}

match_event (<expression>) in <expression> //special form

 //without an else branch

 //The special form is an alternative way to express the following

 match_event (<expression>) in { <expression> ; {} } else {}

Identifier may include only the name of the event, or, if the event is not in the default namespace, the name
of the namespace followed by the name of the event.

If an EB GUIDE Script has been triggered by an event with parameters, the parameters are accessible in the
in expression of a match_event expression. Read parameters using the dot notation, as you would access
fields of a structure in C. Event parameters are not available in the else expression.

Example 6.25.
Event parameters

// assume that "mouseClick" has two parameters: x and y

match_event v:event = ev:mouseClick in

{

 dp:rectX = v:event.x;

 dp:rectY = v:event.y;

EB GUIDE Studio
Chapter 6. Background information

Page 101 of 471

}

6.21.17. String formatting
String formatting in EB GUIDE Script is done using the concatenation operator (+) on strings in combination with
various data-to-string conversion functions. The EB GUIDE Script standard library comes with the int2string
function for simple integer-to-string conversion.

Example 6.26.
String formatting

// Assume this widget is a label and has a text property.

// Further assume that the datapool item dp:time_hour and

// dp:time_minute hold the current time.

v:this.text = "the current time is: " + f:int2string(dp:time_hour)

 + ":" + f:int2string(dp:time_minute);

6.21.18. The standard library
EB GUIDE Script comes with a standard library that consists of a set of foreign functions for example as follows:

► String formatting

► Language management

► Tracing

► Time and date

► Random number generation

For details, see section 15.4.3, “EB GUIDE Script standard library”.

6.22. Scripted values
A scripted value is an alternative notation for the value of a widget property or a datapool item. Such properties
of widgets or datapool items use other model elements to evaluate their own value or to react on events or
property updates. Scripted values are written in the EB GUIDE Script scripting language.

A property in EB GUIDE can be converted to a scripted value and back to its plain value.

For instructions, see section 9.3.3, “Converting a property to a scripted value”.

EB GUIDE Studio
Chapter 6. Background information

Page 102 of 471

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

For editing a scripted value, EB GUIDE Studio contains an EB GUIDE Script editor which is divided into different
categories.

Figure 6.23. EB GUIDE Script editor in EB GUIDE Studio

► The Read script is called when the scripted value property is read. If the property is of type list, the para-
meters include the list index.

The return value of the Read script represents the current value of the property.

► The Write script is called when the scripted value property is written.

The new property value is a parameter of the Write script. If the property is of type list, the parameters
includes the list index.

EB GUIDE Studio
Chapter 6. Background information

Page 103 of 471

The return value of the Write script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

► The Triggers script contains a list of events, datapool items and widget properties that trigger the execution
of the On trigger script.

Clicking on Add available triggers to list will add all triggers highlighted in the corresponding script to
the trigger script.

► The On trigger script is called on initialization, after an event trigger or after a property update.

The parameter of the On trigger script indicates the cause for the execution of the script. Execution can
be caused by initialization or by one of the triggers in the Triggers list.

The return value of the On trigger script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

► The Length script is only available for properties of type list.

The return value of the Length script represents the current length of the list.

6.23. Skins
Skins allow you to define different user interfaces by defining different datapool values for the same EB GUIDE
model. This way you can define various looks for the same HMI as for example skins for night and day mode.

You can switch between the skins during run-time to see the effect of the different datapool values.

Skin support is only available for plain datapool values and cannot be used for scripted values or linked datapool
items.

NOTE No language support available
When you have defined a skin support for a datapool item, it is not possible to add a lan-
guage support to the same item.

For instructions see section 8.7, “Working with skin support”.

When you export an EB GUIDE model, the export also contains the skins. They are listed in file skins.h.
Usually, all of the skins in the default set are exported. The default set lists all of the skins in the EB GUIDE
model. If you want to export only specific skins instead of all of them, you can define an export set. An export

EB GUIDE Studio
Chapter 6. Background information

Page 104 of 471

set defines which sub-set of skins are exported. For instructions, see section 8.7.5, “Creating an export set
for skins”.

6.24. State machines and states
A state machine is a deterministic finite automaton and describes the dynamic behavior of a system. In EB
GUIDE, a state machine consists of an arbitrary number of hierarchically ordered states and of transitions be-
tween these states. State machines and states are fundamental features of modeling with EB GUIDE. Applying
them correctly makes it easier to handle EB GUIDE models of large complexity.

To structure your EB GUIDE model, separate the behavior that you want to implement into different state
machines. Structuring your model reduces the complexity of your code, makes your model easier to understand
for modelers, improves the handling of the widget tree, and therefore improves the performance of the EB
GUIDE model.

The dynamic nature of state-of-the-art HMIs, their large number of widgets, images, modules, 3D-objects,
and input options can be handled with dynamic state machines. For more information about dynamic state
machines, see the sections below.

For instructions, see section 7.1, “Modeling a state machine”.

The following types of state machines exist:

Haptic state machines
Describe elements of EB GUIDE models that are visible in the GUI, such as labels, images, or rectangles.

Logic state machines
Describe elements of EB GUIDE models that are not visible in the GUI, such as processes that run inde-
pendently from the GUI. For example, you could run an incremental search in a logic state machine, while
the user is typing letters in an entry field in the GUI.

Logic state machines cannot contain view states. View states are disabled for logic state machines.

In an EB GUIDE model, logic and haptic state machines can be implemented as main state machines or
dynamic state machines.

Main state machines
Are created automatically when you create a new project. They drive the behavior of a scene. Without a
main state machine there is no behavior and therefore no scene.

Dynamic state machines
Are used to model pop-ups that are displayed on top of all other layers. They can be activated as a child of
a main state machine of a fitting type. For more information, see section 6.24.1, “Dynamic state machines”.
For instructions, see section 7.2.2, “Adding a dynamic state machine”.

EB GUIDE Studio
Chapter 6. Background information

Page 105 of 471

The following combinations exist for state machines:

Table 6.3. Types of state machines

 Main Dynamic

Haptic Main-haptic

Main state machine with haptic and logic
behavior.

Dynamic-haptic

Dynamic state machine with haptic and
logic behavior.

Logic Main-logic

Main state machine with logic behavior.

Dynamic-logic

Dynamic state machine with logic behav-
ior.

6.24.1. Dynamic state machines
Dynamic state machines are used to create pop-ups and are also useful to give an HMI a modern, dynamic
look and feel. For example, you can use them to create overlapping, moving views.

Consider the following facts:

► Dynamic state machines are displayed on top of other state machines.

► Dynamic state machines are started and stopped by other state machines.

► Dynamic state machines run in parallel to other state machines.

► Dynamic state machines separate the widgets and the behavior that belongs to pop-ups.

The following EB GUIDE Script functions are used to control state machines:

► pushDynamicStateMachine

► popDynamicStateMachine

► changeDynamicStateMachinePriority

► isDynamicStateMachineActive

Example 6.27.
Dynamic state machines

This example shows the work flow of a dynamic state machine. There are three dynamic state ma-
chines and they are supposed to be displayed in the following order:

► PopUp_error

► PopUp_repeat

► PopUp_return

EB GUIDE Studio
Chapter 6. Background information

Page 106 of 471

All three state machines are started. pushDynamicStateMachine is called three times with the fol-
lowing parameters:

1. stack 1, sm PopUp_error, priority 0

2. stack 1, sm PopUp_repeat, priority 1

3. stack 1, sm PopUp_return, priority 2

This results in the following order of state machines:

PopUp_error

PopUp_repeat

PopUp_return

Figure 6.24. Resulting order of dynamic state machines

To change the order of state machines changeDynamicStateMachinePriority is called with the
following parameters:

1. stack 1, sm PopUp_error, priority 0

2. stack 1, sm PopUp_repeat, priority 2

3. stack 1, sm PopUp_return, priority 1

This results in the following order of state machines:

PopUp_error

PopUp_return

PopUp_repeat

Figure 6.25. New order of dynamic state machines

6.24.2. States
States determine the status and behavior of a state machine. Different types of states exist. Transitions link
states. They are the connection between states and define a state change from a source state to a target state.
In EB GUIDE Studio transitions are indicated by arrows. For instructions, see section 7.4, “Connecting states
through transitions”.

EB GUIDE Studio
Chapter 6. Background information

Page 107 of 471

The types of states and transitions that are available in EB GUIDE Studio are explained in the following sections.

6.24.2.1. Initial state

Initial states define the state in a state machine that is entered first. They also define which state is entered
first in a compound state. Initial states have only one outgoing transition that is called default transition. The
default transition triggers the first state in the state machine. Initial states have no incoming transitions.

Figure 6.26. Example Initial state

6.24.2.2. View state

View states contain views. A view represents a project specific HMI screen. The view is displayed while the
corresponding view state is active. The view consists of widgets which are the interface between user and
system.

Figure 6.27. Example View state

6.24.2.3. Compound state

EB GUIDE Studio
Chapter 6. Background information

Page 108 of 471

A compound state can have other states within it as child states. The compound state structure is hierarchical
and the number of possible child states is arbitrary. Any type of state can be nested in a compound state.

A compound state can have an arbitrary number of incoming and outgoing transitions, and of internal transitions.
Child states inherit the transitions of parent states.

Figure 6.28. Example Compound state

In the Navigation component, the state hierarchy is shown as a tree structure.

Figure 6.29. State hierarchy in the Navigation component

6.24.2.4. Choice state

Choice states realize a dynamic conditional branch. They are used when firing an event depends on conditions.
A choice state is the connection between a source state and a target state. A choice state can have several

EB GUIDE Studio
Chapter 6. Background information

Page 109 of 471

incoming and outgoing transitions. Every outgoing transition is assigned a condition and is only executed if the
condition evaluates to true. One outgoing transition is the else transition. It is executed if all other conditions
evaluate to false. This else transition is mandatory.

In case more than one of the outgoing transitions are true, the priority of the transitions determines which
transition is executed. The priority is defined by the order of the transitions in the widget tree. You can change
the priority by changing the order.

Figure 6.30. Example Choice state with transitions

6.24.2.5. History states

History states restore states that were active when their parent state was left. It is possible to have a history
state in a parent state and another history state in a child state. When a state with a history state is entered
for the first time, the history state is empty. For this case history states have a default transition. When an
empty history state is entered, the default transition is executed. EB GUIDE supports the following types of
history states:

Shallow history states
Restore the last child-state that was active before a compound state was exited.

Do not store hierarchies.

Have an outgoing default transition without conditions.

Deep history states
Restore a state and its complete sub-hierarchy before the state was exited.

EB GUIDE Studio
Chapter 6. Background information

Page 110 of 471

Have an outgoing default transition without conditions.

Example 6.28.
Shallow history state

A shallow history state can be used as follows.

Figure 6.31. Example Shallow history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the shallow history state is entered.

3. From the shallow history state, the state machine enters state D because state D was the last
active state in Outer state.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

EB GUIDE Studio
Chapter 6. Background information

Page 111 of 471

2. event b is fired again the shallow history state is entered.

3. From the shallow history state, the state machine enters Inner state because shallow his-
tory states remember the last active state but cannot remember hierarchies.

4. Entering Inner state leads to state A.

A deep history state can save hierarchical histories.

Example 6.29.
Deep history state

A deep history state can be used as follows.

Figure 6.32. Example Deep history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

EB GUIDE Studio
Chapter 6. Background information

Page 112 of 471

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state D because state D was the last ac-
tive state in Outer state.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state B because state B was the last ac-
tive state and deep history state remembers state hierarchies.

6.24.2.6. Final state

Final states are used to exit a compound state or to terminate state machines. Compound states and state
machines can have only one final state. A final state does not have any outgoing transitions. If a compound
state contains a final state, the compound state must have an outgoing transition. History states within the
compound state are reset.

A final state is triggered by the following actions:

► A transition from a child state to the outside of the compound state (the transition with event z)

► An outgoing transition from the compound state (the transition with event y)

► A transition to the final state in a compound state (the transition with event x)

EB GUIDE Studio
Chapter 6. Background information

Page 113 of 471

Figure 6.33. Example Final state usage in a Compound state

6.24.3. Transitions

A transition is a directed relationship between a source state and a target state. It takes the state machine from
one state to another. Transitions have properties that you can use to make it unambiguous which transitions
should be executed or to trigger actions with a transition. For instructions, see section 7.4, “Connecting states
through transitions”.

A transition has the following properties:

► A trigger to execute the transition. A trigger can either be an event or the change of a datapool item.

► A condition that must be evaluated as true to execute the transition

► An action that is executed along with the transition

EB GUIDE Studio
Chapter 6. Background information

Page 114 of 471

Figure 6.34. Example Transition

There are different types of transitions. Which one you need depends on your use case:

Default transition
A default transition is triggered automatically and not by any event or datapool item update. It has no
condition, but can have an action. It is used with initial state, final state, choice state, and history states.

Choice transition
An outgoing transition with a condition assigned to it. Choice transitions are available when you use a
choice state. Its source state is a choice state. Choice transitions are triggered by the evaluation of their
condition. They result in an action. The first choice transition that has condition true is executed.

Else transition
The mandatory counterpart of a choice transition. Every choice state needs to have one else transition that
is executed if the conditions of all its choice transitions evaluate to false.

Internal transition
Has no target state and thus does not change the active state. The purpose of an internal transition is to
react to an event without leaving the present state. It can have a condition and it results in an action. It is
possible to have several internal transitions for the same event in a state. The order of execution is defined.

Self transition
Has the same state as source state and target state. Unlike an internal transition, a self transition leaves
and re-enters the state and thus executes its entry and exit actions.

A state inherits all transitions from its parent states. If a number of states share the same transitions to another
state, an enclosing compound state can be used to bundle the transitions to reduce the number of conditions.

Example 6.30.

EB GUIDE Studio
Chapter 6. Background information

Page 115 of 471

Transition inheritance

Figure 6.35. Transition inheritance

If the event b is fired while the state machine is in State B1, the transition to State C is executed be-
cause the child states State B1 and State B2 inherit the transitions of state State B.

If an internal transition from the child state uses the same event as the transition from the parent state, transition
inheritance is overridden.

Example 6.31.
Transition override

Figure 6.36. Transition override

If event d is fired while the state machine is in state State B, the transition to State C is executed.

If event d is fired while the state machine is in state State B1, the transition to State B2 is executed
instead of the transition to State C. Because the two transitions have the same name, the inner transi-
tion overrides the outer one.

EB GUIDE Studio
Chapter 6. Background information

Page 116 of 471

6.24.4. Execution of a state machine

When a state machine is executed, at any moment in time it has exactly one active state. A state machine is
event-driven. That means whether a state is entered or exited depends on events.

When a state is executed, all following actions such as their default transitions are also evaluated. To prevent
endless cycles this evaluation is stopped when the number of state changes for a single trigger exceeds 1000.

In a state machine the hierarchy for the execution of transitions that use the same event is always from the
inside out. This means internal transitions are preferred.

The state machine life cycle is as follows:

1. The state machine is started by entering its initial state.

The default transition is triggered immediately. If the default transition points to a history state and the
history state contains no history information, the history state's default transition is triggered immediately.

2. The state machine waits for incoming events. When an event is received, the following process is started
to find a transition that matches the event and conditions:

Starting at the current state, transitions are searched. The following search results and actions are possible:

a. Search result: An internal transition in the current state matches the received event and the condition.

Action: The matching internal transition is executed. Actions of this transition are executed and default
or initial transitions are executed.

b. Search result: No internal transition in the current state matches the event and condition.

Action: The current state is searched for matching transitions.

i. Search result: A transition in the current state matches the received event and the condition.

Action: The matching transition is executed. The source state is exited and the target state is
entered. Between the exit and the entry the transition's action is executed. Several compound
states in the state hierarchy can be exited and entered with one transition.

ii. Search result: No transition in the current state matches the event and condition.

Action: The current state is left. The search continues in the parent state. Again, first matching
internal transitions are searched. If none are found, transitions are searched. If none are found,
again the parent state is searched. The search continues this way until a matching transition is
found or until the root is reached.

3. The state machine stops when the final state of the state machine is reached.

If a transition crosses several states in the state hierarchy, a cascade of exit and entry actions is executed.
See the following examples.

EB GUIDE Studio
Chapter 6. Background information

Page 117 of 471

Example 6.32.
Executing a transition

Figure 6.37. Executing a transition

When event a is fired, the following happens:

1. State B is exited.

2. State C is entered.

When event b is fired, the following happens:

1. State B is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

When event c is fired, the following happens:

1. If state B or state C is active, state B or state C is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

EB GUIDE Studio
Chapter 6. Background information

Page 118 of 471

5. State New state 3 is entered.

Example 6.33.
Executing a transition

Figure 6.38. Executing a transition

When event a triggers the transition, the following happens:

1. State S4 is exited.

2. State S3 is exited.

3. State S1 is exited.

4. State S2 is entered.

5. State S5 is entered.

Example 6.34.

EB GUIDE Studio
Chapter 6. Background information

Page 119 of 471

Executing a transition

Figure 6.39. Executing a transition

The transition that is triggered by event a causes the following transition sequence:

1. The state machine goes to state S2.

2. The default transition leads to state S3.

3. The next default transition enters the shallow history state.

4. Shallow history state restores the last active state of state S3, either state S4 or state S5.

For each step the entry-exit-cascade is executed separately.

6.24.5. EB GUIDE notation in comparison to UML notation

In this section the EB GUIDE notation is compared to the Unified Modeling Language (UML) 2.5 notation.

6.24.5.1. Supported elements

The following table shows all UML 2.5 elements that are supported by EB GUIDE. The names of some elements
deviate from the naming convention in UML 2.5, but the functionality behind these elements remains the same:

EB GUIDE Studio
Chapter 6. Background information

Page 120 of 471

Table 6.4. EB GUIDE notation in comparison to UML notation

Name in EB GUIDE Name in UML 2.5

Initial state Initial (pseudostate)

Final state Final state

Compound state State

Choice state Choice (pseudostate)

Deep history state DeepHistory (pseudostate)

Shallow history state ShallowHistory (pseudostate)

Internal transition Internal transition

Transition External/local/self transition.

EB GUIDE does not differentiate between external,
local, and self transitions.

6.24.5.2. Not supported elements

The following UML 2.5 elements are not supported in EB GUIDE:

► Join

► Fork

► Junction

► Entry point

► Exit point

► Terminate

6.24.5.3. Deviations from UML

Some elements of the UML 2.5 notation are not implemented in EB GUIDE. But the functionality of these
elements can be modeled with EB GUIDE.

Concept in UML 2.5 Workaround with EB GUIDE

Parallel states To keep track of independent states or partly independent states, it is
recommended to use dynamic state machines. For real parallelism
you need additional scenes configured on own contexts with own
threads. For more information about dynamic state machines, see sec-
tion 6.24.1, “Dynamic state machines”.

EB GUIDE Studio
Chapter 6. Background information

Page 121 of 471

Concept in UML 2.5 Workaround with EB GUIDE

Number of triggers per transition In EB GUIDE Studio it is possible to have multiple transitions triggered
with one trigger. But it must be defined unambiguously which transi-
tion is to be chosen under which condition. This is done with EB GUIDE
Script. For instructions, see section 7.4.5, “Adding a condition to a tran-
sition”.

Time triggers at transitions Concept is implemented through expression fire_delayed in EB
GUIDE Script. For more information, see section 15.4, “EB GUIDE
Script”.

6.25. Touch input
EB GUIDE supports two types of touch input: Touch gestures and multi-touch input.

Each touch gesture is represented in EB GUIDE Studio as a widget feature. Enabling the widget feature adds
a set of properties to a widget.

The gestures are divided into two basic types:

► Non-path gestures

► Path gestures

6.25.1. Non-path gestures

EB GUIDE implements the following non-path gestures:

► Flick

► Pinch

► Rotate

► Hold

► Long hold

Non-path gestures include multi-touch and single-touch gestures. Multi-touch gestures require an input device
that supports multi-touch input. Single-touch gestures work with any supported input device.

Each gesture reacts independently of the others. If several gestures are enabled, the modeler is responsible
to make sure that the EB GUIDE model behaves consistently.

EB GUIDE Studio
Chapter 6. Background information

Page 122 of 471

6.25.2. Path gestures
Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device. When
a widget has the widget feature enabled, the user can enter a shape starting on the widget. The shape has to
exceed a configurable minimal bounding box to be considered by the path gesture recognizer. The shape is
matched against a set of known shapes and, if a match is found, a gesture is recognized.

For instructions, see section 14.3, “Tutorial: Modeling a path gesture”.

6.25.3. Input processing and gestures
Gesture recognition runs in parallel to ordinary input processing. Each gesture can request that the contact
involved in the gesture is removed from ordinary input processing. The moment at which a gesture requests
contact removal depends on the actual gesture and for some gestures this can be configured.

Contact removal is only relevant for fingers involved in a gesture. Once a contact is removed, it is ignored by
ordinary input handling until a release event is received for the contact. On a touch screen without proximity
support this implies that a contact, once removed, does not trigger any further touch reactions.

NOTE Removing a contact from ordinary input processing
Consider a window with a button and a widget feature for gestures. When a contact is
involved in a gesture it should not cause the action associated with the button to be triggered,
even if the contact is released while on the button.

6.25.4. Multi-touch input
EB GUIDE is able to handle multi-touch input, if a compatible multi-touch input device is used.

Multi-touch is the ability of a surface to recognize and track more than one point of contact on an input device.
The typical scenario are multiple fingers touching a touch screen.

► Multi-touch event handling

Multi-touch events are dispatched using the mechanism for touch events, in the same way events from
the mouse and from single-touch touch screens are dispatched. The only difference is that each contact
triggers touch reactions independently of all others. To be able to distinguish individual contacts, each
touch reaction is supplied with a parameter called fingerId.

► Finger ID

Each contact tracked by an input device is assigned a number that identifies it. This identifier is called
fingerId and is unique per input device. However, the same value can be assigned to another contact
at a later time when it is no longer in use.

EB GUIDE Studio
Chapter 6. Background information

Page 123 of 471

Consider the extra touch interaction sequences the end user is allowed to make when multi-touch input is
enabled. They include the following:

► The end user can interact with multiple elements of the interface at the same time, for example press a
button while scrolling in a list.

► The end user can place multiple fingers on a single widget.

Two typical situations where this manifests are scrolling and dragging. They can be handled correctly by em-
ploying fingerId. Depending on the required behavior, possible solutions include the following:

► Allow only the first finger that pressed a widget to do scrolling and/or dragging.

► Always use the last finger to land on a widget to do scrolling and/or dragging. This is easily achieved by
a slight modification of the previous approach.

6.26. Widgets
Widgets are the basic graphical elements an EB GUIDE model is composed of.

It is possible to customize widgets. Editing the properties of a widget adapts the widget to individual needs.
The following elements are the example properties when being touched or moved:

► Size

► Color

► Layout

► Behavior

It is possible to combine widgets. Out of small building blocks, complex structures are created. For example,
it is possible to make up a button of the following elements:

► Ellipse

► Image

► Label

► Rectangle

It is possible to nest widgets. These subordinate widgets are referred to as child widgets and the superordinate
widgets are referred to as parent widgets in a widget hierarchy.

6.26.1. View
A View is the topmost widget of each scene. While modeling, the following elements are placed into views:

EB GUIDE Studio
Chapter 6. Background information

Page 124 of 471

► Basic widgets

► 3D widgets

► Animations

► Widget templates

Every view is associated to exactly one view state. A view cannot exist without a view state.

TIP Changing the size of a view
In EB GUIDE Studio, to get a close-up view or to see more, you have the possibility to
increase or decrease the size of a view. To zoom in and zoom out, use the slider or click the
text box at the bottom of the View. The default zoom level is 100%. Alternatively, use the
Ctrl++ to zoom in, Ctrl+- to zoom out and Ctrl+0 to reset the zoom level to 100%.

TIP Aligning elements on a master image
In EB GUIDE Studio, to align elements evenly such as basic widgets and 3D widgets, you
have the possibility to add a master image to a view. To add a master image to a view, click

at the bottom of the view. To hide the master image, check or clear the check box. If you
close the view, you need to add the master image again.

Figure 6.40. View that contains a Rectangle, a Label, and an Image

EB GUIDE Studio
Chapter 6. Background information

Page 125 of 471

6.26.2. Widget categories

In the Toolbox, widgets are grouped by categories. The following categories are available.

► Basic widgets

The following elements are the basic widgets:

► Alpha mask

► Animation

► Container

► Ellipse

► Image

► Instantiator

► Label

► Rectangle

► 3D widgets

To display a 3D graphic, use widgets that are contained in the 3D widgets category. The 3D widgets are
the following elements:

► Ambient light

► Camera

► Directional light

► Image-based light

► Material

► Mesh

► PBR GGX material

► PBR Phong material

► Point light

► Scene graph

► Scene graph node

► Spot light

EB GUIDE Studio
Chapter 6. Background information

Page 126 of 471

NOTE Supported renderers
To display 3D graphics, OpenGL ES 2.0 or higher is required. Make sure that your
graphics driver is compatible to the version of the renderer.

► Templates

The Templates category contains widget templates. It is only visible if widget templates are defined.

► Custom widgets

The Custom widgets category contains customized widgets and is therefore only visible when customized
widgets are added to the project. For more information about extensions, see the EB GUIDE Studio
user guide chapter "Extending EB GUIDE Studio". For extension and application examples, see https://
github.com/Elektrobit/eb-guide-examples.

For instructions, see section 8.2, “Working with widgets”.

6.26.3. Widget properties

A widget is defined by a set of properties which specify the appearance and behavior of the widget. The
Properties component displays the properties of the currently focused widget and allows editing the properties.

Each widget property has a data type. For a list of the data types that are supported by EB GUIDE Studio,
see section 15.3, “Data types”.

https://github.com/Elektrobit/eb-guide-examples
https://github.com/Elektrobit/eb-guide-examples

EB GUIDE Studio
Chapter 6. Background information

Page 127 of 471

Figure 6.41. Rectangle and its properties

There are three types of widget properties:

► Default widget properties are created along with each widget instance. For a list of default properties for
all widgets, see section 15.10, “Widgets”.

► User-defined widget properties are created by the modeler in addition to the default ones.

► Widget feature properties are created by EB GUIDE Studio when the modeler adds a widget feature to a
widget. Widget feature properties are grouped by categories. Widget features add more functionality for
the appearance and behavior of widgets.

Example 6.35.
Touched widget feature

The Touched widget feature defines if and how a widget reacts to being touched. It adds four
properties. The boolean property touchable determines if the widget reacts on touch input. The
boolean property touched is set during run-time by EB GUIDE if the widget is currently touched.
The touchPolicy property defines how to handle touch and the touchBehavior property deter-
mines the touch area.

For more information, see section 6.16, “Linking”.

6.26.4. Widget templates

EB GUIDE Studio
Chapter 6. Background information

Page 128 of 471

A widget template allows the definition of a customized widget that can be used multiple times in an EB GUIDE
model. You have the possibility to define templates on the basis of existing widgets or derive a new template
from an existing one. After creating, you modify the template according to your needs, for example, by adding
properties or widget features. Widget templates thus allow you to build a library of complex widgets.

A widget template has a template interface. The template interface contains the properties of the template which
are visible and accessible in widget instances. A widget instance thus inherits the properties of its template's in-

terface. Inherited properties are called template properties. Template properties are marked with the button.

When you change the value of a template property, the property is turned into a local property. Local properties

are marked with the button.

NOTE Parent widgets for a template
It is not possible to use the animation widget as a parent widget for a template.

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

Example 6.36.
Relation of the properties of a widget template and its instances

You add a widget template Square to the EB GUIDE model. Let Square have a property color. col-
or is added to the template interface. Let the value of color be red.

You add an instance of the widget template Square to a view. The instance is named BlueSquare.

► BlueSquare inherits color with the value red.

► Change the value of color in the Square template to green.

=> The value of color in BlueSquare changes to green, too.

► Change the value of color in BlueSquare to blue.

Change the value of color in the Square template to yellow.

=> The value of color in BlueSquare remains blue.

For instructions, see section 8.8, “Working with templates”.

EB GUIDE Studio
Chapter 6. Background information

Page 129 of 471

6.26.5. Widget features

It is possible to extend widgets and widget templates in their functionality using widget features. Widget features
have predefined widget properties. Widget features are grouped into categories.

Figure 6.42. Widget features

If you add a widget feature to a widget template, any created widget template instance inherits the added
widget feature. Note that you cannot add widget features to a widget template instance or to a template that
was created from a template.

Restrictions for usage of widget features are as follows:

► Widget features do not have an inheritance hierarchy.

► It is not possible to add a widget feature more than once per widget.

EB GUIDE Studio
Chapter 6. Background information

Page 130 of 471

► Some widget features are interdependent. That means, to add one widget feature, you have to add another,
or widget features may exclude each other.

► It is possible to restrict widget features to a particular type of widgets.

► It is not possible to activate or deactivate widget features during run-time.

By default all widget features are disabled. If you need a specific widget feature, you must add it to a widget.

For instructions, see section 8.4, “Extending a widget by widget features”. For a list of all widget features, see
section 15.11, “Widget features”.

6.26.5.1. List management widget feature category

The Line index and Template index widget features allow you to connect data, for example images, song
titles, to the corresponding dynamically created line templates of an instantiator.

Line index
The Line index widget feature is used to customize the line templates of the instantiator widget. The Line
index widget feature defines the unique position for each line of your list or table.

Example 6.37.
Line index widget feature

If you want to model a list, you would expect that each entry of the list has a specific value that
reflects the entry in a list property. To access a certain entry in a list, the instance of the line tem-
plate needs to know which of the instantiator's child it is. The Line index widget feature adds the
lineIndex property. While the instantiator creates the instances of line templates, it fills lineIn-
dex with values: The index starts with zero for the first instance. If you have two elements in the in-
stantiator, the second element receives the lineIndex value 1.

For instructions, see section 14.4, “Tutorial: Creating a list with dynamic content”.

Template index
The Template index widget feature allows complex data abstraction. For very complex lists or tables, to
visualize an entry or a set of entries, you require more than one data list. For example, a table with mixed
image and text content requires a list of images and a list of strings. To cover such complex cases, the
Template index widget feature provides the property lineTemplateIndex.

Example 6.38.
Template index widget feature

If you model a list using an instantiator with the property lineMapping set to 0|1 and the property
numItems set to 5, the lineTemplateIndex results in 0|0|1|1|2.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 131 of 471

7. Modeling HMI behavior
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

7.1. Modeling a state machine

7.1.1. Adding a state machine

Adding a state machine

Step 1
In the Navigation component, go to State machines, and click .

A menu expands.

Step 2
Select a type for the state machine.

A new state machine of the selected type is added.

Step 3
Rename the state machine.

Step 4
Go to the Project center.

Step 5
In the navigation area, click Configure > Profiles.

A menu opens.

Step 6
In the Name category, select the profile where you want to enable the state machine.

Step 7
In the Scenes category, click Add.

A new row is added to the table.

Step 8
Next to the state machine that you want to add, select the Enable check box.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 132 of 471

Step 9
Select the communication context for the state machine in the drop-down list.

Now the state machine is enabled.

7.1.2. Defining an entry action for a state machine

Defining an entry action for a state machine

Step 1
Select a state machine.

Step 2
In the Properties component, go to the Entry action property, and click .

A script editor opens.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.21, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

You defined an entry action for a state machine.

7.1.3. Defining an exit action for a state machine

Defining an exit action for a state machine

Step 1
Select a state machine.

Step 2
In the Properties component, go to the Exit action property, and click .

A script editor opens.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.21, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 133 of 471

You defined an exit action for a state machine.

7.1.4. Deleting a state machine

Deleting a state machine

Step 1
In the Navigation component, right-click the state machine.

Step 2
In the context menu, click Delete.

The state machine is deleted.

7.2. Modeling a dynamic state machine
In general, there are three steps to model a dynamic state machine. They are described in detail in the sections
below.

1. Adding a dynamic state machine list

2. Adding a dynamic state machine

3. Controlling the dynamic state machine with EB GUIDE Script

For background information, see section 6.24.1, “Dynamic state machines”. For a tutorial, see section 14.1,
“Tutorial: Adding a dynamic state machine”.

7.2.1. Enabling a dynamic state machine list
Before you can use dynamic state machines, you need to add a dynamic state machine list to the state where
you want to use the dynamic state machine. This list is also called stack. When you enable the dynamic state
machine list, it is enabled for all sub states as well.

Enabling a dynamic state machine list

Prerequisite:

■ A state machine, View state, or Compound state where you want to add the dynamic state machine is
added to the model.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 134 of 471

Step 1
In the Navigation component, click the state machine, View state, or Compound state where you want to
add the dynamic state machine.

Step 2
In the Properties component, select the Dynamic state machine list check box.

7.2.2. Adding a dynamic state machine

Adding a dynamic state machine

Prerequisite:

■ A state machine, View state, or Compound state is added to the EB GUIDE model.

Step 1
In the Navigation component, go to Dynamic state machines, and click .

A menu expands.

Step 2
Select a type for the dynamic state machine.

A new dynamic state machine of the selected type is added.

7.2.3. Controlling a dynamic state machine
Dynamic state machines run in parallel to other state machines and can be started (pushed) and stopped
(popped) during run-time. This is done using EB GUIDE Script functions. The following script functions apply
to dynamic state machines:

Starting (pushing)
pushDynamicStateMachine

Stopping (popping)
popDynamicStateMachine

Changing the order, the priority
changeDynamicStateMachinePriority

Checking the status
isDynamicStateMachineActive

Checking whether a widget belongs to a dynamic state machine
isWidgetOnActiveStatemachine

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 135 of 471

Removing all state machines from the dynamic state machine list
clearAllDynamicStateMachines

7.3. Modeling states

7.3.1. Adding a state

Adding a state

Prerequisite:

■ The content area displays a state machine.

Step 1
Drag a state from the Toolbox into the state machine.

A state is added to the state machine.

NOTE Initial state, Final state, and history states are unique
You can insert Initial state, Final state, and history states only once per compound state.

TIP Copying and finding states
Alternatively, you can copy and paste an existing state using the context menu or Ctrl+C
and Ctrl+V.

To find a specific state within your EB GUIDE model, enter the name of the state in the
search box or use Ctrl+F. To jump to a state, double-click it in the hit list.

7.3.2. Adding a state to a Compound state

Adding a state to a Compound state

To create a state hierarchy, you create a state as a child to another state. You do so by adding a state to a
Compound state.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 136 of 471

Prerequisite:

■ The content area displays a state machine.
■ The state machine contains a Compound state.

Step 1
In the Navigation component, double-click the Compound state.

The Compound state expands in the content area.

Step 2
Drag a state from the Toolbox into the Compound state.

The state is added as a child state to the Compound state.

7.3.3. Adding a Choice state

Adding a Choice state

Prerequisite:

■ The content area displays a state machine.
■ The state machine contains at least two states.

Step 1
Drag a Choice state from the Toolbox into the state machine.

Step 2
Add a condition to the outgoing transition. For instructions, see section 7.4.5, “Adding a condition to a transi-
tion”.

The condition is assigned priority one. When the state machine enters the Choice state, the condition with
priority one is evaluated first.

Step 3
To add more choice transitions, repeat the two previous steps.

A new choice transition is assigned a lower priority than the transition that was created before.

Step 4
Add an outgoing transition from the Choice state.

Step 5
In the Navigation component, right-click the transition. In the context menu, click Convert to else.

You added an else transition. The else transition is executed when all conditions which are assigned to out-
going choice transitions evaluate to false.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 137 of 471

Figure 7.1. Choice state with its choice transitions

7.3.4. Defining an entry action for a state

Defining an entry action for a state

For View states and Compound states you can define an entry action. The entry action is executed every
time the state is entered.

Prerequisite:

■ A state machine contains a View state or a Compound state.

Step 1
Select a state.

Step 2
In the Properties component, go to the Entry action property, and click .

A script editor opens.

Step 3
Enter an action using EB GUIDE Script.

Step 4
Click Accept.

7.3.5. Defining an exit action for a state

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 138 of 471

Defining an exit action for a state

For View states and Compound states you can define an exit action. The exit action is executed every time
the state is exited.

Prerequisite:

■ A state machine contains a View state or a Compound state.

Step 1
Select a state.

Step 2
In the Properties component, go to the Exit action property, and click .

A script editor opens.

Step 3
Enter an action using EB GUIDE Script.

Step 4
Click Accept.

7.3.6. Deleting a model element from a state machine

Deleting a model element from a state machine

Prerequisite:

■ A state machine contains at least one model element.

Step 1
In the Navigation component, right-click a model element.

Step 2
In the context menu, click Delete.

The model element is deleted.

7.4. Connecting states through transitions

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 139 of 471

7.4.1. Adding a transition between two states

Adding a transition between two states

With a transition, you connect a source state to a target state.

Prerequisite:

■ The content area displays a state machine.
■ The state machine contains at least two states.

Step 1
Select a state as a source state for the transition.

The state border is highlighted green.

Step 2
Hover over the highlighted state border.

A drag point is displayed.

TIP Drag point
You can place a drag point on any part of the border.

Step 3
Drag the drag point into the target state.

The transition is displayed as a green arrow.

TIP Connect transitions to the state machine
The state machine is the top-most compound state. Therefore, you can create transitions
to and from the border of the state machine. All states in the state machine inherit such a
transition.

7.4.2. Moving a transition

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 140 of 471

Moving a transition

You move a transition by moving one of its end points.

Prerequisite:

■ The content area displays a state machine.
■ The state machine contains at least two states.
■ The states are connected by a transition.

Step 1
In the content area, click a transition.

Two green drag points are displayed.

Step 2
Select and hold the drag point that you want to move.

Step 3
Drag the mouse into a different state.

Step 4
When the state is highlighted green, release the mouse button.

The transition is moved.

7.4.3. Moving transition labels

Moving transition labels

Prerequisite:

■ The content area displays a state machine.
■ The state machine contains at least two states.
■ The states are connected by a transition.

Step 1
To change the shape of a transition, select and drag the transition.

Step 2
To move a transition label, press Shift and drag the label.

Step 3
To rotate a transition label, press Ctrl and drag the label.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 141 of 471

Figure 7.2. Moved and rotated transition label

7.4.4. Defining a trigger for a transition

Defining a trigger for a transition

For a transition, you can define an event that triggers it.

Prerequisite:

■ A state machine contains at least two states.
■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
In the Properties component, click in the box next to Trigger.

Step 3
Select an event.

To create a new event, enter a name and click Add event.

The event is added as a transition trigger.

7.4.5. Adding a condition to a transition

Adding a condition to a transition

For every transition, you can define a condition that needs to be fulfilled to execute the transition.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 142 of 471

Prerequisite:

■ A state machine contains at least two states.
■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add a condition to the transition, go to the Properties component. Next to the Condition property, click

.

A script editor opens.

Step 3
Enter a condition using EB GUIDE Script.

Step 4
Click Accept.

The condition is added to the transition.

7.4.6. Adding an action to a transition

Adding an action to a transition

For every transition, you can define an action that is executed along with the transition.

Prerequisite:

■ A state machine contains at least two states.
■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add an action to the transition, go to the Properties component. Next to the Action property, click .

A script editor opens.

Step 3
Enter an action using EB GUIDE Script.

Step 4
Click Accept.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 143 of 471

The action is added to the transition.

Figure 7.3. A transition with an action

7.4.7. Adding an internal transition to a state

Adding an internal transition to a state

Prerequisite:

■ A state machine contains a view state or a compound state.

Step 1
Select a state.

Step 2
In the Properties component, go to Internal transitions, and click .

An internal transition is added to the state. The internal transition is visible in the Navigation component.

7.4.8. Changing the priority of choice transitions

The priority of choice transitions depends on their position in the widget tree. The priority of choice transitions is
indicated by the number that is displayed in the widget tree and at the transition arrows. To change the priority,
change the position in the widget tree.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 144 of 471

Changing the priority of choice transitions

Prerequisite:

■ A state machine contains a choice state with at least two choice transitions.

Step 1
Go to the Navigation component.

Step 2
Drag the choice transition on top or below the other choice transitions.

You changed the priority of the choice transition. The numbers at the transition arrows change accordingly.

NOTE Else transitions
If you change a choice transition into an else transition, the priority of the other choice
transitions is adjusted automatically. For instructions, see section 7.3.3, “Adding a Choice
state”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 145 of 471

8. Modeling HMI appearance
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

8.1. Changing the background color of states and
state machines
You can change the background color that is displayed in EB GUIDE Studio. This does not affect the background
color on the target. You can change the background color of haptic state machines, view states, compound
states, and dynamic haptic state machines.

Changing the background color of states and state machines

Step 1
In the Navigation component select the state or state machine.

Step 2
In the Properties component select a color from the Background color drop-down list box. The color is
changed accordingly.

8.2. Working with widgets
TIP Copying and finding views and widgets

You can copy and paste an existing View or widget using the context menu or Ctrl+C and
Ctrl+V.

To find a specific View or widget within your EB GUIDE model, enter the name of the View
or widget in the search box or use Ctrl+F. To jump to a View or widget, double-click it in
the hit list.

8.2.1. Adding a View

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 146 of 471

Adding a View

Prerequisite:

■ The content area displays a state machine.

Step 1
Drag a View state from the Toolbox into the state machine.

Along with the View state, a View is added to the EB GUIDE model.

Step 2
In the Navigation component, expand the widget tree and click the View.

Step 3
Press the F2 key, and rename the View.

Step 4
Double-click the View state in the content area.

The content area displays the new View.

8.2.2. Adding a basic widget to a View
For details on basic widgets, see section 15.10.2, “Basic widgets”.

8.2.2.1. Adding a Rectangle

Adding a Rectangle

Prerequisite:

■ The content area displays a View.

Step 1
Drag a Rectangle from the Toolbox into the View.

The Rectangle is added to the View.

8.2.2.2. Adding an Ellipse

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 147 of 471

Adding an Ellipse

Prerequisite:

■ The content area displays a View.

Step 1
Drag an Ellipse from the Toolbox into the View.

The widget is added to the View.

8.2.2.2.1. Editing an Ellipse

You can draw just a sector of an Ellipse and you can change the arc of an Ellipse.

Creating a circular sector

Prerequisite:

■ The View contains an Ellipse.

Step 1
Click the Ellipse and go to the Properties component.

Step 2
Enter the angle of the sector in the centralAngle text box.

Step 3
Enter the orientation of the sector in the sectorRotation text box.

You created a circular sector.

Creating a circular arc

Prerequisite:

■ The View contains an Ellipse.

Step 1
Click the Ellipse and go to the Properties component.

Step 2
Enter a width between 0 and 50 in the arcWidth text box.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 148 of 471

You created a circular arc.

8.2.2.3. Adding an Image

Adding an Image using Toolbox

Prerequisite:

■ An image file is located in $GUIDE_PROJECT_PATH/<project name>/resources. For supported file
types, see section 6.20.3, “Images”.

■ The content area displays a View.

Step 1
Drag an Image from the Toolbox into the View.

Step 2
In the Properties component, select an image from the image combo box. Alternatively, drag another image
from the Assets component into the image drop-down list box.

The View displays the image.

Adding an Image using Assets component

Prerequisite:

■ An image file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For
supported file types, see section 6.20.3, “Images”.

■ The content area displays a View.

Step 1
Drag an image file from the Assets component into the View.

The View displays the image.

Step 2
To change the image file, go to the Properties component and select an image from the image combo box.
Alternatively, drag another image from the Assets component into the image combo box.

The View displays the image.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 149 of 471

Adding 9-patch images

Prerequisite:

■ A 9-patch image file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory.
For background information on 9-patch images, see section 6.20.3.1, “9-patch images”.

■ The content area displays a View.
■ An Image is added to the EB GUIDE model.

Step 1
Select the Image, and go to the Properties component.

Step 2
From the image combo box, select a 9-patch image.

Step 3
Go to the Widget features properties and click Add/Remove.

The Widget features dialog is displayed.

Step 4
Under Available widget features, expand the Layout category, and select Scale mode.

Step 5
Click Accept.

The related widget properties are added to the Image and displayed in the Properties component.

Step 6
In the Properties component, for the scaleMode property select fit to Size (1).

NOTE Adding 9-patch images
If you do not add the Scale mode widget feature or if for the scaleMode property you se-
lect original Size (0) or keep aspect ratio (2), the 9-patch image is scaled
like a normal .png image.

8.2.2.4. Adding a Label

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 150 of 471

NOTE Character replacement
When you enter a text to the text property of a label, the following characters are replaced:

► The sequence \\\\ is replaced by \\.

► The sequence \\n is replaced by \n.

► In case the text is displayed in one line, \n is replaced by a space character.

Adding a Label using Toolbox

Prerequisite:

■ The content area displays a View.

Step 1
Drag a Label from the Toolbox into the View.

The Label is added to the View. The Label has the default font PT_Sans_Narrow.ttf.

For more information, see section 8.5, “Changing the Label settings”.

Adding a Label using Assets component

Prerequisite:

■ A font file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For sup-
ported file types, see section 6.20.1, “Fonts”.

■ The content area displays a View.

Step 1
Drag a font file from the Assets component into the View.

The View displays the label with the selected font.

For more information, see section 8.5, “Changing the Label settings”.

8.2.2.5. Adding a container

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 151 of 471

Adding a Container

A Container allows grouping widgets.

Prerequisite:

■ The content area displays a View.

Step 1
Drag a Container from the Toolbox into the View.

Step 2
In the content area, enlarge the Container by dragging one of its corners.

Step 3
Drag two or more widgets from the Toolbox into the Container.

The widgets are modeled as child widgets of the Container. Moving the Container moves its child widgets
along with it.

8.2.2.6. Adding an Instantiator

Adding an Instantiator

Prerequisite:

■ The content area displays a View.

Step 1
Drag an Instantiator from the Toolbox into the View.

Step 2
Drag a widget from the Toolbox into the Instantiator.

The widget serves as a line template.

Step 3
Select the Instantiator, and go to the Properties component.

Step 3.1
For the numItems property enter a value that is greater than one.

Step 3.2
Add one of the following widget features to the Instantiator:

► Box layout

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 152 of 471

► Flow layout

► Grid layout

► List layout

For details, see section 8.4.1, “Adding a widget feature”.

In the View, the child widget is displayed as many times as specified by the numItems property and in the
layout specified by widget features for the Instantiator.

Step 4
Drag a widget from the Toolbox into the Instantiator.

You added the second child widget that serves as the second line template.

Step 5
Select the Instantiator, and go to the Properties component.

Step 5.1
Select the lineMapping and click .

Step 5.2
Click the Add button.

A new entry is added to the table.

Step 5.3
In the Value text box enter 0.

Step 5.4
Click the Add button.

The new entry is added to the table.

Step 5.5
In the Value text box enter 1.

You defined the order in which the line templates are instantiated.

Example 8.1.
Instantiation order

The lineMapping property defines the order of instantiation. For example, if you enter the values 1|
0, the Instantiator instantiates the line template 1 as the first child widget and the line template 0 as the
second child widget.

The lineMapping property is applied iteratively. This means that if for the numItems property you en-
ter 10, the result is the order 1|0|1|0|1|0|1|0|1|0.

For a detailed example of how to use Instantiator, see section 14.4, “Tutorial: Creating a list with dynamic
content”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 153 of 471

NOTE Linking of properties of the line templates
The following are the rules for linking:

► You cannot link properties between line templates.

► You cannot link from the outside of the Instantiator to its line templates.

► You can link from a line template to the corresponding Instantiator.

8.2.2.7. Adding an Animation

8.2.2.7.1. Animating a widget

Animating a widget

Prerequisite:

■ The content area displays a View.

Step 1
Drag one of the basic widgets from the Toolbox into the View.

Step 2
Drag an Animation from the Toolbox into the widget.

The Animation editor is displayed below the content area.

Step 3
Add a user-defined property of type Conditional script. For instructions, see section 8.3.6, “Adding a
user-defined property to a widget”.

Step 4
Next to the conditional script, click .

An EB GUIDE Script editor opens.

Step 5
Enter the following EB GUIDE Script in the On trigger section:

function(v:arg0::bool)

{

 f:animation_play(v:this)

}

Step 6
Go to the View.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 154 of 471

Step 7
Go to the Animation editor and next to Animated properties click .

Step 8
Select the View.

A menu expands.

Step 9
Under Animation properties select the property that you want to animate and under Animation curves se-
lect a curve.

Step 10
Click Accept.

A new animation is added to the Animated properties list.

Figure 8.1. Animation editor with an animation curve

The Properties component displays the properties of the animation curve.

Step 11
In the Properties component, enter the properties for the animation curve.

Depending on the animation curve that you select, you need to change the default values for properties end,
constant, or value. Otherwise there is no change to the animated value. For example, you can enter the
following values: 50, 200, -400.

Step 12
Start the simulation.

The value is changed as specified by the animation curve.

8.2.2.7.2. Animating a view transition

Adding an entry animation

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 155 of 471

Adding an entry animation

The following instruction guides you through the process of adding an entry animation to a View state. The
instruction also applies to exit animations, pop-up on animations and pop-up off animations. For more infor-
mation, see section 6.2.4, “View transition animation” and section 15.10.1, “View”.

Prerequisite:

■ A View state and a View are added to the EB GUIDE model.
■ The VTA component is opened.

Step 1
In the VTA component, click .

Step 2
In the context menu, select Entry animation.

The Animation editor opens.

The Properties component displays the properties of the added entry animation.

Step 3
Animate all available widget properties in the dependent view.

Define the entry animation in the Animation editor.

Adding a change animation

Adding a change animation

The following instruction guides you through the process of adding a change animation to a View state or
view template.

Prerequisite:

■ VTA component is opened.
■ The Main state machine contains two view states.

Step 1
Select View state 1 in the Main state machine.

Step 2
In the VTA component, click .

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 156 of 471

Step 3
In the context menu, select Change animation.

A dialog opens.

Step 4
Select View 2.

Step 5
Click Accept.

The name of the destination view is shown next to the change animation name.

The Animation editor opens.

The Properties component displays the properties of the added change animation.

The start view is shown in the project editor.

Step 6
To edit the destination view, in the VTA component, click .

Step 7
To add animation properties, click in the Animation editor to add the respective categories.

Animate all available widget properties in the dependent view.

Rearranging animations

Rearranging animations

The following instruction guides you through the process of rearranging animations of a View state or view
template. This instruction also applies to exit animations, change animations, pop-up on animations and pop-
up off animations.

Prerequisite:

■ VTA component is opened.
■ You added multiple entry animations.

Step 1
In the VTA component, select the prioritization text box next to the entry animation that you want to start first.

Step 2
Change the value of the entry animation to 0.

The order of the entry animations is changed. The edited entry animation starts first and all following entries
are incremented by one.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 157 of 471

The value 0 means that the animation is evaluated to be played first. Subsequent values mean that the ani-
mations are evaluated to be played in a subsequent order. Only the entry animation that has the highest pri-
ority and the fulfilled condition is played.

8.2.2.7.3. Animating with a script curve

Getting the output of the script curve

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an initial state and a View state.
■ The initial state has a transition to the View state.

Step 1
Rename the View to FirstView and open it.

Step 2
Drag an Animation from the Toolbox into FirstView.

Step 3
Add a user-defined property of type Conditional script. For instructions, see section 8.3.6, “Adding a
user-defined property to a widget”.

Step 4
Next to the conditional script, click .

An EB GUIDE Script editor opens.

Step 5
Enter the following EB GUIDE Script in the On trigger section:

function(v:arg0::bool)

{

 f:animation_play(v:this)

}

Step 6
Go to the FirstView.

Step 7
In the Animation editor, next to Animated properties click and then click FirstView.

A menu expands.

Step 8
Under FirstView select the y property and then Script curve.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 158 of 471

Step 9
Click Accept.

An Animation is added to the Animation editor.

Step 10
Rename the new Animation to ScriptCurveMonitoring.

Step 11
In the Properties component, go to Default widget properties and next to the curve property click . EB
GUIDE Script editor is displayed.

Enter the following EB GUIDE Script:

function(v:diff::int, v:t_anim::int)

{

f:trace_string("Diff : "+ f:int2string(v:diff) + " t_anim: " + f:int2string(v:t_anim))

 0::int

}

Click Accept.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

In EB GUIDE Monitor, observe the Logger component. v:diff shows the animation is executed every 16
milliseconds. v:t_anim shows how long the animation ran at this point since the start. See the figure below.

Figure 8.2. EB GUIDE Monitor messages

8.2.2.7.4. Animating a datapool item

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 159 of 471

Animating a datapool item

Prerequisite:

■ A datapool item of one of the following types is added: Boolean, color, float, integer.
■ The content area displays a View.

Step 1
Drag an Animation from the Toolbox into the View.

The Animation editor is displayed below the content area.

Step 2
Add a user-defined property of type Conditional script. For instructions, see section 8.3.6, “Adding a
user-defined property to a widget”.

Step 3
Next to the conditional script, click .

An EB GUIDE Script editor opens.

Step 4
Enter the following EB GUIDE Script in the On trigger section:

function(v:arg0::bool)

{

 f:animation_play(v:this)

}

Step 5
Go to the View.

Step 6
Go to the Animation editor and next to Animated properties click .

Step 7
Select Datapool item.

A menu expands.

Step 8
Under Animation properties select the datapool item that you want to animate and under Animation
curves select a curve.

Step 9
Click Accept.

A new animation is added to the Animated properties list.

The Properties component displays the properties of the animation curve.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 160 of 471

Step 10
In the Properties component, enter the properties for the animation curve.

Depending on the animation curve that you select, you need to change the default values for properties end,
constant, or value. Otherwise there is no change to the animated value. For example, you can enter the
following values: 50, 200, -400.

Step 11
Start the simulation.

The value is changed as specified by the animation curve.

8.2.2.7.5. Animating colors

Animating colors

Prerequisite:

■ The content area displays a View.

Step 1
Drag a Rectangle from the Toolbox into the View.

Step 2
Drag an Animation from the Toolbox into the Rectangle.

The Animation editor is displayed below the content area.

Step 3
Add a user-defined property of type Conditional script. For instructions, see section 8.3.6, “Adding a
user-defined property to a widget”.

Step 4
Next to the conditional script, click .

An EB GUIDE Script editor opens.

Step 5
Enter the following EB GUIDE Script in the On trigger section:

function(v:arg0::bool)

{

 f:animation_play(v:this)

}

Step 6
Go to the View.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 161 of 471

Step 7
Go to the Animation editor. Next to Animated properties click .

Step 8
Select the View.

A menu expands.

Step 9
Under Animation properties select the fillColor of the Rectangle.

Step 10
Under Animation curves select the Linear interpolation curve.

Step 11
Click Accept.

A new animation is added to the Animated properties list.

The Properties component displays the properties of the animation curve.

Step 12
In the Properties component, set the start property to green.

Step 13
Set the end property to red.

Step 14
Start the simulation.

The color is changed from green to red. All of the colors that lie in between red and green according to their
RGBA8888 value are displayed during the animation.

8.2.2.8. Adding an Alpha mask

Adding an Alpha mask

For details on Alpha mask, see section 15.10.2.1, “Alpha mask”.

Prerequisite:

■ The $GUIDE_PROJECT_PATH/<project name>/resources folder contains an image.
■ The content area displays a View.

Step 1
Drag the Alpha mask from the Toolbox into the View.

Step 2
Go to the Properties component and select an image from the image drop-down list box.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 162 of 471

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. The render-
ers for OpenGL ES 2.0 or higher support .png files and .jpg files. RGB images are con-
verted to grayscale images before being used as alpha masks. Grayscale images are
used as is. The alpha channel in the image is ignored.

Alpha mask functionality is not applied to 9-patch images. 9-patch images are handled the
same way the PNG and JPEG file formats are.

Step 3
Add one of the basic widgets from the Toolbox as a child widget to the Alpha mask.

The alpha channel, i.e. the opacity of the child widget is controlled with the Alpha mask.

8.2.3. Adding a 3D widget to a View

8.2.3.1. Adding a Scene graph to a View

Adding a Scene graph to a View

For restrictions and recommendations, see section 6.1.2, “Settings for 3D graphic files”.

Prerequisite:

■ A 3D graphic file is available. The file contains a camera, a light source, and one object containing a mesh
and at least one material. For supported 3D graphic file formats, see section 6.1.1, “Supported 3D graphic
formats”.

■ The content area displays a View.

Step 1
Drag a Scene graph from the Toolbox into the View.

The View displays the empty bounding box.

Step 2
In the Properties component, click Import file.

A dialog opens.

Step 3
Navigate to the folder where the 3D graphic file is stored.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 163 of 471

Step 4
Select the 3D graphic file.

Step 5
Click Open.

The import starts. A dialog opens.

Step 6
Click OK.

The View displays the 3D graphic. The Navigation component displays the imported widget tree with the
Scene graph as a parent node. If the imported 3D scene has animations, the Linear key value interpolation
integer curve or Linear key value interpolation float curve are added. Note that you cannot modify the under-
lying key-value pairs of these curves in EB GUIDE Studio.

TIP Multiple import
Import of multiple 3D graphics within one Scene graph is possible.

After importing, multiple 3D graphics are rendered on top of each other. To display 3D ob-
jects separately, use the visible property of RootNode.

8.2.4. Importing a .psd file to a View

Adding a .psd file into a View

For background information, see section 6.19, “Photoshop file format support”.

Prerequisite:

■ A .psd file is available in $GUIDE_PROJECT_PATH/<project name>/resources or a subfolder.
■ The content area displays a View.

Step 1
In the Assets component, select the corresponding folder.

Step 2
From the preview area, drag the .psd file into the content area.

An import status message appears.

Step 3
Click OK.

If the import was successful, the Navigation component displays a new widget tree. The top element is a
container named after the .psd file.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 164 of 471

In the $GUIDE_PROJECT_PATH/<project name>/resources folder, a subfolder is created, that con-
tains all of the extracted images.

NOTE Multiple lines
If a text layer contains text for more than one line, you need to add widget feature Mul-
tiple lines and edit the properties accordingly. For more information, see section 8.4.1,
“Adding a widget feature” and section 15.11.1.5, “Multiple lines”.

8.2.5. Extracting images from a .psd file

Extracting images from a .psd file

When you extract images from a .psd file instead of importing them, no widget tree is created. For back-
ground information, see section 6.19, “Photoshop file format support”.

Prerequisite:

■ A .psd file is available in $GUIDE_PROJECT_PATH/<project name>/resources or in subfolders.

Step 1
In the Assets component, select the corresponding folder.

Step 2
Right-click the .psd file and select Extract images from .psd file.

An import status message appears.

Step 3
Click OK.

In the $GUIDE_PROJECT_PATH/<project name>/resources folder, a subfolder is created, that con-
tains all the extracted images. The subfolder is named after the .psd file.

8.2.6. Importing IBL files
For background information, see section 6.14, “Image-based lighting”.

Importing IBL files

To import IBL files they must be transformed into the .ebibl format first. This is done using IBLGenerator

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 165 of 471

Prerequisite:

■ An EB GUIDE project is created.
■ Your IBL files are in either .pfm or .hdr format.
■ You have admin rights.
■ A Scene graph widget is added to the EB GUIDE model.
■ A 3D file is imported.

Step 1
Open the command line prompt as administrator.

Step 2
Navigate to the IBLGenerator installation path. It is in your EB GUIDE Studio installation directory in the
tools folder, $GUIDE_INSTALL_PATH\tools\IBLGenerator.

Step 3
Type the command to transform your file into to .ebibl format. It could look like this:

IBLGenerator.exe -i yourfile.hdr -o yourfile.ebibl -p latlong -q 1

► -i: The input file name

► -o: The output file name

► -p: The parametrization type. Other types are cube and sphere.

► -q: The quality level. The quality level with 1 as the low quality and 10 as the highest quality. Higher
levels of quality need significantly more processing time.

The .ebibl file is placed in the folder that you provided.

TIP IBLGenerator help
To see a list of options for IBLGenerator, run it with parameters -h: IBLGenerator.exe
-h

Step 4
Copy the .ebibl file into the resources folder of your EB GUIDE model. Now you can use the .ebibl file in
a Scene graph node.

Step 5
In EB GUIDE Studio, in the Toolbox component, from the 3D widgets drag the Image-based light into a
Scene graph node.

Step 6
In the Properties component, next to the ibl property, select your .ebibl file.

The import of the IBL file is finished.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 166 of 471

TIP Best results for IBL
For best results, adapt the properties of the Image-based light and use PBR GGX material
or PBR Phong material.

To only illuminate the scene with image-based lighting, disable all other light sources.

8.2.7. Deleting a widget from a View

Deleting a widget from a View

Prerequisite:

■ The EB GUIDE model contains a widget.

Step 1
In the Navigation component, right-click a widget.

Step 2
In the context menu, click Delete.

The widget is deleted.

TIP Deleting widgets from the content area
It is also possible to delete a widget by selecting it in the content area and pressing the
Delete key.

8.3. Working with widget properties

8.3.1. Positioning a widget

Positioning a widget

Positioning a widget means adjusting the widget's x and y properties. The point of origin where both x and y
have the value 0 is the top left corner of the parent widget.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 167 of 471

Prerequisite:

■ The content area displays a View.
■ The View contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
To define the x-coordinate of the widget enter a value in the x text box.

Step 3
To define the y-coordinate of the widget enter a value in the y text box.

Step 4
Click outside the text box.

The content area displays the widget at the entered position.

TIP Alternative approach
To position a widget by visual judgment, select the widget in the content area and move it
with the mouse.

8.3.2. Resizing a widget

Resizing a widget

Prerequisite:

■ The content area displays a View.
■ The View contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 168 of 471

Figure 8.3. Properties of a rectangle

Step 2
To define the height of the widget enter a value in the height text box.

Step 3
To define the width of the widget enter a value in the width text box.

Step 4
Click outside the text box.

The content area displays the widget with the entered size.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

TIP Alternative approach
To resize a widget by visual judgment, select the widget in the content area and drag one
of its corners with the mouse.

8.3.3. Linking between widget properties

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 169 of 471

Linking between widget properties

In order to make sure that two widget properties have the same value at all times, you can link two widget
properties. As an example, the following instructions show you how to link the width property of a rectangle
to the width property of a view.

You can only link the properties of widgets within the same View.

You cannot link to properties of child widgets of an Instantiator.

For more information, see section 6.16, “Linking”.

Prerequisite:

■ The EB GUIDE model contains a View state.
■ The View contains a Rectangle.
■ The width property of the Rectangle is not a scripted value.

Step 1
Select the Rectangle.

The Properties component displays the properties of the Rectangle.

Step 2
In the Properties component, go to the width property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 170 of 471

Figure 8.4. Linking between widget properties

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property. It indicates that the width prop-
erty of the rectangle is now linked to the width property of the view. Whenever you change the width of the
View, the width of the Rectangle changes and vice versa.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 171 of 471

NOTE Link source and link target

The button is only displayed next the link source. It is not displayed for the link target.

TIP Removing the link

To remove the link, click the button again. In the menu that opens click Remove link.

8.3.4. Linking a widget property to a datapool item

Linking a widget property to a datapool item

In order to make sure that a widget property and a datapool item have the same value at all times, you can
link a widget property to a datapool item. As an example, the following instructions show you how to link the
image property of an image to a new datapool item.

For more information, see section 6.16, “Linking”.

Prerequisite:

■ The EB GUIDE model contains a View state.
■ The View contains an Image.
■ The image property of the Image is not a scripted value.

Step 1
Select the Image.

The Properties component displays the properties of the Image.

Step 2
In the Properties component, go to the image property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the text box.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 172 of 471

Step 5
Click Add datapool item.

Step 6
Click Accept.

A new datapool item is added.

The dialog closes. The button is displayed next to the image property. It indicates that the image prop-
erty is now linked to a datapool item. The created link is bidirectional. Whenever you change the Image, the
datapool item changes and vice versa.

NOTE Link source and link target

The button is only displayed next the link source. It is not displayed for the link target.

TIP Removing the link

To remove the link, click the button again. In the menu that opens, click Remove link.

8.3.5. Linking to a list element
You can link a widget property to a list element of a datapool item or a widget property of type list. You can
link list elements directly or indirectly. Directly means that it is not possible to change the list index at run-time.
Indirectly means that it is possible to change the list index at run-time.

Linking to a list element of a datapool item

Linking is only possible if the types of the widget property and of the datapool item match. As an example,
the following instructions show you how to link the fillColor property of a rectangle to a datapool item of
type color list.

For more information, see section 6.16, “Linking”. For instructions on how to edit datapool items of type list,
see section 9.3.2, “Editing datapool items of type list”. For a tutorial on how to create a dynamic list, see sec-
tion 14.4, “Tutorial: Creating a list with dynamic content”.

Prerequisite:

■ A datapool item of type color list is added and has several list elements.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 173 of 471

■ A Rectangle is added.
■ The fillColor property of the Rectangle is not a scripted value.
■ For indirect linking, a datapool item of type integer or a user-defined property of type integer is added.

Step 1
Select the Rectangle.

The Properties component displays the properties of the Rectangle.

Step 2
In the Properties component, next to the fillColor property, click and select Add link to a datapool
item.

An editor opens.

Figure 8.5. Linking to a datapool item

Step 3
Select the datapool item of type color list.

Step 4
Define the index of the list item that you want to link to:

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 174 of 471

► If you want to link directly, go to the Value tab and enter the index of the list element.

► If you want to link indirectly, do either of the following:

► If you want to use a datapool item, go to the Datapool tab and select the datapool item of type inte-
ger.

► If you want to use a widget property, go to the Widget property tab and select the widget property
of type integer.

You can now use this datapool item or widget property in e.g. EB GUIDE Script and change the linked
list element dynamically.

Step 5
Click Accept.

The dialog closes. The button is displayed next to the fillColor property. It indicates that the fill-
Color property is now linked to a datapool item. The created link is bidirectional. Whenever you change the
list elements, the property changes.

Linking to a list element of a widget property

Linking is only possible if the types of the widget properties match. As an example, the following instructions
show you how to link the fillColor property of a Rectangle to a widget property of type color list.

For a tutorial on how to create a dynamic list, see section 14.4, “Tutorial: Creating a list with dynamic con-
tent”.

Prerequisite:

■ A user-defined property of type color list is added and has several list elements.
■ A Rectangle is added.
■ The fillColor property of the Rectangle is not a scripted value.
■ For indirect linking, a datapool item of type integer or a user-defined property of type integer is added.

Step 1
Select the Rectangle.

The Properties component displays the properties of the Rectangle.

Step 2
In the Properties component, next to the fillColor property, click and select Add link to a widget
property.

An editor opens.

Step 3
Select the widget property of type color list.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 175 of 471

Step 4
Define the index of the list item that you want to link to:

► If you want to link directly, go to the Value tab and enter the index of the list element.

► If you want to link indirectly, do either of the following:

► If you want to use a datapool item, go to the Datapool tab and select the datapool item of type inte-
ger.

► If you want to use a widget property, go to the Widget property tab and select the widget property
of type integer.

You can now use this datapool item or widget property in e.g. EB GUIDE Script and change the linked
list element dynamically.

Step 5
Click Accept.

The dialog closes. The button is displayed next to the fillColor property. It indicates that the fill-
Color property is now linked to a widget property. The created link is bidirectional. Whenever you change
the list elements, the property changes.

TIP Removing the link

To remove the link, click the button again. In the menu that opens, click Remove link.

8.3.6. Adding a user-defined property to a widget

Adding a user-defined property to a widget

Prerequisite:

■ The EB GUIDE model contains a View state.
■ The View contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the User-defined properties category, and click .

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 176 of 471

A menu expands.

Step 3
In the menu, click a type for the user-defined property.

A new widget property of the selected type is added to the widget.

Step 4
Rename the property.

8.3.6.1. Adding a user-defined property of type Function (): bool

Adding a user-defined property of type Function (): bool

A property of type Function (): bool is a function that has no parameters and returns a boolean value.
You call the function in EB GUIDE Script in the way you address widget properties followed by the arguments
list.

Prerequisite:

■ The EB GUIDE model contains a View state.
■ The View contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the User-defined properties category, and click .

A menu expands.

Step 3
In the menu, click Function (): bool.

A new widget property of type Function (): bool is added to the widget.

Step 4
Rename the property.

Step 5
Next to the datapool item, select the Value column and click .

An EB GUIDE Script editor opens.

Step 6
Define the behavior of the new function using EB GUIDE Script.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 177 of 471

Step 7
Click Accept.

Example 8.2.
Calling a property of type Function (): bool

In your EB GUIDE model, there is a rectangle called Background color. You added a property of
type Function (): bool to it. The property is called change.

How you call the property in an EB GUIDE Script depends on the position of the widget in the widget
tree:

► v:this->"Background color".change()

or

► v:this->^->"Background color".change()

8.3.7. Renaming a user-defined property

Renaming a user-defined property

Prerequisite:

■ The EB GUIDE model contains a widget with a user-defined property.

Step 1
In the Navigation component, select the widget with the user-defined property.

Step 2
In the Properties component, right-click the property name.

A menu expands.

Step 3
In the menu click Rename.

Step 4
Enter a name for the property.

Step 5
Press the Enter key.

8.3.8. Editing a property of type list

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 178 of 471

Editing a property of type list

For more information on properties of type list, see section 15.3.12, “List”.

For more information on resource management, see section 6.20, “Resource management” and section 6.6,
“Components of the graphical user interface”.

Prerequisite:

■ The EB GUIDE model contains a View state.
■ The View contains a widget.
■ The widget has a property of type list.

Step 1
In the Properties component, select the property of type list, and next to it, click the button.

The Edit dialog opens.

Step 2
To add a new entry to the list, click the Add button.

A new row is added.

Step 3
To edit a value, in the table, click the corresponding row in the Value column.

TIP Assets component
If your property is of type font list, ibl list, image list, or mesh list, the Edit dialog has an
additional Assets component. You can drag and drop the asset from the Assets compo-
nent to the corresponding row in the Value column.

Step 4
When you are finished editing the list, click the Accept button.

The dialog closes.

8.3.9. Managing order and visibility of widgets
In EB GUIDE Studio you have several possibilities, to define the order, layers, or visibility of widgets. The
following possibilities are available and whether you can apply them depends on your use case.

When you just want to change which widget is on top in relation to other widgets in a view, use the Navigation
tree. In the Navigation tree, the order of the widgets determines which widget is going to be displayed on top.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 179 of 471

If the widgets are on the same branch, the widget with the higher position in the tree is displayed below. If
widgets are on different branches, the widget on the higher level is displayed on top.

When you want to have a pop-up that is displayed on top of everything else, use dynamic state machines. For
instructions, see section 14.1, “Tutorial: Adding a dynamic state machine”.

When you have complex menus that change according to what users select, use the Child visibility selection
widget feature. With this widget feature you can control the visibility of the child widgets of a widget. It overwrites
the Visibility property of the affected widget. This features has two usage possibilities:

► Making a single child widget visible. For this use case you only need the index of the widget in the widget
tree. For instructions, see “Making a single child widget visible”.

► Making multiple child widgets visible. For this use case you need to define groups of child widgets and
provide one group's identifying Value. For instructions, see “Making multiple child widgets visible”.

Making a single child widget visible

For more information on widget features,see section 8.4, “Extending a widget by widget features”.

Prerequisite:

■ An EB GUIDE project is opened in EB GUIDE Studio.
■ The EB GUIDE model contains widgets.

Step 1
Add the Child visibility selection widget feature to the parent widget.

Step 2
In the Navigation component, check in which position the child widget is. 0 is the first position.

Step 3
In the Properties component, in the containerIndex text box enter the position of the child widget.

This child widget is now the only child widget that is visible.

Making multiple child widgets visible

For more information on widget features, see section 8.4, “Extending a widget by widget features”.

Prerequisite:

■ An EB GUIDE project is opened in EB GUIDE Studio.
■ The EB GUIDE model contains more than three widgets.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 180 of 471

Step 1
Add the Child visibility selection widget feature to the parent widget.

Step 2
In the Properties component, select containerMapping and then click .

An editor opens.

Step 3
Define a mapping between the group of widgets and child widgets.

The Index column contains the child widget index. In the Value column, enter the group to which you want to
map the child widgets.

Step 4
Click Accept.

Step 5
In the containerIndex text box, enter the group's Value that should be visible.

This group of widgets is now visible. Widgets that are not mapped to this group are invisible.

8.4. Extending a widget by widget features
Widget features add more functionality for the appearance and behavior of widgets. Adding a widget feature
to a widget means adding one or more widget properties. The offered widget features depend on the type of
the widget.

8.4.1. Adding a widget feature

Adding a widget feature

Prerequisite:

■ The EB GUIDE model contains a widget.

Step 1
In the Navigation component, click a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the Widget feature properties category, and click Add/Remove.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 181 of 471

The Widget features dialog is displayed.

Figure 8.6. Widget features dialog

Step 3
Under Available widget features, expand a category, and select the widget feature you want to add.

The selected widget feature as well as dependent widget features that are activated automatically along with
it, are listed under Preview.

Click Accept.

NOTE Dependencies between widget features
Some widget features require other widget features. Therefore, in some cases, if you select
a widget feature, other widget features are selected automatically.

For example, you want to add the widget feature Moveable. In addition the widget features
Touched and Touch Move are added automatically.

For a list of widget features grouped by categories, see section 15.11, “Widget features”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 182 of 471

For tutorials, see the following:

► section 14.3, “Tutorial: Modeling a path gesture”

► section 14.4, “Tutorial: Creating a list with dynamic content”

► section 14.2, “Tutorial: Modeling button behavior with EB GUIDE Script”

8.4.2. Removing a widget feature

Removing a widget feature

Prerequisite:

■ The EB GUIDE model contains a widget.
■ At least one widget feature is added to the widget.

Step 1
In the Navigation component, click a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the Widget feature properties category and click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 183 of 471

Figure 8.7. Widget features dialog

Step 3
Under Preview clear the widget feature you want to remove.

Click Accept.

The related widget feature properties are removed from the Properties component.

NOTE Removing widget features with dependencies
Widget features which were added automatically due to dependencies are not deleted au-
tomatically. They cannot be removed directly. Clear the parent widget feature before you
clear the child widget feature.

8.5. Changing the Label settings

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 184 of 471

8.5.1. Changing the font size of a Label

NOTE Resizing a Label
If you change the width and height properties of the Label or drag the corners of the
bounding box, only the bounding box will change its size. The size of the text in the Label
will stay the same.

For more instructions on resizing a widget, see section 8.3.2, “Resizing a widget”.

The truncation behavior is as follows:

► When you scale down the size of the bounding box upright, the text is truncated line-
by-line if the Label has several lines, or pixel-by-pixel if the Label has only one line.

► When you scale down the size of the bounding box across, the text is truncated char-
acter-by-character if the label has several characters, or pixel-by-pixel if the Label has
only one character.

To visualize that the text is truncated, you can add a character or a set of characters as a
truncation symbol, for example To define the truncation symbol, use the Text trunca-
tion widget feature. For more information, see section 15.11.1.10, “Text truncation”.

Changing the font size of a Label

Prerequisite:

■ The content area displays a View.
■ The view contains a Label.

Step 1
Select the Label.

The Properties component displays the properties of the selected Label.

Step 2
To define the size of the text, enter a value in the font text box.

Step 3
Click outside the text box.

The content area displays the text in the Label with the entered size.

8.5.2. Changing the font of a Label

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 185 of 471

Changing the font of a Label

Prerequisite:

■ A font file is located in $GUIDE_PROJECT_PATH/<project name>/resources. For supported file
types, see section 6.20.1, “Fonts”.

■ The EB GUIDE model contains a View state.
■ The View contains a Label.

Step 1
Select the Label in the View.

Step 2
In the Properties component, select a font from the font combo box.

Alternatively, drag a font file from the Assets component into the font combo box.

The view displays the Label with the new font. Note that if you select an .fnt bitmap font, the size of the
font is fixed and you cannot change it in the font property of the Label.

For instructions on how to use multifont support, see section 8.5.5, “Managing multifont support”.

8.5.3. Changing the line spacing

Each font has a line spacing defined by default. You can change this spacing for each label with the lineGap
property in the Font metrics widget feature. When the Multiple lines widget feature is also added to this Label,
you can additionally define the line spacing with the lineOffset property. It is possible to set both properties
for the same Label. Take into account that in this case the settings of both properties can offset each other.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 186 of 471

Figure 8.8. Line spacing defined by lineOffset and lineGap

8.5.3.1. Changing the default line spacing

Each font has a line spacing defined by default. You can change the line spacing for each Label with the
lineGap property in the Font metrics widget feature.

NOTE Interaction with lineOffset property
Take into account that when the Multiple lines widget feature is also added to this Label,
the line spacing can also be changed there through the lineOffset property and that both
properties can offset each other.

Changing the lineGap property in the Font metrics widget feature

The following instruction shows you how to change the default line spacing of a font.

Prerequisite:

■ The View contains a Label.
■ A property or a datapool item of type font exists.

Step 1
Select the Label.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 187 of 471

Step 2
In the Properties component, go to the Widget feature properties and click Add/Remove.

The Widget feature dialog is displayed.

Step 3
Under Available widget features, expand the Common category, and select Font metrics.

Step 4
Click Accept.

The related widget feature properties are added to the font and displayed in the Properties component.

Step 5
In the Properties component, select the lineGap property and change the value.

8.5.3.2. Changing the line spacing for multiple lines

Changing the lineOffset property in the Multiple lines widget feature

The Multiple lines widget feature enables line breaks in a Label. The following instruction shows you how to
change the line spacing for multiple lines.

NOTE Interaction with lineGap property
Take into account that changing the lineOffset property has an impact on the line
spacing defined in the lineGap property of the Font metrics widget feature and that
both properties can offset each other.

Prerequisite:

■ The View contains a Label and the Multiple lines widget feature is added to it.
■ A property or a datapool item of type font exists.

Step 1
Select the Label.

Step 2
In the Properties component go to the Multiple lines widget feature.

Step 3
Change the value of the lineOffset property.

8.5.4. Changing the text position
To change the position of the text within a label, you can use the following widget properties:

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 188 of 471

► horizontalAlign default widget property

► verticalAlign default widget property

► lineOffset property from the Multiple lines widget feature

► ascender, descender and lineGap property from the Font metrics widget feature

It is possible to use all the above mentioned properties for the same label.

Changing the text position with ascender and descender

The following instruction shows you how to change the position of the characters and thus of the text with the
ascender and descender properties from the Font metrics widget feature.

NOTE Text size is not changed
Changing the ascender and descender properties only affects the position, not the size
of the text. The text size can be changed through the font widget property. For more in-
formation, see section 8.5.1, “Changing the font size of a Label”.

Prerequisite:

■ The EB GUIDE model contains a view state.
■ The view contains a label.

Step 1
In the Properties component, go to the Widget feature properties and click Add/Remove.

The Widget feature dialog is displayed.

Step 2
Under Available widget features, expand the Common category, and select Font metrics.

Step 3
Click Accept.

The related widget feature properties are added to the font and displayed in the Properties component.

Step 4
In the Properties component, in the Font metrics category, change the values of the ascender and de-
scender property.

The position of the text changes accordingly.

Example 8.3.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 189 of 471

Changing the descender property

The following example showcases how the position of the text within a label changes when the de-
scender property is changed.

A label is added with the default widget property horizontalAlign set to leading (0) and the
verticalAlign set to center (0).

The text is positioned in the label as follows:

Figure 8.9. Text position with default values

Now the descender property is set to 80.

The position of the text changes as follows:

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 190 of 471

Figure 8.10. Text position with descender property changed

8.5.5. Managing multifont support
For more information, see section 6.20.1.2, “Multifont support”.

Adding multifont support for type font

Prerequisite:

■ More than one font is available in $GUIDE_PROJECT_PATH/resources.
■ A property or a datapool item of type font exists. This property is not a scripted value.

Step 1
To add multifont support, do the following:

► If you want to add multifont support to a widget property, go to the Properties component.

► If you want to add multifont support to a datapool item, go to the Datapool component.

Step 2
Next to the property or datapool item, click the button.

A menu expands.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 191 of 471

Step 3
In the menu, click Add multifont support.

A table is displayed below the property or the datapool item. The table has one default multifont value.

Step 4
To add a new multifont value, click the button.

A new row is added and is filled with values based on the default font.

Step 5
In the row you can edit and define the following:

► In the column Prio, define the evaluation priority of the font entry.

► In the column Font, define the font size and the font.

► In the column Range, define the Unicode characters that are affected by the selected font.

NOTE Performance
For better performance, instead of defining a font for a single Unicode character use
character ranges or combination of character ranges. For example use 0000, 0001 or
0000-FFFF.

Step 6
Repeat the steps 2 to 5 until all required font values are added.

TIP Removing the multifont support

To remove the multifont support, click the button again. In the menu that opens, click
Remove multifont support.

Adding multifont support for type font list

For instructions on how to work with properties of type list, see section 8.3.8, “Editing a property of type list”.

Prerequisite:

■ More than one font is available in $GUIDE_PROJECT_PATH/resources.
■ A property or a datapool item of type font list exists and has at least one font list entry.

Step 1
To add multifont support, do the following:

► If you want to add multifont support to a widget property, go to the Properties component.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 192 of 471

► If you want to add multifont support to a datapool item, go to the Datapool component.

Step 2
Select the property or datapool item, and next to it, click the button.

The Edit dialog opens.

Step 3
Next to the entry of type font, click the button.

A menu expands.

Step 4
In the menu, click Add multifont support.

A table is added below the property or the datapool item. The table has one default multifont value.

Step 5
To add a new multifont value, click the button.

A new row is added and filled with values based on the default font.

Step 6
In the row you can edit and define the following:

► In the column Prio, define the evaluation priority of the font entry.

► In the column Font, define the font size and the font.

► In the column Range, define the Unicode characters that are affected by the selected font.

NOTE Performance
For better performance, instead of defining a font for a single Unicode character use
character ranges or combination of character ranges. For example use 0000, 0001 or
0000-FFFF.

Step 7
Repeat the steps 3 to 6 until all required font values are added.

TIP Removing the multifont support

To remove the multifont support, click the button again. In the menu that opens, click
Remove multifont support.

Step 8
When you are finished editing entries in the list, click the Accept button.

The dialog closes.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 193 of 471

8.5.6. Placing text along a circular path
With the Circular text widget feature you can place text along a circular path. This gives you more opportunities
for the design of your EB GUIDE model.

If you want your text to follow a path of any arbitrary shaped curve, you can develop your own widget feature
with the EB GUIDE SDK.

NOTE Limitations
If you have added the Circular text widget feature to a label, the following limitations apply:

► Clipping of the text on widget boundaries is disabled when widget features Circular
text and Stroke are both enabled. Use widget feature Viewport as a workaround.

► Only Latin script fonts are supported.

► Circular text cannot be used in combination with verticalAlign.

► Circular text cannot be used in combination with Multiple lines.

► Circular text cannot be used in combination with Font metrics.

Adding Circular text to a label

Prerequisite:

■ The content area displays a View.
■ The View contains a Label.

Step 1
Select the Label.

The Properties component displays the properties of the selected Label.

Step 2
Enter your text in the Text text box.

Step 3
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3.1
Under Available widget features, expand the Effect category, and select the Circular text widget fea-
ture.

Step 3.2
Click Accept.

The text is now placed along a circle path.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 194 of 471

Step 4
Adjust the Widget feature properties. For information on each property, see section 15.11.2.3, “Circular
text”.

8.6. Working with language support
To change the language of your EB GUIDE model during run-time, you add language support and language-de-
pendent texts.

For more information on languages in an EB GUIDE model, see section 6.15.2, “Languages in the EB GUIDE
model”

8.6.1. Adding a language to the EB GUIDE model

NOTE No skin support available
When you have defined a language support for a datapool item, it is not possible to add a
skin support to the same item.

Adding a language

The following instruction shows you how to add a language to your EB GUIDE model.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

A default set and available languages are displayed. The first language in the list is always the default lan-
guage.

Step 3
In the content area, click .

A language is added to the table. The language uses the standard language settings as initial values.

Step 4
Enter a name for the language.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 195 of 471

Step 5
Select a language from the Language drop-down list box.

Step 6
Select a country from the Country drop-down list box.

The language is added to the EB GUIDE model. In the project editor, in the Language drop-down list of the
command area, you can select the new language.

You can switch between the languages during run-time, to see the effect of the different datapool values. For
more information, see section 14.6, “Tutorial: Adding a language-dependent text to a datapool item”.

8.6.2. Adding language support to a datapool item

Adding language support to a datapool item

The following instruction shows you how to add a language support to a datapool item of your EB GUIDE
model.

Prerequisite:

■ The EB GUIDE model contains datapool items.
■ At minimum two languages are added to the model.

Step 1
In the project editor go to the Datapool component.

Step 2
Next to the Value property of a datapool item, click the button.

A menu expands.

Step 3
In the menu, click Add language support.

The dialog closes. Next to the Value property, the button is displayed. It indicates that a language support
is added to this datapool item and now different values for each language can be defined.

You added language support to a datapool item. Now you can define language-dependent values for this dat-
apool item. For more information, see section 14.6, “Tutorial: Adding a language-dependent text to a datapool
item”.

8.6.3. Deleting a language

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 196 of 471

NOTE Default language
The first language in the list is always the default language and cannot be deleted.

Deleting a language

Prerequisite:

■ At minimum two languages are added to the EB GUIDE model.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

The available languages are displayed.

Step 3
In the content area, right-click a language.

A menu opens.

Step 4
Click Delete.

The language is deleted from the table.

8.6.4. Creating an export set for languages

An export set defines which languages are exported. This is useful in cases where you do not want to export
all of the languages in an EB GUIDE model. If you do not define an export set, all of the languages in the EB
GUIDE model are exported.

Creating an export set for languages

Prerequisite:

■ An EB GUIDE project is opened.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 197 of 471

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

Step 3
In the top-left corner, click .

An empty export set is created.

Step 4
Select the default set.

A list of available languages is displayed.

Step 5
Drag the languages that you want to export into the export set that you created.

The number of languages in the export set is displayed.

8.7. Working with skin support
With skin support you can define different datapool values for your model. This way you can define different
looks for the same model, as for example night and day mode.

For more information on skins, see section 6.23, “Skins”.

8.7.1. Adding a skin to the EB GUIDE model

NOTE No language support available
When you have defined a skin support for a datapool item, it is not possible to add a lan-
guage support to the same item.

Adding a skin to the EB GUIDE model

Step 1

Click .

The project center opens.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 198 of 471

Step 2
In the navigation area, click Configure > Skins.

A default set and a standard skin are displayed.

Step 3
In the content area, click .

A skin is added to the table.

Step 4
Enter a name for the skin.

The new skin is added to the EB GUIDE model. In the project editor, in the Skin drop-down list box of the
command area you can select the new skin.

8.7.2. Adding skin support to a datapool item

Adding skin support to a datapool item

To define different datapool values and thus define various looks for your EB GUIDE model, you first need to
add a skin support to the datapool item.

Prerequisite:

■ The EB GUIDE model contains datapool items.
■ A skin is added to the model.

Step 1
In the project editor, go to the Datapool component.

Step 2
Next to the Value property of a datapool item, click the button.

A menu expands.

Step 3
In the menu, click Add skin support.

The dialog closes. Next to the Value property, the button is displayed. It indicates that a skin support is
added to this datapool item and now different values for each skin can be defined.

Step 4
To define different values for the datapool item, select the datapool in the Datapool component.

The Properties component displays a table with all skins available in the EB GUIDE model.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 199 of 471

Step 5
Define a value for each skin in the table.

8.7.3. Switching between skins

Switching between skins

Prerequisite:

■ The EB GUIDE model contains datapool items.
■ A skin is added to the model.

Step 1
In the project editor go to the command area.

Step 2
Select a skin in the drop-down list box.

The content area displays the model with the datapool values valid for this skin. Also the simulation mode will
display the model with the specific skin values.

8.7.4. Deleting a skin

Deleting a skin

Prerequisite:

■ A skin is added to the model.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Skins.

All skins of the current project are listed.

Step 3
In the content area, right-click a skin.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 200 of 471

A menu opens.

Step 4
Click Delete.

The skin is deleted from the table.

8.7.5. Creating an export set for skins
An export set defines which skins are exported. This is useful in cases where you do not want to export all of
the skins in an EB GUIDE model. If you do not define an export set, all of the skins in the EB GUIDE model
are exported.

Creating an export set for skins

Prerequisite:

■ An EB GUIDE project is opened.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Skins.

Step 3
In the top-left corner, click .

An empty export set is created.

Step 4
Select the default set.

A list of available skins is displayed.

Step 5
Drag the skins that you want to export into the export set that you created.

The number of skins in the export set is displayed.

8.8. Working with templates
For more information on templates, see section 6.26.4, “Widget templates”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 201 of 471

8.8.1. Adding a template

Adding a template

Step 1
In the Templates component, click .

A menu expands.

Step 2
In the menu, select a type for the template.

TIP Templates of templates
A type for the template can be an existing template. EB GUIDE thus allows creating tem-
plates from templates.

A new template of the selected type is added. The content area displays the template.

Step 3
Rename the template.

Step 4
In the Properties component, edit the template's properties, and define the template interface.

TIP Copying and finding templates
Alternatively, you can copy and paste an existing template using the context menu or Ctrl+C
and Ctrl+V.

To find a specific template within your EB GUIDE model, enter the name of the template in
the search box or press Ctrl+F. To jump to a template, double-click it in the hit list.

8.8.2. Creating a template from widget tree

Creating a template from widget tree

It is possible to create a widget template from the widget tree.

Prerequisite:

■ At least one widget is added.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 202 of 471

Step 1
In the Navigation component, right-click the widget.

A menu expands.

Step 2
In the menu, select Create template.

A new template is created. The Templates component displays the template. If the parent widget had child
widgets, properties, and widget features, they are also included in the created template.

Step 3
Rename the template.

Step 4
In the Properties component, edit the template's properties, and define the template interface.

8.8.3. Defining the template interface

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

Defining the template interface

Prerequisite:

■ The EB GUIDE model contains a template.

Step 1
Select a template.

Step 2
To add a property to the template interface, in the Properties component, click the button next to the
property. In the menu, click Add to template interface.

The icon is displayed next to the property.

Step 3
To remove a property from the template interface, click the button next to the property. In the menu, click
Remove from template interface.

The icon is no longer displayed next to the property.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 203 of 471

NOTE Instantiator templates
For templates of instantiators, it is not possible to add properties of the instantiator's child
widgets to the template interface.

8.8.4. Using a template

Using a template

Prerequisite:

■ The content area displays a view.
■ In the Toolbox, a widget template is available.
■ There is at least one property in the template interface of the widget template.

Step 1
Drag a widget template from the Toolbox into the view.

An instance of the template is added to the view. The Properties component displays the properties which
belong to the template interface.

TIP Define the template interface
If the Properties component does not display any properties for a template instance, no
properties have been added to the template interface. Define the template interface to
change that.

Step 2
In the Properties component, edit the properties of the template instance.

After editing a property, the button changes to the button.

Step 3
To reset a property value to the value of the template, click the button next to the property. In the menu,
click Reset to template value.

8.8.5. Deleting a template

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 204 of 471

Deleting a template

Step 1
In the Templates component, right-click a template.

Step 2
In the context menu, click Delete.

The template is deleted.

8.9. Enabling anti-aliasing
For background information, see section 6.3, “Anti-aliasing”.

8.9.1. Enabling anti-aliasing globally

Enabling anti-aliasing globally

Prerequisite:

■ There is an EB GUIDE model.

Step 1
In the Project center select Configure > Profiles.

The Profiles menu opens.

Step 2
In the Scenes tab, from the antiAliasing drop-down list box, select the anti-aliasing mode that you want
to set for the scene.

The anti-aliasing mode is now configured for the whole EB GUIDE model.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 205 of 471

8.9.2. Enabling anti-aliasing for scene graphs

Enabling anti-aliasing globally

Prerequisite:

■ The EB GUIDE model contains a Scene graph.

Step 1
Select a Scene graph.

Step 2
In the Properties component, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Expand the 3D category, select the Anti-aliasing mode widget feature, and click Accept.

In the Properties component the Anti-aliasing mode widget feature is displayed.

Step 4
From the antiAliasing drop-down list box, select the mode that you want to have for this Scene graph.

The anti-aliasing mode for this Scene graph is configured.

EB GUIDE Studio
Chapter 9. Handling data

Page 206 of 471

9. Handling data
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

9.1. Working with namespaces
For more information on namespaces, see section 6.6, “Components of the graphical user interface” and sec-
tion 6.17, “Namespaces”.

9.1.1. Adding a namespace

Adding a namespace

You can add a new namespace as a child to the root namespace, or to any existing namespace.

Step 1
As the Namespaces component is not available in the default window layout of EB GUIDE Studio, do the fol-
lowing:

Step 1.1
In the command area click Layout and select Namespaces.

The Namespaces component is displayed.

Step 1.2
In the Namespaces component, click .

A namespace is added to the tree.

Step 2
Rename the namespace

EB GUIDE Studio
Chapter 9. Handling data

Page 207 of 471

TIP Moving a namespace
To move a namespace, drag it to the root namespace or to another namespace. Take care
of the naming conventions for namespaces to avoid naming conflicts.

9.1.2. Adding model elements to a namespace

NOTE Imported namespace
You cannot add or move a model element to a namespace that is part of an imported model
interface.

For instructions on how to add an event to a namespace, see section 9.2.1, “Adding an event”.

For instructions on how to add a datapool item to a namespace, see section 9.3.1, “Adding a datapool item”.

9.1.3. Moving model elements between namespaces

NOTE Imported namespace
You cannot add or move a model element to a namespace that is part of an imported model
interface.

Moving model elements between namespaces

Prerequisite:

■ An event or a datapool item is added to a namespace.
■ At least two namespaces exist.

Step 1
To move an event, go to the Events component.

To move a datapool item, go to the Datapool component.

Step 2
Select the corresponding namespace and right-click the model element.

EB GUIDE Studio
Chapter 9. Handling data

Page 208 of 471

Step 3
From the context menu, select Move to namespace....

A dialog opens.

Step 4
Select the target namespace and click Accept.

The model element is moved to the target namespace.

TIP Moving model elements
Alternatively, you can drag the model element to another namespace.

9.1.4. Deleting a namespace

WARNING Deleting a namespace
When you delete a namespace, you also delete all model elements that this namespace
contains.

NOTE Root namespace
You cannot delete the root namespace.

Deleting a namespace

Prerequisite:

■ A namespace is added to the EB GUIDE model.

Step 1
In the Namespace component, right-click the namespace.

Step 2
In the context menu, click Delete.

The namespace is deleted.

EB GUIDE Studio
Chapter 9. Handling data

Page 209 of 471

9.2. Working with events
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

For more information, see section 6.10, “Event handling”.

9.2.1. Adding an event

NOTE Imported namespace
You cannot add or move a model element to a namespace that is part of an imported model
interface.

Adding an event

Root namespace and user-defined namespaces are visible in the Events component only if they have at
least one event added to them.

Step 1
Go to the Events component.

Step 2
Click .

An event is added to the table.

► If you have not selected a namespace, the event will be added to the first visible namespace that is not
read-only (not imported). In case that only imported namespaces are visible, the event will be added to
the root namespace.

► In case you have selected several namespaces, the event is added to the first selected namespace if it
is not read-only (not imported). If this namespace is read-only (imported), the event will be added to the
root namespace.

► If filters were set and a newly added event does not match the filter settings, filters are reset.

Step 3
Rename the event.

EB GUIDE Studio
Chapter 9. Handling data

Page 210 of 471

NOTE Naming of model elements
For the names of the model elements use the following characters: a-z, A-Z, 0-9, space,
and underscore.

For more information, see section 6.8.3, “Naming of model elements”.

Step 4
To change the event ID, go to the Properties component, and in the Event ID text box enter an ID.

TIP Copying and finding events
Alternatively, you can copy and paste an existing event using the context menu or Ctrl+C
and Ctrl+V. To prevent duplicates, the pasted event has a different event ID than the copied
event.

To find a specific event within your EB GUIDE model, enter the name of the event in the
search box or use Ctrl+F. To jump to an event, double-click it in the hit list.

9.2.2. Adding a parameter to an event

Adding a parameter to an event

Prerequisite:

■ An event is added to the EB GUIDE model.

Step 1
In the Events component, click an event.

Step 2
In the events table click next to the event.

Step 3
From the drop-down list box select a type for the parameter.

A parameter of the selected type is added to the event.

Step 4
Rename the parameter.

EB GUIDE Studio
Chapter 9. Handling data

Page 211 of 471

9.2.3. Addressing an event
Event IDs and event group IDs are used to address events. EB GUIDE TF uses the IDs to send and receive
the events at run-time.

Adding an event group

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Event groups.

Step 3
In the content area, click Add.

An event group is added to the table.

Step 4
Rename the event group.

Step 5
To change an event group ID, double-click the ID, and type a number.

Addressing an event for EB GUIDE TF

Prerequisite:

■ An event group is added.
■ An event is added to the EB GUIDE model.

Step 1
In the Events component, click an event.

The Properties component displays the properties of the selected event.

Step 2
Insert an ID in the Event ID text box.

Step 3
Go to the Events component and select an event group from the Group drop-down list box.

9.2.4. Mapping a key to an event

EB GUIDE Studio
Chapter 9. Handling data

Page 212 of 471

To fire an event, you can press a key on your keyboard, or, for example, you can press a key or use a rotary
button on your target device.

In order to react on keyboard key presses, the model needs to define a mapping for these key events.

For each key, EB GUIDE GTF defines a numeric code in the C++ header file. For code numbers, see $INS-
TALL_PATH$/platform/win64/include/gtf/displayfactory/inputmapper/KeyConstants.h.

Mapping a key to an event

For more information on event handling, see section 6.10, “Event handling” and section 15.5, “Events”.

Prerequisite:

■ The event group Key (ID 10) is added in Project Center > Configure > Event groups.
■ An event is added.

Step 1
Look up the hex code number of the key you want to map in the file KeyConstant.h.

Step 2
Calculate the decimal code number.

Step 3
In the Events component, in the Group column, select Key (ID 10).

Step 4
In the Properties component, into the Event ID text box enter the calculated decimal code number.

The selected key is now mapped to an event.

Example 9.1.
Mapping the key F1 to an event

The internal hex code number of F1 is 12.

The decimal code number of 12 is 18.

Go to the Properties component and enter 18 into the Event ID text box.

The key F1 is now mapped to the event.

EB GUIDE Studio
Chapter 9. Handling data

Page 213 of 471

NOTE Invisible event in EB GUIDE Monitor
The event itself is not shown in EB GUIDE Monitor, but an EB GUIDE Script, which was
triggered by the event, reacts.

For more information on decimal code numbers, see section 15.5.1, “Decimal codes for key events”.

9.2.5. Adding events to a model interface

Adding events to a model interface

For more information on model interfaces, see section 6.18, “Model interfaces”.

For instructions on how to work with model interfaces, see section 10.9, “Working with model interfaces”.

Prerequisite:

■ The EB GUIDE model contains an event.

Step 1
Go to the Events component.

Step 2
If there is only one default model interface, right-click the event and select Add to model interface.

If there are multiple model interfaces, right-click the event, select Model interfaces, and then select the
model interface where this event is supposed to be included.

The event is now contained in the model interface. A colored bar on the left side of the event indicates that it
was added to the model interface.

9.2.6. Deleting an event

Deleting an event

Prerequisite:

■ An event is added to the EB GUIDE model.

EB GUIDE Studio
Chapter 9. Handling data

Page 214 of 471

Step 1
In the Events component, select the corresponding namespace.

Step 2
Right-click the event and from the context menu select Delete.

The event is deleted.

9.3. Working with datapool items
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

For more information, see section 6.7, “Datapool”.

9.3.1. Adding a datapool item

NOTE Imported namespace
You cannot add or move a model element to a namespace that is part of an imported model
interface.

Adding a datapool item

Root namespace and user-defined namespaces are visible in the Datapool component only if they have at
least one datapool item added to them.

Step 1
Go to the Datapool component.

Step 2
Click .

A menu expands.

Step 3
In the menu, click a type for the datapool item.

EB GUIDE Studio
Chapter 9. Handling data

Page 215 of 471

A new datapool item of the selected type is added. The datapool item is ready for internal use.

► If you have not selected a namespace, the datapool item will be added to the first visible namespace
that is not read-only (not imported). In case that only imported namespaces are visible, the datapool
item will be added to the root namespace.

► In case you have selected several namespaces, the datapool item is added to the first selected name-
space if it is not read-only (not imported). If this namespace is read-only (imported), the datapool item
will be added to the root namespace.

► If filters were set and a newly added datapool item does not match the filter settings, filters are reset.

Step 4
Rename the datapool item.

NOTE Naming of model elements
For the names of the model elements use the following characters: a-z, A-Z, 0-9, space,
and underscore.

For more information, see section 6.8.3, “Naming of model elements”.

TIP Copying and finding datapool items
Alternatively, you can copy and paste an existing datapool item using the context menu or
Ctrl+C and Ctrl+V.

To find a specific datapool item within your EB GUIDE model, enter the name of the datapool
item in the search box or use Ctrl+F. To jump to a datapool item, double-click it in the hit list.

9.3.2. Editing datapool items of type list

Editing datapool items of type list

Prerequisite:

■ A datapool item of type list is added.

Step 1
In the Datapool component, click a datapool item of a list type.

Step 2
Select the Value column and click .

An editor opens.

EB GUIDE Studio
Chapter 9. Handling data

Page 216 of 471

Step 3
To add an item to the list datapool item, click Add.

A new entry is added to the table.

Step 4
Enter a value for the new entry in the Value text box or select a value from the combo box.

Step 5
Repeat steps three and four to add more items to the list.

Step 6
Click Accept.

The content of the list is displayed in the Value column.

9.3.3. Converting a property to a scripted value

Converting a property to a scripted value

Properties of datapool items and widgets can be converted to a scripted value and back to their plain value.
The following instruction shows the procedure with a datapool item value. With a widget property, the proce-
dure is the same.

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

Prerequisite:

■ A datapool item is added.
■ The datapool item is not language-dependent.
■ The datapool item is not skin-dependent.
■ The datapool item is not linked.
■ The datapool item does not have multifont support.

Step 1
In the Datapool component, click a datapool item and click the button.

A menu expands.

Step 2
In the menu, click Convert to script.

EB GUIDE Studio
Chapter 9. Handling data

Page 217 of 471

The datapool item is converted to a scripted value.

Step 3
Next to the datapool item, select the Value column and click .

An EB GUIDE Script editor opens.

Step 4
Edit the EB GUIDE Script.

Step 5
To convert the datapool item back to its plain value, click the button.

A menu expands.

Step 6
In the menu, click Convert to plain value.

The datapool item is converted to its plain value.

9.3.4. Establishing external communication

To establish external communication for example between the EB GUIDE model and an application, you add
communication contexts to the EB GUIDE model.

Adding a communication context

With communication contexts you are able to channel communication.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Communication contexts.

Step 3
In the content area, click Add.

A communication context is added to the table.

Step 4
Rename the communication context, for example to Media.

Step 5
To run the communication context in an own thread, select Use own thread.

EB GUIDE Studio
Chapter 9. Handling data

Page 218 of 471

Figure 9.1. Communication context Media.

9.3.5. Linking between datapool items

Linking between datapool items

Prerequisite:

■ A datapool item is added.
■ The datapool item is not language-dependent.
■ The datapool item is not skin-dependent.
■ The datapool item is not a scripted value.

EB GUIDE Studio
Chapter 9. Handling data

Page 219 of 471

Step 1
In the Datapool component, click a datapool item.

Step 2
Click the button.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the text box.

Step 5
Click Add datapool item.

Step 6
Click Accept.

Figure 9.2. Linking between datapool items

EB GUIDE Studio
Chapter 9. Handling data

Page 220 of 471

The dialog closes. Next to the Value property, the button is displayed. It indicates that the Value proper-
ty is linked to a datapool item. Whenever one of the datapool items changes its value, the value of the other
datapool item changes as well.

9.3.6. Adding datapool items to a model interface

NOTE Restrictions for scripted values
It is not possible to add scripted values to model or template interfaces.

Adding datapool items to a model interface

For more information on model interfaces, see section 6.18, “Model interfaces”.

For instructions on how to work with model interfaces, see section 10.9, “Working with model interfaces”.

Prerequisite:

■ The EB GUIDE model contains a datapool item.

Step 1
Go to the Datapool component.

Step 2
If there is only one default model interface, right-click the datapool item and select Add to model interface.

If there are multiple model interfaces, right-click the item, select Model interfaces, and then select the model
interface where this item is supposed to be included.

The datapool item is now contained in the model interface. A colored bar on the left side of the datapool item
indicates that it was added to the model interface.

9.3.7. Deleting a datapool item

Deleting a datapool item

Prerequisite:

■ A datapool item is added.

EB GUIDE Studio
Chapter 9. Handling data

Page 221 of 471

Step 1
In the Datapool component, select the corresponding namespace.

Step 2
Right-click the datapool item and from the context menu select Delete.

The datapool item is deleted.

EB GUIDE Studio
Chapter 10. Handling a project

Page 222 of 471

10. Handling a project
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

10.1. Creating a project

Creating a project

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click New.

Step 3
Enter a project name, and select a location.

Step 4
Click Create.

The project is created. The project editor opens and displays the new project.

10.2. Opening a project

EB GUIDE Studio
Chapter 10. Handling a project

Page 223 of 471

NOTE Invalid project
If the EB GUIDE project is not valid, EB GUIDE Studio cannot open it. An error message
is shown and a log file with the error description is created in $GUIDE_PROJECT_PATH/
<project name>/<project name>_LoadingErrorLog.txt.

For more information, see section 6.8.4, “Validation criteria for EB GUIDE project”.

10.2.1. Opening a project from the file explorer

Opening a project from the file explorer

Prerequisite:

■ An EB GUIDE project is created.

Step 1
Open the file explorer, and select the EB GUIDE project file you would like to open. EB GUIDE project files
have the file extension .ebguide.

Step 2
Double-click the EB GUIDE project file.

The project opens in EB GUIDE Studio.

10.2.2. Opening a project within EB GUIDE Studio

Opening a project within EB GUIDE Studio

Prerequisite:

■ An EB GUIDE project is created.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Open tab.

EB GUIDE Studio
Chapter 10. Handling a project

Page 224 of 471

Step 3
Select a project that is listed under Recent projects, or click Browse and select the EB GUIDE project file
that you would like to open. EB GUIDE project files have the file extension .ebguide.

The project opens in EB GUIDE Studio.

10.3. Renaming model elements

Renaming model elements

The following instruction guides you through the process of renaming a model element.

Prerequisite:

■ A model element is added to the EB GUIDE model.

Step 1
To rename a model element, right-click the element.

The context menu opens.

Step 2
In the context menu, select either of the following:

► To rename only the selected model element, select Rename.

► To rename the selected model element, and also its occurrences in the EB GUIDE model, for example in
EB GUIDE Script, select Rename global.

Step 3
Rename the element and confirm with Enter or click outside the text box.

The element name is changed.

10.4. Validating and simulating an EB GUIDE mod-
el
Before exporting an EB GUIDE model to the target device, you resolve errors and simulate the model on your
PC.

EB GUIDE Studio
Chapter 10. Handling a project

Page 225 of 471

10.4.1. Validating an EB GUIDE model

10.4.1.1. Validating an EB GUIDE model in EB GUIDE Studio

Validating an EB GUIDE model in EB GUIDE Studio

In the Problems component, EB GUIDE displays the following:

► errors

► warnings

For more information, see section 6.8.4, “Validation criteria for EB GUIDE project”.

Step 1
To expand the Problems component, click Problems.

Step 2
In the Problems component, click .

A list of errors and warnings is displayed.

Figure 10.1. Problems component

Step 3
To navigate to the source of a problem, double-click the corresponding line.

The element that causes the problem is highlighted.

Step 4
Solve the problem.

EB GUIDE Studio
Chapter 10. Handling a project

Page 226 of 471

Step 5
Click .

The problem you solved is no longer listed in the Problems component.

If there are no errors, the EB GUIDE model is valid. The EB GUIDE model is also valid if there are some
warnings.

10.4.1.2. Validating an EB GUIDE model using command line

Validating an EB GUIDE model using command line

Step 1
With command line navigate to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -c "<logfile dir>/log.txt" -o "$GUIDE_PROJECT_PATH/
project_name.ebguide".

The EB GUIDE model is validated and the result is saved to a logfile at the specified location <logfile
dir>.

10.4.2. Starting and stopping the simulation

Starting and stopping the simulation

Step 1
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. The simulation starts with its own configuration.

To change the configuration, go to the project center, and click Configure > Profiles.

Step 2
To stop the simulation, click in the command area.

The simulation and EB GUIDE Monitor stop.

10.5. Exporting an EB GUIDE model

EB GUIDE Studio
Chapter 10. Handling a project

Page 227 of 471

10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio

Exporting an EB GUIDE model using EB GUIDE Studio

To copy the EB GUIDE model to the target device, you need to export it using EB GUIDE Studio.

For every export of an EB GUIDE model you select a profile.

Prerequisite:

■ There is an export set for languages. For instructions, see section 8.6.4, “Creating an export set for lan-
guages”.

■ There is an export set for skins. For instructions, see section 8.7.5, “Creating an export set for skins”.
■ If there are no export sets, all of the languages and skins in the EB GUIDE model are exported.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Export tab.

Step 3
From the Profile drop-down list box select a profile.

Step 4
From the Skin set drop-down list box select an export set for skins.

If you do not select an export set, all of the skins in the EB GUIDE model exported.

Step 5
From the Language set drop-down list box select an export set for languages.

If you do not select an export set, all of the languages in the EB GUIDE model are exported.

Step 6
Click Browse, and select a location where to export the binary files.

Step 7
Click Select folder.

Step 8
Click Export.

The binary files are exported to the selected location.

EB GUIDE Studio
Chapter 10. Handling a project

Page 228 of 471

10.5.2. Exporting an EB GUIDE model using command line

Exporting an EB GUIDE model using command line

Prerequisite:

■ The EB GUIDE model is free of errors and warnings.

Step 1
In the command line, go to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -e <destination dir> -p <profile> -s <skin_set> -t <lan-
guage_set> -o "$GUIDE_PROJECT_PATH/project_name.ebguide".

The EB GUIDE model is exported to the selected location with the specified profile, skin set, and language
set.

10.6. Changing the display language of EB GUIDE
Studio

Changing the display language of EB GUIDE Studio

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Options tab.

Step 3
Select a language from the Display language drop-down list box.

Step 4
Restart EB GUIDE Studio.

After restarting the graphical user interface is displayed in the selected language.

10.7. Configuring profiles

EB GUIDE Studio
Chapter 10. Handling a project

Page 229 of 471

EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model.

You use profiles to do the following:

► Send messages

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

10.7.1. Adding a profile

Adding a profile

To add a profile in EB GUIDE Studio, clone an existing profile.

Prerequisite:

■ An EB GUIDE project is opened.
■ The project center is displayed.

Step 1
In the navigation area, click Configure > Profiles.

Step 2
In the content area, select the Simulation profile.

Step 3
Click Clone.

A profile is added to the table. The profile is a clone of the default profile Simulation.

Step 4
Double-click in the table and rename the profile to MySimulation.

Step 5
Select Use for simulation.

The MySimulation profile is used for simulation on the PC.

10.7.2. Adding a library

EB GUIDE Studio
Chapter 10. Handling a project

Page 230 of 471

The default delivery of EB GUIDE TF runs on operating systems that support shared libraries, for example
Windows 10, Linux or QNX. EB GUIDE TF is divided into executable file and a set of libraries to fit most
customer projects out of the box.

The following tasks show you how to add a user-defined library that interacts with the EB GUIDE model and
provides additional functionality.

Adding a library: Platform

This task shows you how to add a library or several libraries that can be used by all EB GUIDE models on
the current platform.

Prerequisite:

■ An EB GUIDE project is opened.
■ The project center is displayed.
■ In the navigation area, the tab Configure > Profiles is selected.
■ A profile MySimulation is added.
■ Libraries MyLibraryA and MyLibraryB are available in $GTF_INSTALL_PATH/platform/<plat-
form name>/bin.

Step 1
In the content area, select the MySimulation profile.

Step 2
Click the Platform tab.

Step 3
Enter the following code:

{

 "gtf":

 {

 "core":

 {

 "pluginstoload": ["MyLibraryA", "MyLibraryB"]

 }

 }

}

You added libraries MyLibraryA and MyLibraryB to the start-up code.

EB GUIDE Studio
Chapter 10. Handling a project

Page 231 of 471

NOTE JSON object notation
If you configure platform.json within EB GUIDE Studio, use the JSON object notation.

For an example, see the reference section of the EB GUIDE GTF user guide.

For more information about JSON format, see http://www.json.org.

Adding a library: Model

This task shows you how to add a library or several libraries that can be used only by the current EB GUIDE
model.

Prerequisite:

■ An EB GUIDE project is opened.
■ The project center is displayed.
■ In the navigation area, the tab Configure > Profiles is selected.
■ A profile MySimulation is added.
■ Libraries MyLibraryA and MyLibraryB are available in $GUIDE_PROJECT_PATH/<project name>/
resources.

Step 1
In the content area, select the MySimulation profile.

Step 2
Click the Model tab.

Step 3
Enter the following code:

{

 "gtf":

 {

 "model":

 {

 "pluginstoload": ["resources/MyLibraryA", "resources/MyLibraryB"]

 }

 }

}

You added libraries MyLibraryA and MyLibraryB to the start-up code.

http://www.json.org

EB GUIDE Studio
Chapter 10. Handling a project

Page 232 of 471

NOTE JSON object notation
If you configure model.json in EB GUIDE Studio, use the JSON object notation.

For an example, see the reference section of the EB GUIDE GTF user guide.

For more information about JSON format, see http://www.json.org.

10.7.3. Configuring a scene

In EB GUIDE Studio it is possible to configure a scene for every state machine.

Projects can have more than one state machine for one of the following reasons:

► To separate the logic of the model into different state machines

► To use more than one display or layer

Configuring a scene

Prerequisite:

■ An EB GUIDE project is opened.
■ The project center is displayed.
■ In the navigation area, the tab Configure > Profiles is selected.

Step 1
In the content area, click the Scenes tab.

Step 2
From the State machine drop-down list box select the state machine of your main display, for example Main.

Step 3
To set the initial position of the window on the PC desktop, enter a value for x and y.

Step 4
Select a renderer from the Renderer drop-down list box.

Step 5
Adjust further properties. For information on each property, see section 15.7, “Scenes”.

http://www.json.org

EB GUIDE Studio
Chapter 10. Handling a project

Page 233 of 471

10.8. Exporting and importing language-depen-
dent texts
EB GUIDE allows you to display text in the user's preferred language. To make this possible, you add language
support to your EB GUIDE model. You can then export the language-dependent texts to an .xliff file, have
them translated and import them back into your model.

NOTE Project and language specific IDs
A unique alphanumeric sourcelanguageid and targetlanguageid is created for
every project and language pair. These IDs prevent unintentional import of an .xliff file
from another project or target language. Also each datapool item receives a unique alphanu-
merical ID for each language.

When the languages or datapool items are changed in the EB GUIDE Studio model while
the texts are exported for translation, the translated texts can still be assigned to the right
datapool item and language due to the specific ID. Refer to the import logfile, to see, if all
datapool items are assigned correctly.

10.8.1. Exporting language-dependent texts

TIP Validating the EB GUIDE model
To avoid errors during export and import of texts, validate your EB GUIDE model before
you start.

For more information, see section 10.4.1.1, “Validating an EB GUIDE model in EB GUIDE
Studio”.

Exporting language-dependent texts

To provide text in the user's preferred language, you export all language-dependent texts of datapool items
and pass them on to your localization service provider.

Prerequisite:

■ The languages to be translated are added to the EB GUIDE model. For more information, see sec-
tion 8.6.1, “Adding a language to the EB GUIDE model”.

■ A datapool item of type String or String list is added.

EB GUIDE Studio
Chapter 10. Handling a project

Page 234 of 471

■ The datapool item has language support. For information, see section 8.6.2, “Adding language support to
a datapool item”.

■ The EB GUIDE model is free of errors and warnings.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

Step 3
In the content area, select the target language to be translated.

Multi-selection is possible.

Step 4
Click Export.

A dialog opens.

Step 5
Select a folder to export the files.

Step 6
Click Select folder.

Result: The export starts. The files are saved in the selected folder. The file has a language-dependent
acronym and the format .xliff. The file contains values for the source language and values for the target
language.

NOTE Structure and content of the exported file

► For each language you select in the project center, a separate .xliff file is export-
ed.

► The source language is the default language. Therefore, if a text was not translated
yet, the target-language element always contains the source text.

For more information on language-dependent texts in an EB GUIDE model and .xliff
files, see section 6.15, “Languages”.

10.8.2. Importing language-dependent texts

EB GUIDE Studio
Chapter 10. Handling a project

Page 235 of 471

10.8.2.1. Importing language-dependent texts using EB GUIDE Studio

Importing language-dependent texts using EB GUIDE Studio

Prerequisite:

■ At minimum one translated .xliff file for the selected EB GUIDE model is available.
■ The datapool item to be translated and the target language still exists.
■ The EB GUIDE model is free of errors and warnings.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

Step 3
Click Import.

A dialog opens.

Step 4
Select the folder where the translated .xliff file is stored.

Step 5
Select the translated .xliff file.

Multi-selection is possible.

Step 6
Click Open.

The import starts. A dialog opens.

Step 7
Click Close.

Now all datapool items with language support show the corresponding language dependent text. See the logfile
for more information on the import.

10.8.2.2. Importing language-dependent texts using command line

EB GUIDE Studio
Chapter 10. Handling a project

Page 236 of 471

Importing language-dependent texts using command line

Prerequisite:

■ At minimum one translated .xliff file for the selected EB GUIDE model is available.
■ The datapool item that was sent to translation still exists.
■ The EB GUIDE model is free of errors and warnings.

Step 1
With command line navigate to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -l <language file> -o "$GUIDE_PROJECT_PATH/project_-
name.ebguide".

If the import was successful, the EB GUIDE model is changed. If the import was not successful, the EB
GUIDE model is not changed. In both cases a logfile is generated. A date and a time stamp are added to the
name of the logfile.

10.9. Working with model interfaces
The instructions in the following sections guide you through the process of adding datapool items and events to
the model interface, and exporting and importing the interface. For background information, see section 6.18,
“Model interfaces”.

10.9.1. Adding a model interface

Adding a model interface

Prerequisite:

■ An EB GUIDE project is created.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Model interfaces.

EB GUIDE Studio
Chapter 10. Handling a project

Page 237 of 471

All model interfaces of the current project are listed.

Step 3
Click .

A user-defined model interface is added with a default name.

Step 4
Rename the model interface.

Step 5
There is a colored bar next to the model interface. This bar is also next to events or datapool items. It indi-
cates which model interface they belong to. To change the color of this bar, right-click the interface and select
Select color.

Now all model elements that belong to this model interface have the same color bar in the Datapool and
Events components.

10.9.2. Exporting a model interface

NOTE Validation of the model interface
Before exporting a model interface, it is advisable to validate your EB GUIDE model. In case
that there are errors in the model interface, the export fails and a validation error is shown.

At least one of the following model elements can cause validation errors during the model
interface export:

► Event that belongs to an internal event group

► Datapool item with scripted value

► Linked datapool item

Make sure that these model elements are not part of the model interface to be exported.

Exporting a model interface

Prerequisite:

■ An EB GUIDE project is created.
■ A model interface is added to the EB GUIDE project.
■ Events or datapool items are added to the model interface. For instructions on how to add model elements

to a model interface, see section 9.2.5, “Adding events to a model interface” and section 9.3.6, “Adding
datapool items to a model interface”.

EB GUIDE Studio
Chapter 10. Handling a project

Page 238 of 471

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Model interfaces.

All model interfaces of the current project are listed.

Step 3
Select the model interface to be exported.

Step 4
Click

An explorer window opens.

Step 5
Save the .json file with the interface information in a location of your choice.

You exported the model interface. This .json file can now be used to import the model interface into anoth-
er EB GUIDE model.

10.9.3. Importing a model interface

Importing a model interface

Prerequisite:

■ Two EB GUIDE projects are created.
■ A model interface is exported from the first project and a .json file is created with the interface informa-

tion.
■ The second project is opened in EB GUIDE Studio.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Model interfaces.

The Model interfaces menu opens.

Step 3
To import the model interface, click .

EB GUIDE Studio
Chapter 10. Handling a project

Page 239 of 471

An explorer window opens.

Step 4
Navigate to the location of the .json, select the file, and click Open.

The interface is imported into the project. In the Model interfaces menu you can see the interfaces and you
can see how many datapool items and events each interface provides.

NOTE Duplicate event IDs
Event IDs in an event group must be unique. When you import several model interfaces,
validation errors occur in case there are duplicate IDs of events that belong to different
model interfaces but are within the same event group.

Since you cannot change the event IDs of the imported events in EB GUIDE Studio, revert
the import, change the event IDs in the source model, export and import again. It is advisable
to define event ID ranges for all EB GUIDE models beforehand.

10.9.4. Updating an imported model interface
To update an imported model interface, make the changes in the source EB GUIDE model, then export the
updated model interface, and re-import it again.

For more information on how to export and import model interfaces, see section 10.9.2, “Exporting a model
interface” and section 10.9.3, “Importing a model interface”.

10.9.5. Deleting a model interface

NOTE Default model interface
You cannot delete the default model interface.

Deleting a model interface

Prerequisite:

■ An EB GUIDE model has a user-defined or an imported model interface.

Step 1

Click .

EB GUIDE Studio
Chapter 10. Handling a project

Page 240 of 471

The project center opens.

Step 2
In the navigation area, click Configure > Model interfaces.

All model interfaces of the current project are listed.

Step 3
Right-click the model interface that you want to delete and in the context menu click Delete.

If you delete a model interface that is listed under Imported, then the model interface with all included model
elements is deleted from the EB GUIDE model.

If you delete a model interface that is listed under User-defined, then only the model interface is deleted
from the EB GUIDE model. All model elements that were added to this model interface still exist.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 241 of 471

11. Working with EB GUIDE Monitor
For more information on EB GUIDE Monitor, see section 6.9, “EB GUIDE Monitor” and section 6.6.2, “Graphical
user interface of EB GUIDE Monitor”.

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

11.1. Starting EB GUIDE Monitor as a stand-alone
application
EB GUIDE Monitor starts automatically in EB GUIDE Studio during the simulation of an EB GUIDE model. But
you can also start EB GUIDE Monitor as a stand-alone application.

Starting EB GUIDE Monitor

Prerequisite:

■ EB GUIDE is installed.
■ An EB GUIDE model is exported to $EXPORT_PATH.

Step 1
In the file explorer, navigate to $GUIDE_INSTALL_PATH/tools/monitor.

Step 2
Double-click Monitor.exe

EB GUIDE Monitor starts.

Starting EB GUIDE Monitor using command line

Prerequisite:

■ EB GUIDE is installed.
■ An EB GUIDE model is exported to $EXPORT_PATH.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 242 of 471

Step 1
In the file explorer, navigate to $GUIDE_INSTALL_PATH/tools/monitor.

Step 2
Open command line and enter Monitor.exe

EB GUIDE Monitor starts.

11.2. Configuring EB GUIDE Monitor

Connecting EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is started.
■ An EB GUIDE model is running.

Step 1

To change the connection settings to EB GUIDE GTF, click .

Step 2
In Host, enter the host name, and in Port, enter the port address.

Step 3

Click .

EB GUIDE Monitor is connected and the status button is green: .

TIP Disconnecting EB GUIDE Monitor

To disconnect EB GUIDE Monitor, click .

EB GUIDE Monitor is now disconnected and the status button is red: .

Changing the display language of EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is started as a stand-alone application.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 243 of 471

Step 1
From File > Display language select a language.

Step 2
Restart EB GUIDE Monitor.

After restarting, the graphical user interface is displayed in the selected language.

NOTE EB GUIDE Monitor inherits the language from EB GUIDE Studio
If EB GUIDE Monitor is started in EB GUIDE Studio, you cannot change the display lan-
guage of the graphical user interface. EB GUIDE Monitor has the same display language
as EB GUIDE Studio.

Resetting the size of EB GUIDE Monitor window

The size of the EB GUIDE Monitor window and also its position on the screen are stored for each individ-
ual EB GUIDE project separately in C:\<user>\AppData\Local\Temp\eb_guide_simulation_ex-
port\<project>.

Prerequisite:

■ EB GUIDE Monitor is started and its original position and window size were manipulated.

Step 1
To reset the size and the position to the default values, delete monitor_layout.xml and moni-
tor_model_config.json in C:\<user>\AppData\Local\Temp\eb_guide_simulation_ex-
port\<project>.

Step 2
Restart the simulation, or, if EB GUIDE Monitor was started as a stand-alone application, restart EB GUIDE
Monitor.

The new monitor_layout.xml and monitor_settings.xml files are created with the default size and
position values.

Editing the number of log messages

In the $INSTALL_PATH\tools\monitor\Monitor.exe.config configuration file, you can define the
behavior of EB GUIDE Monitor when the logger reaches its memory limit.

Step 1
Open the $INSTALL_PATH\tools\monitor\Monitor.exe.config configuration file.

Step 2
To define the number of entries that are displayed in the Logger component, change the limit value.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 244 of 471

Step 3
To define the number of entries that are going to be deleted when the limit is reached, change the remove-
Count value.

Step 4
Start EB GUIDE Monitor.

EB GUIDE Monitor uses the new settings from the changed configuration file.

11.3. Loading configurations into EB GUIDE Moni-
tor

Loading a configuration file into EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is started as a stand-alone application.
■ An EB GUIDE model is exported to $EXPORT_PATH.
■ In $EXPORT_PATH, the monitor.cfg configuration file is created.

Step 1
Select File > Load configuration.

A dialog opens.

Step 2
Navigate to $EXPORT_PATH and select the monitor.cfg configuration file.

Step 3
Click Open.

The configuration of your project is loaded into EB GUIDE Monitor.

Loading a recent configuration file into EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is started as a stand-alone application.
■ One or more configuration files have been used recently.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 245 of 471

Step 1
Select File > Recent configuration files.

A dialog opens.

Step 2
Navigate to the respective location and select a configuration file.

The configuration file is loaded into EB GUIDE Monitor.

NOTE EB GUIDE Monitor disconnects from EB GUIDE GTF
Before a new configuration file is loaded, EB GUIDE Monitor is automatically disconnected
from the current EB GUIDE GTF.

EB GUIDE Monitor reconnects and loads the new configuration file.

11.4. Firing an event in EB GUIDE Monitor

Firing an event in EB GUIDE Monitor

Prerequisite:

■ The EB GUIDE model contains an event.
■ The simulation of the EB GUIDE model is started.
■ The EB GUIDE Monitor is started.

Step 1
In EB GUIDE Monitor, in the Events component, click .

A dialog opens.

Step 2
Select the event to be fired and click Accept.

The event is added to the list.

Step 3
To fire an event, click in the Events component next to the event.

The event is fired. In the Logger component a log message appears.

Step 4
If the event has parameters, do the following:

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 246 of 471

Step 4.1

Click to expand parameters.

Step 4.2
Change parameters in the Value column.

Step 4.3
To fire an event, click next to the event.

The event is fired with changed parameters. In the Logger component a log message appears.

11.5. Changing the value of the datapool item with
EB GUIDE Monitor

Changing the value of the datapool item in EB GUIDE Monitor

Prerequisite:

■ The EB GUIDE model contains a datapool item.
■ The simulation of the EB GUIDE model is started.
■ The EB GUIDE Monitor is started.

Step 1
In EB GUIDE Monitor, in the Datapool component, click .

A dialog opens.

Step 2
Select the datapool item and click Accept.

The datapool item is added to the list.

Step 3
Change the value of the datapool item in the Value column.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 247 of 471

NOTE Supported types
You can change datapool items of the following data types:

► Boolean

► Color

► Integer

► Float

► String

The value of the datapool item is changed. In the Logger component a log message appears.

11.6. Using scripts in EB GUIDE Monitor

11.6.1. Writing script files for EB GUIDE Monitor
For more information on script methods, see the EB GUIDE Monitor API in $GUIDE_INSTALL_PATH/doc/
monitor/monitor_api.chm.

The following is an example for basic EB GUIDE Monitor script functions.

NOTE Using methods for states and state machines
If your EB GUIDE model has several states or state machines with identical names, use
uint IDs. Find uint IDs that are relevant for your project in $EXPORT_ PATH/moni-
tor.cfg.

Example 11.1.
Example script file for EB GUIDE Monitor

The following is an example script MonitorExampleScript.cs.

namespace MyProject

{

 using System.Threading.Tasks;

 using System.Windows.Media; // necessary for type color!

 using Elektrobit.Guide.Monitor.Scripting.MonitorContext;

 public class Basic

 {

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 248 of 471

 public async Task PrintMessage(IMonitorContext monitor) //❶

 {

 await monitor.Write("Hello World");

 }

 public async Task FireEvent(IMonitorContext monitor) //❷

 {

 await monitor.FireEvent("nextView");

 }

 }

 public class Events

 {

 public async Task FireEventWithParameter(IMonitorContext monitor)

 {

 await monitor.FireEvent("setBool", true);

 }

 public async Task WaitForEvent(IMonitorContext monitor) //❸

 {

 var ev = await monitor.WaitForEvent("nextView");

 await monitor.Write("Even occured: " + ev.EventModel.Name);

 }

 public async Task WaitForEventWithParameters(IMonitorContext monitor)

 {

 var ev = await monitor.WaitForEvent("setBool");

 bool mv1 = ev["value"]; // read parameter via name

 bool mv2 = ev[0]; // read the parameter via index

 await monitor.Write("Parameter 'value' is: " + mv1);

 await monitor.Write("Parameter [0] is: " + mv2);

 }

 }

 public class Datapool

 {

 public async Task WriteDpValue(IMonitorContext monitor) //❹

 {

 await monitor.WriteDatapool("Boolean 1", true);

 }

 public async Task ReadDatapoolValue(IMonitorContext monitor) //❺

 {

 bool boolValue = await monitor.ReadDatapool("Boolean 1");

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 249 of 471

 string stringValue = await monitor.ReadDatapool("String 1");

 int integerValue = await monitor.ReadDatapool("Integer 1");

 float floatValue = await monitor.ReadDatapool("Float 1");

 await monitor.Write("Boolean: " + boolValue);

 await monitor.Write("String: " + stringValue);

 await monitor.Write("Integer: " + integerValue);

 await monitor.Write("Float: " + floatValue);

 }

 public async Task ReadColor(IMonitorContext monitor)

 {

 Color colorValue = await monitor.ReadDatapool("Color 1");

 await monitor.Write("Boolean: " + colorValue);

 }

 }

 public class StateMachines

 {

 public async Task WaitForStateChanges(IMonitorContext monitor)

 {

 var leftState = await monitor.WaitForStateExit

 ("Main", "State 1"); //❻

 await monitor.Write(string.Format("State {0} left",

 leftState.Name));

 var enteredState = await monitor.WaitForStateEnter

 ("Main", "State 2"); //❼

 await monitor.Write(string.Format("State {0} entered",

 enteredState.Name));

 }

 public async Task WaitForStateMachineChanges(IMonitorContext monitor)

 {

 var startedStateMachine = await monitor.WaitForStateMachineStart

 ("Dynamic state machine 1"); //❽

 await monitor.Write(string.Format("State Machine {0} started",

 startedStateMachine.Name));

 var stoppedStateMachine = await monitor.WaitForStateMachineStop

 ("Dynamic state machine 1"); //❾

 await monitor.Write(string.Format("State Machine {0} stopped",

 stoppedStateMachine.Name));

 }

 }

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 250 of 471

 public class Advanced

 {

 public async Task CaptureScreenshot(IMonitorContext monitor) //❿

 {

 // make sure remote framebuffer is enabled in profile

 uint sceneId = 0;

 await monitor.CaptureScreenshot(sceneId, @"d:/image.png");

 }

 public async Task CountTo10(IMonitorContext monitor)

 {

 for (var i = 0; i < 10; i++)

 {

 await monitor.Write("Hello World: " + i);

 await Task.Delay(1000, monitor.CancellationToken);

 monitor.CancellationToken.ThrowIfCancellationRequested();

 }

 }

 public async Task WaitForEventWithTimeout(IMonitorContext monitor) // 11

 {

 // Disclaimer:

 // this is just one of many opportunities provided by

 // the .NET's "Task Parallel Library"

 var eventWaitTask = monitor.WaitForEvent("nextView");

 await Task.WhenAny(eventWaitTask, Task.Delay(5000));

 if (!eventWaitTask.IsCompleted || eventWaitTask.IsFaulted)

 {

 return;

 }

 await monitor.Write("event occured");

 }

 }

 namespace MonitorScripting.EventScripts // 12

 {

 using Elektrobit.Guide.Monitor.Scripting.MonitorContext;

 using System.Threading;

 using System.Threading.Tasks;

 using Elektrobit.Guide.Monitor.Model.Event;

 using Elektrobit.Guide.Monitor.Model.Value;

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 251 of 471

 public class MonitorScripts

 {

 public async Task FireEventInNamespace(IMonitorContext monitor)

 {

 string[] namespacePath = { "Foo_namespace", "go_to_view2" };

 var identifier = new QualifiedIdentifier(namespacePath);

 await monitor.FireEvent(identifier);

 }

 public async Task FireEventInNestedNamespace(IMonitorContext monitor)

 {

 string[] namespacePath =

 { "Foo_namespace", "sub_namespace_under_foo", "go_to_view4" };

 var identifier = new QualifiedIdentifier(namespacePath);

 await monitor.FireEvent(identifier);

 }

 public async Task FireEventInRootNamespace(IMonitorContext monitor)

 {

 await monitor.FireEvent("go_to_view3");

 }

 }

 }

}

❶ Method to print out a message
❷ Method to fire an event
❸ Method to wait for an event
❹ Method to write a datapool value
❺ Method to read a datapool value
❻ Method to wait until the state is entered and then to report it
❼ Method to wait until the state is exited and then to report it
❽ Method to wait until the state machine is started and then to report it
❾ Method to wait until the state machine is stopped and then to report it
❿ Method to capture a screenshot
11 Method to wait for an event with timeout
12 Example how to work with namespaces

11.6.2. Starting scripts in EB GUIDE Monitor

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 252 of 471

Starting scripts in EB GUIDE Monitor

Prerequisite:

■ The simulation of the EB GUIDE model is started.
■ The EB GUIDE Monitor is started.
■ A .cs or a .dll file with a script is available on your computer. For script examples, see section 11.6.1,

“Writing script files for EB GUIDE Monitor”.

Step 1
To open the Scripting component, select Layout > Scripting.

The Scripting component opens as a docked component.

Step 2
In the Scripting component click the Open button.

The file explorer opens.

Step 3
Select a .cs or a .dll file and click Open.

All applicable methods and the corresponding classes, which were included in the file, are listed in the Script
table.

Step 4
Select a method and click the start button.

The script is started. In the Script output area a log message appears.

11.7. Exporting and importing watch lists
The events and datapool items you use for a project are stored in watch lists. In order to use the items for other
projects you can export the watch lists as an .xml file and later import them into your new projects.

Exporting all watch lists

Prerequisite:

■ EB GUIDE Monitor is started.
■ An EB GUIDE model is already set up with items stored in Datapool or Events tabs.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 253 of 471

Step 1
To export all watch lists, select File > Export all watch lists.

A dialog opens.

Step 2
Select a destination folder and enter a file name.

All datapool items and events are exported.

Exporting a single watch list

Prerequisite:

■ EB GUIDE Monitor is started.
■ An EB GUIDE model is already set up with items stored in Datapool or Events components.

Step 1
Go to the Datapool or Events component that contains the items you want to export.

Step 2
To save the list of items of this tab, click Export.

A dialog opens.

Select a destination folder and enter a file name.

The datapool items or events of the component are exported.

Importing watch lists

Prerequisite:

■ EB GUIDE Monitor is started.
■ An exported watch list is already available.

Step 1
To import a watch list, select File > Import watch lists.

A dialog opens.

Step 2
Select a watch list file to import.

The datapool items or events are opened in new Datapool or Events components.

EB GUIDE Studio
Chapter 11. Working with EB GUIDE Monitor

Page 254 of 471

NOTE Layout is not imported
Only the datapool items and events are imported, not the layout.

The default layout is used for the newly opened Datapool and Events components.

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 255 of 471

12. Extending EB GUIDE Studio
This chapter provides information about the concepts that you need to understand to be able to create exten-
sions for EB GUIDE Studio as well as instructions and examples. If you encounter problems while implementing
an extension, contact our support. See chapter 3, “Support“.

12.1. Concepts

12.1.1. Dependency injection

EB GUIDE Studio is built with dependency injection in mind. In order to manage and resolve dependencies EB
GUIDE Studio uses the Managed Extensibility Framework (MEF), which is part of the .NET Framework.

Dependencies are registered and injected based on the Attributed Programming Model. Extensions can pro-
vide new functionality by exporting an implementation of an interface and can use existing EB GUIDE Studio
functionality by importing interfaces.

To import dependencies into your class, add the ImportingConstructor attribute to the constructor and
add the required dependencies as constructor arguments. When an instance of your class is requested the
MEF will try to satisfy all the dependencies and call the marked constructor.

Consider that the MEF only satisfies the dependencies of a class that is exported itself. To export a class, add
the Export attribute to the class.

Example 12.1.
Example for the Export attribute

The following example shows the usage of the ImportingConstructor and Export attributes in a
generic way. An implementation of the IFooService interface is exported which in turn imports a de-
pendency on the IBarService interface.

[Export(typeof(IFooService))]

internal class MyFooService : IFooService

{

 [ImportingConstructor]

 public MyFooService(IBarService barService) {}

}

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 256 of 471

For a more detailed overview of the Managed Extensibility Framework, see https://docs.microsoft.com/en-us/
dotnet/framework/mef/. For more details on the Attributed Programming Model, see https://docs.microsoft.com/
en-us/dotnet/framework/mef/attributed-programming-model-overview-mef.

12.1.2. EB GUIDE model extensions
To ensure the consistency of the model, all modifications must be performed in sequential order. This is
achieved by scheduling all modifications on a task scheduler that executes one action after another. In addition
to that all modifications to the model must be performed in sessions. A session has two purposes:

► Grouping the modifications into a single changeset. As a result, everything performed in one session can
be undone in one step.

► Telling the underlying storage which elements have changed. This means that only changes that are per-
formed within a session are actually stored to the file system.

WARNING Data loss
If you do not use a session to modify an EB GUIDE model, you can damage your model
and cause data loss.

EB GUIDE Studio provides an API to simplify the handling of task scheduling and sessions.

► ITaskSchedulerProvider provides access to the task scheduler that must execute all model modifi-
cations.

► The IEventService interface provides methods to create and modify events in the model.

► ExecuteModelAction is an extension method in the ITaskSchedulerProvider interface. It sched-
ules the modification on the correct task scheduler and creates a session. The second argument to this
extension method is a delegate that performs the actual model modification. The session is created before
the delegate is invoked and automatically committed after the delegate has been executed. This means
as a user you only call ExecuteModelAction and specify how you want to modify the model without
taking care of task scheduling and session handling yourself.

Example 12.2.
Applying extensions to the EB GUIDE model

The following example shows, how to change the previous example to apply the extension to the EB
GUIDE model. The previous example was changed so that it now imports the ITaskScheduler-
Provider and IEventService dependencies.

[Export(typeof(IFooService))]

internal class MyFooService : IFooService

{

https://docs.microsoft.com/en-us/dotnet/framework/mef/
https://docs.microsoft.com/en-us/dotnet/framework/mef/
https://docs.microsoft.com/en-us/dotnet/framework/mef/attributed-programming-model-overview-mef
https://docs.microsoft.com/en-us/dotnet/framework/mef/attributed-programming-model-overview-mef

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 257 of 471

 private readonly ITaskSchedulerProvider _schedulerProvider;

 private readonly IEventService _eventService

 [ImportingConstructor]

 public MyFooService(

 ITaskSchedulerProvider schedulerProvider,

 IEventService eventService)

 {

 _schedulerProvider = schedulerProvider;

 _eventService = eventService;

 }

 public async Task ModifyModel(IProjectContext projectContext)

 {

 await _schedulerProvider.ExecuteModelAction(

 projectContext,

 session => _eventService.CreateEvent(

 session,

 projectContext,

 projectContext.Project.RootNamespace,

 "My Event"));

 }

}

As mentioned above, this example also imports the IEventService interface as a dependency. It is highly
recommended that you use the existing service interfaces to modify the model instead of making direct mod-
ifications to the model elements.

In case there is no existing service that fits your needs there are some rules to follow in order to ensure model
consistency. A session is represented by the IWriteSession interface. You must make the correct calls on
the session to store your changes in the model.

► When possible, build your model element trees before you add them to the model. This way you improve
the performance by avoiding unnecessary model update notifications.

► An element that is newly created must be saved. If you created a whole element tree use the SaveHier-
archy method. It automatically saves all child elements. As a rule of thumb, always call SaveHierarchy
on newly created elements.

► Save modified elements with the Save method. Avoid using the SaveHierarchy method on existing ele-
ments because this can lead to a lot of unnecessary entries in the change set resulting in bad performance.

► Delete removed elements with the Delete method. Instead of calling this method directly, import the
IModelElementService interface and use its DeleteElements method. This method recursively
deletes the element and all its children.

► Do not call the Commit method explicitly. Calling Commit is handled by the ExecuteModelAction ex-
tension method mentioned above.

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 258 of 471

12.1.3. EB GUIDE Studio UI extensions

EB GUIDE Studio uses Windows Presentation Foundation (WPF) as its UI framework. For more information
about WPF, see https://docs.microsoft.com/en-us/dotnet/framework/wpf/. In addition, the UI layer of EB GUIDE
Studio is built with the Model-View-ViewModel (MVVM) pattern in mind. That means, for most cases you must
provide a view model and a view implementation to extend the EB GUIDE Studio UI. For generic UI elements
like menus there are existing views, but for custom UI elements a view implementation is required.

Custom view implementations are provided by exporting them using the MEF. A view model that is supposed
to be used with WPF must follow certain conventions to work properly. A view model should implement the
INotifyPropertyChanged interface. This interface is used by WPF’s data binding engine to reflect changes
in the view model to the view. If you do not implement this interface in your custom view model, the bindings
will only transfer the initial values to the view layer and no updates are propagated. To simplify the creation
of custom view models EB GUIDE Studio provides a base class called ViewModel implementing the INoti-
fyPropertyChanged interface.

Example 12.3.
Custom view model implementation

The following example shows a view model that propagates changes to its Text property to the view. It
also has a command property that can be bound to the view. Each time the command is executed, e.g.
by clicking the bound button, the Text property is changed, and the view is updated.

internal class MyViewModel : ViewModel

{

 private string _text;

 public string Text

 {

 get => _text;

 set => SetProperty(ref _text, value);

 }

 public ICommand DoSomethingCommand { get; }

 public MyViewModel()

 {

 Text = "Initial text";

 DoSomethingCommand = new DelegateCommand(DoSomething);

 }

 private void DoSomething()

 {

 Text = "Did something";

 }

https://docs.microsoft.com/en-us/dotnet/framework/wpf/

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 259 of 471

}

A view is provided by creating a WPF DataTemplate for your view model. The DataTemplate is defined in
XAML within a resource dictionary. You can provide custom resource dictionaries by exporting an implemen-
tation of the IResourceProvider interface.

Example 12.4.
DataTemplate for a custom view model

The following code snippet shows how to provide a DataTemplate for a custom view model. The re-
source dictionary is defined in a file called Resources.xaml in the assembly MyAssembly. The re-
source provider implementation returns a URI to the XAML file.

[Export(typeof(IResourceProvider))]

internal class MyResourceProvider : IResourceProvider

{

 public IEnumerable<Uri> GetResourceUris()

 {

 var uri = new Uri(

 @"MyAssembly;Component/Resources.xaml",

 UriKind.Relative);

 return new[]{ uri };

 }

}

Example 12.5.
ResourceDictionary

The following code snippet shows how to create a ResourceDictionary with a DataTemplate in
XAML.

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:mynamespace="clr-namespace:MyNamespace">

 <DataTemplate

 DataType="{x:Type mynamespace:MyViewModel}">

 <mynamespace:MyView />

 </DataTemplate>

</ResourceDictionary>

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 260 of 471

URIs returned by IResourceProvider must follow the Pack URI syntax so that WPF can find and load them.
For more information about the Pack URI syntax, see https://docs.microsoft.com/en-us/dotnet/framework/wpf/
app-development/pack-uris-in-wpf.

Resource dictionaries provided by IResourceProvider implementations are loaded on application level.
This means all resources in the dictionary are globally available. To avoid naming conflicts with existing re-
sources with an explicit resource key you should prefix your resource keys with the name of your extension. For
example, a custom button style for a special button could be named like this: MyPlugin.MySpecialButton.

Download the EB GUIDE extension examples from https://github.com/Elektrobit/eb-guide-examples. For in-
structions, see the readme.md files enclosed.

12.2. Creating an extension project

Creating a Visual Studio project

Prerequisite:

■ The EB GUIDE Studio installation folder is writeable. The default installation folder under C:\Program
Files\Elektrobit is protected by Windows. For extension development use an installation directory
that is not write protected.

■ Visual Studio 2017 or later is installed.
■ .NET Framework Developer Pack version 4.7.2 or later is installed.

Step 1
Open Visual Studio.

Step 2
Create a new project.

Step 3
In the New Project dialog select a project template:

For core extensions select Class Library (.NET Framework).

For UI extensions select WPF User Control Library (.NET Framework).

Step 4
Enter a name for your extension project and click OK.

The project is created.

Step 5
Right-click the project in the Solution explorer and select Manage NuGet Packages….

https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/pack-uris-in-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/pack-uris-in-wpf
https://github.com/Elektrobit/eb-guide-examples

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 261 of 471

Step 6
Click Browse and search for Elektrobit.Guide.Studio.

Step 7
For core extensions install package Elektrobit.Guide.Studio.Core.

For UI extensions install package Elektrobit.Guide.Studio.Ui.

Your project is now set up and ready for coding.

12.3. Disabling copying of the assemblies

Disabling copying of the assemblies

When building your project all assemblies from referenced NuGet packages are copied to your output fold-
er by default. For the assemblies provided by the EB GUIDE NuGet packages this is not necessary because
these assemblies are already part of the EB GUIDE installation that will be used to execute your extension.
You can adapt the NuGet package reference to disable copying of the assemblies by following these steps.

Prerequisite:

■ A plug-in project was created with Visual Studio.

Step 1
Open the project file (.csproj) of your extension project in a text editor.

Step 2
Find the PackageReference entry for the EB GUIDE NuGet package.

Step 3
Add the IncludeAssets property and set it to the value compile.

Step 4
Save the project file and reload the project in Visual Studio.

Now the PackageReference entry should look like this example snippet:

<PackageReference Include="Elektrobit.Guide.Studio.Ui">

 <Version>6.9.0</Version>

 <IncludeAssets>compile</IncludeAssets>

</PackageReference>

EB GUIDE Studio
Chapter 12. Extending EB GUIDE Studio

Page 262 of 471

12.4. Running an extension

Running an extension

Prerequisite:

■ The EB GUIDE Studio installation folder is writeable. The default installation folder under C:\Program
Files\Elektrobit is protected by Windows. For extension development use an installation directory
that is not write protected.

■ Your extension project is set as the start-up project of the solution.

Step 1
Open the project settings of your extension project and go to the Debug tab.

Step 2
Select Start external program and Studio.exe from your EB GUIDE Studio installation directory.

Step 3
Go to the Build Events tab and enter the following post-build script:

copy /Y $(TargetPath) <extension dir>

copy /Y $(TargetDir)$(TargetName).pdb <extension dir>

This script copies your extension into the EB GUIDE Studio plug-in folder after a successful build.

Step 4
Replace <extension dir> with the correct path of your EB GUIDE Studio installation.

For core extensions use $GUIDE_INSTALL_PATH\studio\lib\core.

For UI extensions use $GUIDE_INSTALL_PATH\studio\lib\ui.

Now you can run your extension from Visual Studio.

EB GUIDE Studio
Chapter 13. Best practices

Page 263 of 471

13. Best practices
The topics in this chapter are sorted alphabetically.

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

13.1. Best practice: Handling scripted values
Properties of datapool items and widgets converted to a scripted value lead to EB GUIDE Script execution
each time the property is read. In some use cases, to minimize the number of EB GUIDE Script executions
and improve the performance, do the following:

1. If you have a scripted value, reset the property type: Use properties which are not converted to a scripted
value but have their plain value. For more information, see section 9.3.3, “Converting a property to a
scripted value” and section 8.3.6, “Adding a user-defined property to a widget”.

2. To compute and set the current value, add a user-defined property of type Conditional script. Con-
sider that this action has to be executed only if it is necessary, for example, on initialization or when an
input property was changed.

EB GUIDE Studio
Chapter 14. Tutorials

Page 264 of 471

14. Tutorials

14.1. Tutorial: Adding a dynamic state machine
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

Dynamic state machines allow pop-ups during run-time. You use dynamic state machines for example to display
error messages that overlay the regular display.

The following instructions guide you through the process of creating a dynamic state machine. The instructions
show you how to model a dynamic state machine for volume control. For best results, work through the following
steps in the order presented.

Approximate duration: 20 minutes.

Adding events and datapool items

The following instructions guide you through the process of adding events and datapool items. These events
are used to change the volume afterwards. The purpose of the datapool item is to change the position of a
graphical element in a later section.

Step 1
Go to the Events component and click .

An event is added to the table.

Step 2
Rename the event to Volume up.

Step 3
Add an event, and rename it to Volume down.

Step 4
Add an event, and rename it to Close volume control.

Step 5
Go to the Datapool component and click .

A menu expands.

EB GUIDE Studio
Chapter 14. Tutorials

Page 265 of 471

Step 6
In the menu, click Integer.

A datapool item of type Integer is added.

Step 7
Rename the datapool item to Volume indicator.

You added three events and a datapool item.

Adding a dynamic state machine and modeling the behavior

The following instructions guide you through the process of adding a dynamic state machine. The haptic dy-
namic state machine that you model is used to control the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, go to Dynamic state machines and click .

A menu expands.

Step 2
In the menu, click Haptic dynamic state machine.

A Haptic dynamic state machine is added and displayed in the content area.

Step 3
Rename the dynamic state machine to Volume control.

Step 4
Drag an Initial state from the Toolbox into the dynamic state machine.

Step 5
Drag a View state from the Toolbox into the dynamic state machine.

Along with the View state, a View is added to the EB GUIDE model.

Step 6
In the Navigation component, click the View state.

Step 7
Press the F2 key, and rename the View state to Volume.

Step 8
Add a transition from the Initial state to the Volume View state.

EB GUIDE Studio
Chapter 14. Tutorials

Page 266 of 471

Modeling a slider

The following instructions guide you through the process of modeling a horizontal slider indicator. The slider
indicator shows the volume during run-time.

The slider indicator consists of two rectangles. One rectangle represents the background of the slider. The
second rectangle indicates the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, expand the Volume view state. Double-click the View.

The content area displays the View.

Step 2
Drag a Rectangle from the Toolbox into the View.

Step 3
In the Navigation component, click the Rectangle, and press the F2 key.

Step 4
Rename the Rectangle to Slider background.

Step 5
To change the appearance of Slider background, click the Rectangle, and go to the Properties compo-
nent.

Step 5.1
Enter 500 in the width text box.

Step 5.2
Enter 125 in the x text box.

Step 5.3
Enter 300 in the y text box.

Step 6
Drag a Rectangle from the Toolbox into Slider background in the Navigation component.

The Rectangle is added as a child widget to Slider background.

Step 7
In the Navigation component, click the Rectangle, and press the F2 key.

Step 8
Rename the Rectangle to Indicator.

Step 9
To change the appearance of Indicator, click the Rectangle, and go to the Properties component.

EB GUIDE Studio
Chapter 14. Tutorials

Page 267 of 471

Step 9.1
Enter 40 in the width text box.

Step 9.2
Enter 80 in the height text box.

Step 9.3
Next to the x property, click the button.

A menu expands.

Step 9.4
In the menu, click Add link to datapool item.

A dialog opens.

Step 9.5
From the list, select the Volume indicator datapool item.

Step 9.6
Click Accept.

The dialog closes. The button is displayed next to the x property. The values of x and Volume indi-
cator are now linked.

Step 9.7
Enter 10 in the y text box.

Step 9.8
Select black for the fillColor property.

You added two rectangles to the View. You changed the appearance of the rectangles.

Step 10
In the Datapool component, click the Volume indicator datapool item.

Step 11
In the Value text box enter 10.

EB GUIDE Studio
Chapter 14. Tutorials

Page 268 of 471

Figure 14.1. Appearance of View 1 with two rectangles

In the content area, the Indicator rectangle changes the position.

The Volume indicator datapool item controls the x position of the Indicator Rectangle.

Adding states to the Main state machine

In the following instructions, you add an Initial state and a View state to the Main state machine. You use the
View state to run the dynamic state machine in parallel to other state machines.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, double-click Main.

The Main state machine is displayed in the content area.

Step 2
Drag an Initial state from the Toolbox into the state machine.

Step 3
Drag a View state from the Toolbox into the state machine.

Along with the View state, a View is added to the EB GUIDE model.

EB GUIDE Studio
Chapter 14. Tutorials

Page 269 of 471

Step 4
Rename the View state to Home.

Step 5
In the content area, click the Initial state.

Step 6
Add a transition from the Initial state to the Home View state.

Step 7
In the Navigation component, click Main.

Step 8
In the Properties component, select the Dynamic state machine list check box.

With these steps done, you can use EB GUIDE Script functions that are related to dynamic state machines.

You added an initial state and a view state to the Main state machine. The haptic dynamic state machine
runs in parallel to the Main state machine.

Adding internal transitions to the Main state machine

In the following instruction, you add internal transitions. You use the internal transitions to start (push) and
stop (pop) the dynamic state machine during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Main state machine.

Step 2
In the Properties component, go to Internal transitions, and click .

An internal transition is added to the state machine. The internal transition is visible in the Navigation com-
ponent.

Step 3
Add two more internal transitions.

Step 4
In the Navigation component, click the first internal transition.

Step 4.1
Go to the Properties component.

Step 4.2
In the Trigger combo box, search for the Volume up event and double-click it.

Step 4.3
Next to the Action property, click .

EB GUIDE Studio
Chapter 14. Tutorials

Page 270 of 471

Step 4.4
Enter the following EB GUIDE Script:

function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" + 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 4.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Volume up.

Step 5
In the Navigation component, click the second internal transition.

Step 5.1
Go to the Properties component.

Step 5.2
In the Trigger combo box, search for the Volume down event and double-click it.

Step 5.3
Next to the Action property, click .

Step 5.4
Enter the following EB GUIDE Script:

function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" - 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 5.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Volume down.

Step 6
In the Navigation component, click the third internal transition.

Step 6.1
Go to the Properties component.

Step 6.2
In the Trigger combo box, search for the Close volume control event and double-click it.

EB GUIDE Studio
Chapter 14. Tutorials

Page 271 of 471

Step 6.3
Next to the Action property, click .

Step 6.4
Enter the following EB GUIDE Script:

function()

 {

 f:popDynamicStateMachine(popup_stack:Main,sm:"Volume control")

 }

Step 6.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Close volume control.

You added three internal transitions which start and stop the dynamic state machine. Furthermore, the in-
ternal transitions Volume up and Volume down change the position of the Indicator rectangle.

Figure 14.2. EB GUIDE model with all model elements

Starting the simulation and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

To start the simulation, click in the command area.

EB GUIDE Studio
Chapter 14. Tutorials

Page 272 of 471

The simulation and EB GUIDE Monitor start. The EB GUIDE model displays the Home View state.
Step 1
In EB GUIDE Monitor in the Events component, click .

A dialog opens.

Step 2
Select all of the events and click Accept.

Step 3
Next to the Volume up event, click to fire the event.

The dynamic state machine is started and shows the slider indicator. The dynamic state machine overlays
the Home View state.

When you fire the events Volume up or Volume down the black Indicator rectangle moves. If you fire
the event Close volume control, the slider disappears from the View.

If you add additional states to the Main state machine, the Volume control dynamic state machine will
overlay the other states as well.

14.2. Tutorial: Modeling button behavior with EB
GUIDE Script

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

With EB GUIDE Script you can express property values, actions, or conditions and evaluate them during run-
time.

The following instructions guide you through the process of using EB GUIDE Script to model the behavior of
a button. The button increases in size when it is clicked and shrinks back to its original size when it reaches a
defined maximum size. For best results, work through the steps in the order presented.

Approximate duration: 10 minutes.

Adding widgets

Prerequisite:

■ The Main state machine contains an Initial state and a View state.

EB GUIDE Studio
Chapter 14. Tutorials

Page 273 of 471

■ The Initial state has a transition to the View state.
■ The content area displays the View.

Step 1
Drag a Rectangle from the Toolbox into the View.

Step 2
In the Navigation component, select the Rectangle, press the F2 key, and rename the Rectangle to Back-
ground.

Step 3
Drag a Rectangle from the Toolbox into the Navigation component. Place it as a child widget to the Back-
ground Rectangle.

Step 4
In the Navigation component, select the new Rectangle, press the F2 key, and rename the Rectangle to
Button.

Step 5
Drag a Label from the Toolbox into the Navigation component. Place the Label as a child widget to the
Button rectangle.

Step 6
In the Navigation component, select the Label, press the F2 key, and rename the label to Button text.

Your widget hierarchy now looks as follows.

EB GUIDE Studio
Chapter 14. Tutorials

Page 274 of 471

Figure 14.3. Widget hierarchy

EB GUIDE Studio
Chapter 14. Tutorials

Page 275 of 471

Configuring the background

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Background Rectangle, and go to the Properties component.

Step 2
Next to the width property, click the button.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property.

Step 6
Link the height property of the Background Rectangle to the height property of the View.

Step 7
Link the x property of the Background Rectangle to the x property of the View.

Step 8
Link the y property of the Background Rectangle to the y property of the View.

The Background Rectangle covers the exact size and position of the View.

Defining the maximum button width

A datapool item holds the value for the maximum width of the button. It can be changed during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click .

EB GUIDE Studio
Chapter 14. Tutorials

Page 276 of 471

A menu expands.

Step 2
In the menu, click Integer.

A new datapool item of type Integer is added.

Step 3
Rename the datapool item to Maximum width.

Step 4
In the Value text box, enter 400.

Configuring the button

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Button Rectangle, and go to the Properties component.

Step 1.1
Enter 50 in the height text box.

Step 1.2
Enter 350 in the x text box.

Step 1.3
Enter 215 in the y text box.

Step 1.4
Select blue for the fillColor property.

The button is now colored blue.

Step 2
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select the Touch pressed wid-
get feature.

Step 4
Click Accept.

The related widget feature properties are added to the Button Rectangle and displayed in the Properties
component.

Step 5
Next to the touchPressed property, click .

EB GUIDE Studio
Chapter 14. Tutorials

Page 277 of 471

An EB GUIDE Script editor opens.

Step 6
Replace the existing EB GUIDE Script with the following code:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 if (v:this.width > dp:"Maximum width") // If the button has grown

 // beyond its maximum size...

 {

 // ...reset its dimensions to the default values.

 v:this.height = 50

 v:this.width = 100

 v:this.x = 350

 v:this.y = 215

 }

 else // Otherwise...

 {

 // ... increase button size...

 v:this.width += 80

 v:this.height += 40

 // ...and move the button to keep it centered.

 v:this.x -= 40

 v:this.y -= 20

 }

 false

 }

Step 7
Click Accept.

You configured the Button Rectangle and wrote an EB GUIDE Script which changes the size of the Button
Rectangle in run-time.

Configuring the button text

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Button text Label, and go to the Properties component.

Step 2
Enter grow! in the text text box.

EB GUIDE Studio
Chapter 14. Tutorials

Page 278 of 471

Step 3
Link the width property of the Button text label to the width property of the Button rectangle.

Step 4
Link the height property of the Button text Label to the height property of the Button Rectangle.

Step 5
Enter 0 in the x text box.

Step 6
Enter 0 in the y text box.

Step 7
Next to the horizontalAlign property, select center(1).

Now the Button text Label and the Button Rectangle are equal in size and position.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

Result:

The simulation starts the EB GUIDE model you created. It behaves as follows.

1. First, it displays a grey screen with a blue button in its center. The screen looks as follows.

Figure 14.4. Result

2. Whenever you click the button, it increases in size but keeps its position at the center of the screen.

EB GUIDE Studio
Chapter 14. Tutorials

Page 279 of 471

3. As soon as the button width reaches the value of the Maximum width datapool item, it shrinks back to
its original size and position.

14.3. Tutorial: Modeling a path gesture
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device.

The following instructions guide you through the process of modeling a path gesture.

Approximate duration: 10 minutes

Adding widgets and configuring default widget properties

Prerequisite:

■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.
■ The content area displays a View.

Step 1
Drag a Rectangle from the Toolbox into the View.

Step 2
Drag a Label from the Toolbox into the Rectangle.

The Label is added as a child widget to the Rectangle.

The Properties component displays the properties of the Label.

Step 3
In the Properties component, enter 500 in the width text box.

Step 4
Select the Rectangle.

The Properties component displays the properties of the Rectangle.

Step 5
Enter 500 in the width text box.

EB GUIDE Studio
Chapter 14. Tutorials

Page 280 of 471

Step 6
In the Properties component, go to fillColor, and select red.

You added two widgets and configured default widget properties.

Adding widget features to a rectangle

To enable the user to enter a shape starting on the widget, you add the widget feature Path gesture to the
Rectangle. The shape is matched against a set of known shapes and, if a match is found, a gesture is recog-
nized.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the Rectangle.

The Properties component displays the properties of the Rectangle.

Step 2
In the Properties component, go to Widget feature properties, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Gestures category, and select Path gestures.

The Touched widget feature is automatically selected, as it is required for the Gestures widget feature.

Step 4
Click Accept.

The related widget feature properties are added to the Rectangle and displayed in the Properties compo-
nent.

Step 5
For the Path gestures widget feature edit the following properties:

Step 5.1
Next to the onPath property, click .

An EB GUIDE Script editor opens.

Step 5.2
Enter the following EB GUIDE Script:

function(v:gestureId::int)

 {

 v:this->"Label 1".text = "recognized path gesture #"

EB GUIDE Studio
Chapter 14. Tutorials

Page 281 of 471

 + f:int2string(v:gestureId);

 }

Step 5.3
Click Accept.

Step 5.4
Next to the onPathStart property, click .

An EB GUIDE Script editor opens.

Step 5.5
Enter the following EB GUIDE Script:

function()

 {

 v:this->"Label 1".text = "path gesture start";

 }

Step 5.6
Click Accept.

Step 5.7
Next to the onPathNotRecognized property, click .

An EB GUIDE Script editor opens.

Step 5.8
Enter the following EB GUIDE Script:

function()

 {

 v:this->"Label 1".text = "shape not recognized";

 }

Step 5.9
Click Accept.

Step 6
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. To see a reaction, draw a shape with the mouse inside the rec-
tangle.

14.4. Tutorial: Creating a list with dynamic content

EB GUIDE Studio
Chapter 14. Tutorials

Page 282 of 471

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

Instantiators allow creating lists dynamically during run-time. Based on a datapool item of type list, an instan-
tiator displays all list elements in a pre-defined layout. If the content of the datapool item is modified, so is the
appearance of the instantiator.

The following instructions guide you through the process of creating a list with dynamic content. Each list
element consists of a labeled rectangle.

Approximate duration: 15 minutes.

Adding a datapool item

The following instructions guide you through the process of adding a datapool item of type String list.
The datapool item provides a value for every list element of the instantiator. If the content of the datapool
item is modified, so is the appearance of the instantiator.

Prerequisite:

■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.

Step 1
To display content in your list, add a datapool item of type String list.

In the Datapool component, click .

A menu expands.

Step 2
In the menu, click String list.

A new datapool item of type String list is added.

Step 3
Rename the datapool item to MyStringList.

Step 4
Select the Value column and click button.

An editor opens.

Step 4.1
Click Add....

EB GUIDE Studio
Chapter 14. Tutorials

Page 283 of 471

A new entry is added to the table.

Step 4.2
Enter One in the Value text box.

Step 4.3
Add the values Two, Three, Four, and Five to the MyStringList datapool item.

Step 4.4
Click Accept.

You added a datapool item of type String list. The datapool item contains five entries.

The content of the list is displayed in the Value column.

Adding widgets

Prerequisite:

■ You completed the previous instruction.

Step 1
To add widgets to your View, double-click the View state in the content area.

The View is displayed in the content area.

Step 2
In the Navigation component, expand the View state and the View.

Step 3
Drag an Instantiator from the Toolbox into the view. Rename the Instantiator to MyInstantiator.

Step 4
Drag a Rectangle from the Toolbox into the Instantiator. Rename the Rectangle to MyRectangle.

Step 5
Drag a Label from the Toolbox into the Rectangle. Rename the Label to MyLabel.

The widget hierarchy now looks as follows.

EB GUIDE Studio
Chapter 14. Tutorials

Page 284 of 471

Figure 14.5. Widget hierarchy with an Instantiator

Configuring the Instantiator

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the properties of MyInstantiator, select the Instantiator and go to the Properties component.

Step 2
Enter 300 in the width text box, and in the height text box.

Step 3
Enter 250 in the x text box.

Step 4
Enter 150 in the y text box.

Step 5
To calculate the length of the list dynamically, add a conditional script.

In the User-defined properties category, click .

A menu expands.

Step 5.1
In the menu, click Conditional script.

Step 5.2
Rename the property to calculateNumItems.

EB GUIDE Studio
Chapter 14. Tutorials

Page 285 of 471

Step 5.3
Next to the property, select the Value column and click .

An EB GUIDE Script editor opens.

Step 5.4
Under Triggers, enter dp:MyStringList.

Step 5.5
Enter the following On trigger script:

function(v:arg0::bool)

{

 v:this.numItems = length dp:MyStringList;

 false

}

You added a script which automatically changes the number of list entries depending on the content of
MyStringList.

Step 6
To arrange all labels within the Instantiator, add a layout to it.

In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 6.1
Under Available widget features, expand the Layout category, and select the Box layout widget fea-
ture to arrange the labels side by side.

Step 6.2
Click Accept.

The related widget feature properties are added to the Instantiator and displayed in the Properties com-
ponent.

Step 6.3
Enter 5 in the gap text box to set a spacing of 5 px between each list element.

Step 6.4
From the layoutDirection drop-down list box select vertical (1), to arrange the labels among
each other.

You configured the Instantiator which defines the visual appearance of the list and adapts the number of list
items dynamically.

EB GUIDE Studio
Chapter 14. Tutorials

Page 286 of 471

Configuring list element texts

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the Label, select the MyLabel and go to the Properties component.

Step 2
Enter 0 in the x and y text boxes.

Step 3
Add a link from the width property of the Label to the width property of the Rectangle.

Step 3.1
Next to the width property, click the button.

A menu expands.

Step 3.2
In the menu, click Add link to widget property.

A dialog opens.

Step 3.3
In the dialog, go to the Rectangle, and select its width property.

Step 3.4
Click Accept.

The dialog closes. The button is displayed next to the width property.

Step 4
Add a link from the height property of the Label to the height property of the Rectangle.

Step 5
Next to the horizontalAlign property, select center (1).

You changed the appearance of the Label. The Label is now centered in the Rectangle.

Configuring list elements

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the rectangle, select the rectangle and go to the Properties component.

EB GUIDE Studio
Chapter 14. Tutorials

Page 287 of 471

Step 2
To make sure that the list elements use the available width, add a link from the width property of the Rec-
tangle to the width property of the Instantiator.

Step 3
Enter 50 in the height text box.

Step 4
To define a unique position for each line of your list, add the Line index widget feature.

Step 4.1
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 4.2
Under Available widget features, expand the List management category, and select the Line index
widget feature.

The lineIndex property is added.

Step 5
To fill the labels of the list with the content of MyStringList, add a conditional script.

Step 5.1
Next to the User-defined properties category, click .

A menu expands.

Step 5.2
In the menu, click Conditional script.

Step 5.3
Rename the property to setText.

Step 5.4
Next to the setText property, select the Value column and click .

An EB GUIDE Script editor opens.

Step 5.5
Under Triggers, enter v:this.lineIndex and dp:MyStringList.

Step 5.6
Enter the following On trigger script:

function(v:arg0::bool)

 {

 v:this->MyLabel.text=dp:MyStringList[v:this.lineIndex];

 false

 }

You changed the appearance of the Rectangle. With the setText property, the labels of MyStringList
are filled automatically with the content of MyStringList.

EB GUIDE Studio
Chapter 14. Tutorials

Page 288 of 471

Testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To start the simulation, click in the command area.

Result:

Since MyStringList contains five datapool items, five rectangles that are labeled from one to five are dis-
played in vertical arrangement.

Figure 14.6. List created with an Instantiator

EB GUIDE Studio
Chapter 14. Tutorials

Page 289 of 471

14.5. Tutorial: Making an ellipse move across the
screen

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

The following instructions guide you through the process of animating an ellipse so that it continually moves
across the screen when the simulation starts.

Approximate duration: Five minutes.

Adding widgets

In the following steps, you add three widgets to the view and organize the hierarchy of the widgets.

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.

Step 1
In the content area, double-click the View state.

The View is displayed in the content area.

Step 2
Drag an Ellipse from the Toolbox into the View.

Step 3
Drag an Animation from the Toolbox into the Ellipse.

Step 4
In the Navigation component, click the Animation, and press the F2 key. Rename the Animation to MyAni-
mation.

Now, if you start the simulation, an ellipse is displayed in a View. The ellipse does not move yet.

EB GUIDE Studio
Chapter 14. Tutorials

Page 290 of 471

Adding a user-defined property of type Conditional script

As a next step, you add a user-defined property to the Ellipse. With the conditional script property, rendering
the ellipse during simulation starts the animation.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the Ellipse.

Step 2
In the Properties component, go to the User-defined properties category, and click .

A menu expands.

Step 3
In the menu, click Conditional script.

A user-defined property of type Conditional script is added to the Ellipse.

Step 4
Rename the property to startAnimation.

Step 5
Next to the startAnimation property, select the Value column and click .

An EB GUIDE Script editor opens.

Step 6
Enter the following EB GUIDE Script:

function(v:arg0::bool)

 {

 f:animation_play(v:this->MyAnimation)

 }

Making the animation visible

The following instructions guide you through the process of making the animation visible.

Prerequisite:

■ You completed the previous instruction.
■ The content area displays the View 1 View.

EB GUIDE Studio
Chapter 14. Tutorials

Page 291 of 471

Step 1
Go to the Animation editor. Next to Animated properties, click and select View 1.

A menu expands.

Step 2
Under Ellipse 1 select the x property and then the Linear interpolation curve.

Step 3
Click Accept.

The button is displayed next to the target property.

Step 4
Link the end property to the width property of the View.

With these settings, when the animation starts, the x property of the Ellipse changes from zero to the width
of the View. Thus the ellipse moves from the left boundary to the right boundary of the view.

Step 5
To make the animation run in infinite repetitions, enter 0 in the repeat property.

Step 6
Save the project.

Step 7
To start the simulation, click in the command area.

Result:

The ellipse continually moves from the left side of the view to the right side of the view.

14.6. Tutorial: Adding a language-dependent text
to a datapool item

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

EB GUIDE offers the possibility to display texts in the user's preferred language. The following instructions
show you how to model a label that changes with an English, French, and German user interface.

Approximate duration: 15 minutes

EB GUIDE Studio
Chapter 14. Tutorials

Page 292 of 471

Linking a widget property to a datapool item

The following instructions guide you through the process of linking the text property of a Label to a datapool
item. In run-time the displayed text is provided by the datapool item.

Prerequisite:

■ Three languages are added to the EB GUIDE model: English, German, and French. The name of Lan-
guage 1 is set to German and the name of Language 2 is set to French.

■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.
■ The content area displays the View.
■ The View state contains a Label.
■ The datapool item is not linked to a datapool item or widget property.
■ The datapool item does not have a scripted value.

Step 1
Click the Label.

Step 2
In the Properties component, go to the text property, and click the button next to the property.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter Welcome_text in the text box.

Step 5
Click Add datapool item.

Step 6
Click Accept.

The datapool item Welcome_text is added.

In the content area, the Label no longer displays any text.

Enter language-dependent text to the datapool item

The following instructions guide you through the process of adding language-dependent text to the datapool
item. For every language the Value property has a different text.

EB GUIDE Studio
Chapter 14. Tutorials

Page 293 of 471

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click the Welcome_text datapool item.

Step 2
Click the button.

Step 3
In the menu, click Add language support.

In the Properties component, the language properties are displayed.

Step 4
In the Datapool component, in the Value text box, enter Welcome.

In the content area, the Label displays Welcome.

Step 5
Go to the Properties component.

Step 6
In the German text box, enter Willkommen.

In the Language box in the upper left corner, change the language to German.

In the content area, the Label displays Willkommen.

Step 7
In the French text box, enter Bienvenue.

In the Language box in the upper left corner, change the language to French.

In the content area, the Label displays Bienvenue.

You have added language support for English, German and French and defined a language-dependent text
label.

Changing the language during run-time

The following instructions guide you through the process of creating a script for changing the language dur-
ing run-time. Each time, the user clicks the label, the display language changes.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click .

EB GUIDE Studio
Chapter 14. Tutorials

Page 294 of 471

A menu expands.

Step 2
In the menu, click Integer.

A datapool item of type Integer is added.

Step 3
Rename the datapool item to SelectedLanguage.

Step 4
In the Navigation component, click the Label 1 Label.

Step 5
In the Properties component, go to the Widget feature properties and click Add/Remove.

The Widget features dialog is displayed.

Step 6
Under Available widget features, expand the Input handling category, and select the Touch pressed wid-
get feature.

Step 7
Click Accept.

The related widget feature properties are added to the Label and displayed in the Properties component.

Step 8
Next to the touchPressed property, click .

An EB GUIDE Script editor opens.

Step 9
Replace the existing EB GUIDE Script with the following code:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

{

 if (dp:SelectedLanguage == 0) // Standard selected

 {

 f:setLanguage(l:German, true)

 dp:SelectedLanguage = 1

 }

 else if (dp:SelectedLanguage == 1) // German selected

 {

 f:setLanguage(l:French, true)

 dp:SelectedLanguage = 2

 }

 else if (dp:SelectedLanguage == 2) // French selected

 {

 f:setLanguage(l:Standard, true)

 dp:SelectedLanguage = 0

 }

 false

EB GUIDE Studio
Chapter 14. Tutorials

Page 295 of 471

}

Step 10
Click Accept.

You configured the Label and wrote an EB GUIDE Script which changes the language of the Label during
run-time.

Result:

You added a datapool item of type String to the EB GUIDE model. The datapool item has different values
for languages. In English the value is Welcome. In German the value is Willkommen. In French the value is
Bienvenue. The datapool item is linked to the text property of the Label. Every time you change the language
of the EB GUIDE model the text of the Label changes too.

14.7. Tutorial: Working with a 3D graphic

TIP Default window layout
All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

EB GUIDE Studio offers the possibility to use 3D graphics in your EB GUIDE model.

The following instructions guide you through the process of adding a 3D graphic to your EB GUIDE model.
The instructions show you how to import a 3D graphic and how to modify the appearance of the imported 3D
graphic using widget features. For best results, work through the following steps in order presented.

NOTE 3D graphic
To create a 3D graphic file, use third-party 3D modeling software.

Only the renderers for OpenGL ES 2.0 or higher can display 3D graphics. Make sure that
your graphics driver is compatible to the version of the renderer. The supported 3D graphic
formats are COLLADA (.dae) and Filmbox (.fbx). For best results, use the Filmbox format.

To be able to apply textures to a mesh, a 3D object needs to have texture coordinates. To
add texture coordinates, use third-party 3D modeling software.

Approximate duration: 15 minutes.

EB GUIDE Studio
Chapter 14. Tutorials

Page 296 of 471

Importing a 3D graphic

The following instructions guide you through the process of importing a 3D graphic file to an EB GUIDE
project.

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.
■ A 3D graphic file is available. The file contains a camera, a light source, and one object containing a mesh

and at least one material.

Step 1
In the content area, double-click the View state.

The View is displayed in the content area.

Step 2
Drag a Scene graph from the Toolbox into the View.

The View displays the empty bounding box.

Step 3
Rename the Scene graph to My3DGraphic.

Step 4
In the Properties component, click Import file.

A dialog opens.

Step 5
Navigate to the folder where the 3D graphic file is stored.

Step 6
Select the 3D graphic file.

Step 7
Click Open.

The import starts.

The Import successful or Import with warnings dialog is displayed. Here you can check the import log file.

Step 8
Click OK.

The View displays the 3D graphic. The Navigation component displays the imported widget tree with the
Scene graph as a parent node. My3DGraphic contains a RootNode that has at least one Mesh with Materi-
al, camera and several other child widgets depending on the content of your 3D graphic file.

EB GUIDE Studio
Chapter 14. Tutorials

Page 297 of 471

Adding widgets

The following instructions guide you through the process of adding an additional light source to your 3D
graphic.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, expand RootNode.

Step 2
Drag a Directional light from the Toolbox to RootNode.

You added a Directional light to My3DGraphic. You can manipulate and transform this Directional light with
the transformation properties of the RootNode.

Step 3
To add the light source and place it with default widget properties different from the RootNode Scene graph,
do the following:

Step 3.1
Drag a Scene graph node from the Toolbox to RootNode.

Step 3.2
Rename the Scene graph node to MyLight.

Step 3.3
Drag a Directional light from the Toolbox to MyLight.

You added a Directional light to My3DGraphic. To change the placing of the Directional light, change the
properties of MyLight.

Changing meshes

Prerequisite:

■ You completed the previous instruction.
■ The $GUIDE_PROJECT_PATH/<project name>/resources/<3D graphic name> folder contains

an additional .ebmesh file.

Step 1
In the Navigation component, click Mesh 1, and go to the Properties component.

Step 2
From the mesh combo box select the .ebmesh file from the resource folder mentioned above.

EB GUIDE Studio
Chapter 14. Tutorials

Page 298 of 471

The view displays the Scene graph with the new mesh.

Step 3
Alternatively, drag an .ebmesh file from the Assets component into the mesh drop-down list box.

The View displays the Scene graph with the new Mesh.

Changing textures

The following instructions guide you through the process of adding and modifying textures of your 3D graph-
ic.

Prerequisite:

■ You completed the previous instruction.
■ The $GUIDE_PROJECT_PATH/<project name>/resources/<3D graphic name> folder contains a
.png or .jpg image file.

Step 1
In the Navigation component, click the Material, and go to the Properties component.

Step 2
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the 3D category, and select a texture widget feature, for example
Diffuse texture.

Step 4
Click Accept.

The related widget feature properties are added to the Material and displayed in the Properties component.

Step 5
In the Properties component, select an image from the diffuseTexture combo box.

The view displays a scene graph with the new texture.

EB GUIDE Studio
Chapter 14. Tutorials

Page 299 of 471

NOTE Usage of 3D widget features
These instructions are valid for the following widget features from the category 3D:

► Ambient texture

► Diffuse texture

► Base color texture

► Emissive texture

► Light map texture

► Normal map texture

► Opaque texture

► Reflection texture

► Specular texture

► Reflectance texture

Displaying 3D object several times

The following instructions guide you through the process of adding an additional camera to be able to display
the 3D object of your 3D graphic several times. You will be able to have different points of view of the same
object.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click My3DGraphic and go to the Properties component.

Step 2
Enter 800 in the width text box and 480 in the height text box.

The My3DGraphic Scene graph has the size of the view.

Step 3
In the Navigation component, expand RootNode and Camera001.

Step 4
Click Camera 1 and go to the Properties component.

Step 5
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE Studio
Chapter 14. Tutorials

Page 300 of 471

Step 6
Under Available widget features, expand the 3D category, and select Camera viewport.

Step 7
Click Accept.

The related widget feature properties are added to Camera 1 and displayed in the Properties component.

Step 8
Drag a Camera from the Toolbox to the Scene graph node Camera001.

You added a second camera.

Step 9
Click Camera 2 and go to the Properties component.

Step 10
In the nearPlane, farPlane and fieldOfView text boxes enter the same values that Camera 1 has.

Both Camera 1 and Camera 2 have the same viewing position.

Step 11
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 12
Under Available widget features, expand the 3D category, and select Camera viewport.

Step 13
Click Accept.

The related widget feature properties are added to Camera 2 and displayed in the Properties component.

Step 14
In the Properties component, enter 100 in viewportX and viewportY text boxes.

In the View, the 3D object is displayed two times with different x-coordinate and y-coordinate.

14.8. Tutorial: Rendering gamma correctly
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

In EB GUIDE Studio you can perform gamma correction for the following:

► Display

EB GUIDE Studio
Chapter 14. Tutorials

Page 301 of 471

► Image

► Texture

The following instructions show you how to configure gamma correction. For best results, work through the
steps in order presented.

Approximate duration: 15 minutes.

Configuring gamma encoding for displays

The following steps guide you through the process of setting up EB GUIDE Studio to output gamma-encoded
values to the display.

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Profiles.

Step 3
For each profile that is sRGB-aware configure the following:

Step 3.1
In the content area, click the Scenes tab.

Step 3.2
From the colorMode drop-down list box, select the following:

► If your rendering pipeline uses the hardware sRGB support of the GPU, select 32-bit sRGB (4)

► If your rendering hardware does not support sRGB, select 32-bit sRGB (Emulated) (5).

To apply changes in the edit mode, restart EB GUIDE Studio.

EB GUIDE Studio
Chapter 14. Tutorials

Page 302 of 471

NOTE Rendering hardware
The OpenGL 3 renderer always has hardware sRGB support. The OpenGL renderer,
which uses the OpenGL ES 2.0 API, uses only hardware sRGB support if the hardware
supports it through the appropriate OpenGL ES extensions. This is automatically detect-
ed.

In case your OpenGL ES 2.0 hardware does not support sRGB, the renderer automati-
cally falls back to 32-bit sRGB (Emulated)(5), which uses fragment shaders for the
conversion.

Note that hardware sRGB mode does not work on all systems, even if they support
OpenGL ES 3.0. In this case, switch to 32-bit sRGB (Emulated)(5).

Configuring gamma encoding for images

Prerequisite:

■ You completed the previous instruction.
■ An image file is available in the resource folder.

Step 1
Go to the project editor and double-click the View. Drag an Image from the Toolbox into the View.

Step 2
In the Properties component, from the image drop-down box, select an image file.

The image probably appears too bright.

This is caused by the sRGB color mode that was configured in the scene properties and now applies gam-
ma-correction to an already gamma-corrected image.

Step 3
To configure the image to be gamma encoded, in the Properties component select sRGB.

The image is now displayed and processed correctly in blending operations.

Configuring gamma encoding for textures

Prerequisite:

■ You completed the previous instructions.
■ A 3D file, for example an .fbx file, with at least one textured 3D object is available with a diffuse texture.

EB GUIDE Studio
Chapter 14. Tutorials

Page 303 of 471

Step 1
Drag a Scene graph from the Toolbox into the View.

Step 2
In the Properties component, click Import file and select a 3D file.

Step 3
In the Navigation component locate the imported Scene graph. Within the Scene graph structure, select a
Material widget that uses a diffuse texture.

Step 4
In the Properties component, in the Widget feature properties, click Add/Remove.

Step 5
From the 3D category, select Diffuse texture.

Step 6
Select the diffuseSRGB property.

The texture is treated as gamma-encoded image and is linearized before it is being used in lighting computa-
tions.

14.9. Tutorial: Using view transition animations
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

View transition animation (VTA) is an animation that is done while moving from one view to another. The
following instructions guide you through the process of creating these animations. You are going to create a
model with views and animations that are played when you change views. You are going to create the following
elements:

► Two view states

► Navigation elements, such as buttons and labels

► Events to trigger changes to the view states

► Animations that are played when you transition to another state

Approximate duration: 30 minutes.

Creating the first view state

Create the first view and a button.

EB GUIDE Studio
Chapter 14. Tutorials

Page 304 of 471

Prerequisite:

■ The content area displays the Main state machine.
■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.

Step 1
In the Navigation component, rename the View state to FirstState and the View to FirstView.

Step 2
Open the FirstView.

Step 3
From the Toolbox component, drag a Rectangle into the FirstView and rename it to RectNextView.

This Rectangle is for the button that triggers the transition.

Step 4
In the Properties component, go to the Widget feature properties category and click Add/Remove. The
Widget features dialog is displayed.

Step 5
Under Available widget features, expand the Effect category and select Border.

Step 6
Click Accept.

The Properties component displays the related widget feature properties.

Step 7
In the Properties component, enter the following:

► In the width text box, enter 220.

► In the height text box, enter 70.

► In the x text box, enter 290.

► In the y text box, enter 150.

► Set fillColor to black.

► In the borderThickness text box, enter 2.

► Set borderColor to white.

Step 8
From the Toolbox component, drag a Label into the Navigation component and add it as a child widget of
FirstView.

Step 9
Rename the Label to LabelNextView.

Step 10
In the Properties component, enter the following:

EB GUIDE Studio
Chapter 14. Tutorials

Page 305 of 471

► In the text text box, enter Go to the next view.

► In the font text box, enter 25.

► Set the horizontalAlign to centered.

Step 11
Link the dimensions of the Label to the dimensions of the Rectangle. Link the following properties:

► Link the width property of LabelNextView to width of RectNextView.

► Link the height property of LabelNextView to height of RectNextView.

► Link the x property of LabelNextView to x of RectNextView.

► Link the y property of LabelNextView to y of RectNextView.

Figure 14.7. The FirstView with the button

Creating the second view state

The second view contains a button. Create this view by copying and renaming the elements you already cre-
ated.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the Main tab.

Step 2
Copy and paste the FirstState state.

Step 3
In the Navigation component, find the new state you created and rename the following widgets:

► Rename the View state to SecondState.

► Rename the View to SecondView.

► Rename RectNextView to RectGoBack.

EB GUIDE Studio
Chapter 14. Tutorials

Page 306 of 471

► Rename LabelNextView to LabelGoBack.

Step 4
Double-click LabelGoBack, and in the text text box, enter Go back.

Figure 14.8. The SecondView with the button

Creating transitions and events

Prerequisite:

■ You completed the previous instruction.

Step 1
Double-click the Main state machine.

Step 2
Create transitions from the edges of the Main state machine to both view states.

Figure 14.9. The Main state machine with transitions

EB GUIDE Studio
Chapter 14. Tutorials

Page 307 of 471

Step 3
Select the transition from the Main state machine to FirstState.

Step 4
In the Properties component, in the Trigger combo box, enter goToFirstState and click Add event.

A new event is created.

Step 5
Select the transition to SecondState.

Step 6
In the Properties component, in the Trigger combo box, enter goToSecondState and click Add event.

A new event is created.

Connecting buttons and events

Now you define the following behavior: when a button is clicked, the transition to another state is triggered.
For this you use EB GUIDE Script.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, double-click LabelNextView.

Step 1.1
In the Properties component, go to the Widget feature properties category and click Add/Remove. The
Widget features dialog is displayed.

Step 1.2
Under Available widget features, expand the Input handling category and select Touch released.

Step 1.3
Click Accept.

The related widget feature properties are added to the Properties component.

Step 1.4
Next to the touchShortReleased property, click .

An EB GUIDE Script editor opens.

Step 1.5
Enter the following EB GUIDE Script that fires the goToSecondState event when the button is clicked:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

{

 fire ev:goToSecondState()

EB GUIDE Studio
Chapter 14. Tutorials

Page 308 of 471

 false

}

Step 1.6
Click Accept.

Step 2
In the Navigation component, double-click LabelGoBack.

Step 2.1
In the Properties component, go to the Widget feature properties category and click Add/Remove. The
Widget features dialog is displayed.

Step 2.2
Under Available widget features, expand the Input handling category and select Touch released.

Step 2.3
Click Accept.

The related widget feature properties are added to the Properties component.

Step 2.4
Next to the touchShortReleased property, click .

An EB GUIDE Script editor opens.

Step 2.5
Enter the following EB GUIDE Script that fires the goToFirstState event when the button is clicked:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

{

 fire ev:goToFirstState()

 false

}

Step 2.6
Click Accept.

Creating the FirstView entry animation

Enable the VTA component and create an animation that moves the button in from the right. To create an
animation, you need to define which property is animated, how long the animation lasts, where it starts, and
where it ends. In this tutorial only the x property is used.

Prerequisite:

■ You completed the previous instruction.

EB GUIDE Studio
Chapter 14. Tutorials

Page 309 of 471

Step 1
The VTA component is not visible in the default layout. You need to enable it.

In the command area click Layout > VTA (view transition animations).

The VTA component is displayed.

Step 2
In the Navigation component double-click FirstState.

Step 3
In the VTA component click and select Entry animation

The Entry animation table is displayed.

The Animation editor is displayed below the content area.

Step 4
Click and select Exit animation.

The Exit animation table is displayed.

Step 5
In the Animation editor in the drop-down list select Entry animation 1.

Step 6
Click and select Destination: FirstView. The Animation properties dialog is displayed.

Step 7
Click RectNextView, then x then Fast start curve and Accept.

A new animation is added to the Animated properties list.

Step 8
In the Properties component enter the following:

► In the start text box, enter 900.

► In the end text box, enter 290.

When you start the simulation you can see the button move in.

Creating the FirstView exit animation

Create an animation that moves the button out to the right.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Animation editor in the drop-down list select Exit animation 1.

EB GUIDE Studio
Chapter 14. Tutorials

Page 310 of 471

Step 2
Click and select Source: FirstView. The Animation properties dialog is displayed.

Step 3
Click RectNextView then x then Fast start curve and Accept.

A new animation is added to the Animated properties list.

Step 4
In the Properties component enter the following:

► In the duration text box, enter 500.

► In the start text box, enter 290.

► In the end text box, enter 800.

Creating the SecondView entry animation

Create an animation that moves the button in from the right.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component double-click SecondView.

SecondView is displayed in the content area.

Step 2
In the VTA tab click

Step 3
Add an Entry animation and an Exit animation.

The Animation editor is displayed below the content area.

Step 4
In the Animation editor, in the drop-down list, select Entry animation 2.

Step 5
Click and select Destination: SecondView. The Animation properties dialog is displayed.

Step 6
Click RectGoBack then x then Fast start curve and Accept.

A new animation is added to the Animated properties list.

Step 7
In the Properties component enter the following:

► In the start text box, enter 900.

EB GUIDE Studio
Chapter 14. Tutorials

Page 311 of 471

► In the end text box, enter 290.

Creating the SecondView exit animation

Create an animation that moves the button out to the right.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Animation editor, in the drop-down list, select Exit animation 2.

Step 2
Click and select Source: SecondView. The Animation properties dialog is displayed.

Step 3
Click RectGoBack then x then Fast start curve and Accept.

A new animation is added to the Animated properties list.

Step 4
In the Properties component enter the following:

► In the duration text box, enter 500.

► In the start text box, enter 290.

► In the end text box, enter 800.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

Click Go to the next view. The view changes and an animation is played.

Click Go back. The view changes back to the first view and an animation is played.

EB GUIDE Studio
Chapter 14. Tutorials

Page 312 of 471

14.10. Tutorial: Using script curves for animations
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

Use a script curve when you want to define your own curve for an animation. Defining your own curve can be
necessary when the other animation curves are not suitable or when you just want to define a custom curve.
In this tutorial you are going to create a simple model with two script curves for two animations. You are going
to create the following elements:

► A View state

► Two Rectangle widgets

► Two Animation widgets with script curves that animate the positions of the rectangle widgets

This results in a model with two rectangles. One rectangle moves down. The other moves to the side.

Figure 14.10. The rectangles with their movement direction

Approximate duration: 15 minutes.

Creating the first script curve

Prerequisite:

■ The Main state machine contains an Initial state and a View state called FirstState and a View called
FirstView.

■ The Initial state has a transition to FirstState.
■ The content area displays the FirstView View.

EB GUIDE Studio
Chapter 14. Tutorials

Page 313 of 471

Step 1
From the Toolbox component, drag a Rectangle into the View and rename it to BlueRectangle

Step 2
In the Properties component, set the fillColor to blue.

Step 3
From the Toolbox component, drag an Animation into the view and rename it to MoveAnimation.

Step 4
In the Datapool component, add a datapool item of type Float and rename it to xFloat.

Step 5
In the Navigation component, select BlueRectangle.

Step 6
In the Properties component, go to the User-defined properties category, and click .

A menu opens.

Step 7
In the menu, select Conditional script.

Conditional script 1 is added to the User-defined properties.

Step 8
Rename Conditional script 1 to StartBlueAnimation.

Step 9
Next to StartBlueAnimation, click .

The EB GUIDE Script editor opens.

Step 10
Enter the following script:

function(v:arg0::bool)

{

 f:animation_play(v:this->^->"MoveAnimation")

}

Step 11
In the Navigation component, select FirstView.

Step 12
In the Animation editor, next to the Animated properties click and select FirstView.

The Animation properties dialog opens.

Step 13
Under BlueRectangle, select the x property and then the Script curve

Step 14
Click Accept.

Script curve 1 is added to the Animation editor.

EB GUIDE Studio
Chapter 14. Tutorials

Page 314 of 471

Step 15
Rename Script curve 1 to BlueCurve.

Step 16
In the Properties component, next to the curve property click .

The EB GUIDE Script editor opens.

Step 17
Enter the following script:

function(v:diff::int, v:t_anim::int)

{

 dp:xFloat+=0.2

 f:floor(dp:xFloat*dp:xFloat)

}

Creating the second script curve

Prerequisite:

■ You have finished the previous instruction.

Step 1
From the Toolbox component, drag a Rectangle into FirstView and rename it to RedRectangle.

Step 2
In the Properties component, set the fillColor to red.

Step 3
In the Datapool component, add a datapool item of type Integer and rename it to 1_diff.

Step 4
Add another datapool item of type Integer and rename it to 2t_anim.

Step 5
Select RedRectangle.

Step 6
In the Properties component, go to the User-defined properties category, click and add a property of
type conditional script.

Conditional script 2 is added.

Step 7
Rename Conditional script 2 to StartRedAnimation.

Step 8
Next to StartRedAnimation click .

The EB GUIDE Script editor opens.

EB GUIDE Studio
Chapter 14. Tutorials

Page 315 of 471

Step 9
Enter the following script:

function(v:arg0::bool)

{

 f:animation_play(v:this->^->"MoveAnimation")

}

Step 10
In the Navigation component, select FirstView.

Step 11
In the Animation editor, next to the Animated properties click and select FirstView.

The Animation properties dialog opens.

Step 12
Under RedRectangle, select the y property and then the Script curve.

Step 13
Click Accept.

Script curve 2 is added to the Animation editor.

Step 14
Rename Script curve 2 to RedCurve.

Step 15
In the Properties component, next to the curve property, click .

The EB GUIDE Script editor opens.

Step 16
Enter the following script:

function(v:diff::int, v:t_anim::int)

{

 dp:"1_diff"=v:diff

 dp:"2t_anim"=v:t_anim

 v:t_anim/2::int

}

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

EB GUIDE Studio
Chapter 14. Tutorials

Page 316 of 471

Step 2
To start the simulation, click in the command area.

The animation is played at the start of the simulation.

14.11. Tutorial: Creating a horizontal progress bar
TIP Default window layout

All instructions and screenshots use the default window layout. If you want to follow the
instructions, we recommend to set the EB GUIDE Studio or EB GUIDE Monitor window to
default layout by selecting Layout > Reset to default layout.

The following instructions guide you through the process of modeling a progress bar as shown below.

Figure 14.11. Progress bar

You can also have a look at the progress bar template in the widget template library. See https://
www.elektrobit.com/ebguide/examples/.

Approximate duration: 10 minutes

Adding the widgets

The following instructions guide you through the process of adding widgets for the progress bar.

Prerequisite:

■ The Main state machine contains an Initial state and a View state.
■ The Initial state has a transition to the View state.
■ The content area displays a View.

Step 1
In the Templates component, click and then select Container.

A template is created that contains a Container.

Step 2
Rename the template to T_ProgressBar.

https://www.elektrobit.com/ebguide/examples/
https://www.elektrobit.com/ebguide/examples/

EB GUIDE Studio
Chapter 14. Tutorials

Page 317 of 471

Step 3
Rename the Container to ProgressBar_Container.

Step 4
Drag a Rectangle into the Container and rename it to Background_Rectangle.

Step 5
Drag another Rectangle into the Container and rename it to Progress_Rectangle.

This Rectangle visualizes the progress of the operation.

Step 6
Drag a Label into the Container and rename it to Percentage_Text.

Entering the properties for the progress bar

The following instructions guide you through the process of configuring the properties and adding scripts to
the widgets.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Templates component, select ProgressBar_Container.

Step 2
Add the properties width, height, x, y to the template interface.

To add a property to the template interface, in the Properties component, click the button next to the

property. In the menu, click Add to template interface. The icon is displayed next to the property.

Step 3
In the Properties component, go to the User-defined properties category and click and select Integer.

A user-defined property of type Integer is added to the Container.

Step 4
Rename the property to progress.

Step 5
Add progress to the template interface.

Step 6
In the Templates component, select Background_Rectangle.

Step 7
Link the width to the width property of ProgressBar_Container.

To link a property to another property, in Properties component, click the button next to the property. In
the menu, click Add link to widget property.

EB GUIDE Studio
Chapter 14. Tutorials

Page 318 of 471

A dialog opens.

Step 8
In the dialog, select the width property of ProgressBar_Container and click Accept.

Step 9
Link the height property of Background_Rectangle to the height property of ProgressBar_Contain-
er.

Step 10
In the Templates component, select Progress_Rectangle.

Step 11
Link the height property to the height property of ProgressBar_Container.

Step 12
Set the fillColor to green.

Step 13
Next to the width property click and then select Convert to script.

The width property defines the width as a percentage of the width of ProgressBar_Container.

Step 14
Click .

An EB GUIDE Script editor opens.

Step 15
Enter the following EB GUIDE Script in the Read section:

function()

{

 v:this->^.width * v:this->^.progress / 100

}

This script divides the value of the progress property by 100.

Step 16
Click Add available triggers to list.

Two triggers for width and progress are added.

Step 17
In the Templates component, select Percentage_Text.

Step 18
Link the width and height properties to the width and height of ProgressBar_Container.

Step 19
Set the horizontalAlign to center (1).

Step 20
Convert the text property into a script.

The text will display the percentage of the width of the container.

EB GUIDE Studio
Chapter 14. Tutorials

Page 319 of 471

Step 21
Click .

An EB GUIDE Script editor opens.

Step 22
In the Read section, enter the following script:

function()

{

 f:int2string(v:this->^.progress) + "%"

}

This script converts the percentage value into a string and adds the % character after the percentage num-
ber.

Step 23
Click Add available triggers to list.

The trigger for progress is added.

Step 24
Set the x and y properties of all widgets in the template to 0.

Step 25
In the Navigation component, double-click the View.

Step 26
From the Toolbox component, drag T_ProgressBar into the content area.

The template is added to the View. Now you can add an Animation to it to show the dynamic progress of an
operation.

Animating the progress

The following instructions guide you through the process of animating the progress bar, so that you can see
better what happens when you change the percentage value.

Prerequisite:

■ You completed the previous instruction.
■ The content area displays the View.

Step 1
Drag an Animation into the View.

Step 2
Rename the Animation to Loading_Animation.

EB GUIDE Studio
Chapter 14. Tutorials

Page 320 of 471

Step 3
In the Properties component, go to the User-defined properties category, click , and select Condition-
al script.

Step 4
Rename the conditional script to animateProgress.

Step 5
Next to the conditional script property click .

An EB GUIDE Script editor opens.

Step 6
In the On trigger section, enter the following script:

function(v:arg0::bool)

{

 f:animation_play(v:this)

 false

}

Step 7
In the Navigation component, double-click Loading_Animation to open the Animation editor.

Step 8
In the Animation editor, next to Animated properties click and select View 1.

The Animation properties dialog opens.

Step 9
Under T_ProgressBar 1, select the progress property and then Linear interpolation curve.
Click Accept.

Step 10
In the Properties component, set end property to 100.

The progress animation will stop when the progress indicator reaches 100%.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

EB GUIDE Studio
Chapter 15. References

Page 321 of 471

15. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

For EB GUIDE GTF specific parameters, properties, and identifiers, see EB GUIDE GTF user guide.

15.1. Command line options

15.1.1. Command line options for Studio.Console.exe
The following table lists command line options available in EB GUIDE Studio for Studio.Console.exe and
explains their meaning. Undefined command line options do not prompt error messages.

The general syntax of a command line is as follows:

Studio.Console.exe <option> "project_name.ebguide"

Table 15.1. Command line options for Studio.Console.exe

Option Description

-c <logfile dir> Validates an EB GUIDE model and writes a logfile to the directory spec-
ified as logfile dir

-e <destination dir> Exports an EB GUIDE model to the destination directory destina-
tion dir

Use with the command line option -p, see an example below.

-h Shows the help message

-l <language file> Imports one language file that is saved as language file (.xliff)
into an EB GUIDE model and creates a logfile

-m Allows the migration of the project

-o Opens the project file

-p <profile> Uses the profile specified as profile during the export

-s <skin_set> Defines the skin set that defines which skins are exported. If you do not
select an export set, all of the skins in the EB GUIDE model are export-
ed.

-t <language_set> Defines the language set that defines which languages are exported. If
you do not select an export set, all of the languages in the EB GUIDE
model are exported.

EB GUIDE Studio
Chapter 15. References

Page 322 of 471

Example 15.1.
Command line options

The command line Studio.Console.exe -e "C:/temp/exported_project" -p "tar-
get_profile" -o "project_name.ebguide" exports project_name.ebguide by using the
profile target_profile to the specified destination directory C:/temp/exported_project.

For instructions, see the following:

► section 10.4.1.2, “Validating an EB GUIDE model using command line”

► section 10.5.2, “Exporting an EB GUIDE model using command line”

► section 10.8.2.2, “Importing language-dependent texts using command line”

15.1.2. Command line options for Monitor.Console.exe
The following table lists command line options available in EB GUIDE Monitor for Monitor.Console.exe
and explains their meaning. Undefined command line options do not prompt error messages.

The general syntax of a command line is as follows:

Monitor.Console.exe <option> "monitor.cfg"

Table 15.2. Command line options for Monitor.Console.exe

Option Description

-c <host:port> Connects an EB GUIDE model to a running EB GUIDE GTF process

-h Shows the help message

-l <language> Sets the language of EB GUIDE Monitor to one of the following: en for
English, ja for Japanese, ko for Korean, zh-cn for Chinese (Simpli-
fied).

-o Opens the configuration file monitor.cfg

-s Executes all methods in a defined script

Example 15.2.
Command line options

The command line Monitor.Console.exe -l ko sets the language of EB GUIDE Monitor to Kore-
an.

For instructions on how to use EB GUIDE Monitor, see chapter 11, “Working with EB GUIDE Monitor“.

EB GUIDE Studio
Chapter 15. References

Page 323 of 471

15.2. Datapool items
Table 15.3. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

15.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

15.3.1. Boolean
Boolean properties can have the values true and false.

Available operations are as follows:

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

It is possible to store boolean properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.2. Color
Colors are stored in the RGBA8888 format.

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

EB GUIDE Studio
Chapter 15. References

Page 324 of 471

It is possible to store color properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.3. Conditional script
Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections:

► In the Triggers section, you can select an event, datapool item, or widget property that triggers the exe-
cution of the On trigger script.

► In the On trigger section, you can add an EB GUIDE Script that is called on initialization, an event trigger,
or after a value update of a datapool item or a widget property.

The parameter of the On trigger EB GUIDE Script indicates the cause for the execution of the script.

The arg0 refers to the fact whether the EB GUIDE Script is executed during initialization or by a trigger.
Consider the following:

► If the EB GUIDE Script is executed during initialization, arg0 is true.

► If the EB GUIDE Script is executed by a trigger, arg0 is false.

The return value of the On trigger EB GUIDE Script controls change notifications for the property.

The return value of the On trigger EB GUIDE Script regulates whether the EB GUIDE Script must produce
a notification or not. Consider the following:

► If the return value is true, a notification is generated.

► If the return value is false, a notification is not generated.

To be able to execute the On trigger script, the conditions are to be fulfilled during the following:

► On initialization, for example, in case of datapool items during EB GUIDE model start-up, or in case of
widget properties during the view creation.

► On processing an event from the trigger script. The EB GUIDE Script is executed once for each matching
event.

► On processing the datapool notifications of one or more items from the trigger script. Multiple notifications
may be processed at once.

► On processing the notifications of one or more widget properties from the trigger script. Multiple notifica-
tions may be processed at once.

15.3.4. Float
Float-point number data type represents a single-precision 32-bit IEEE 754 value.

EB GUIDE Studio
Chapter 15. References

Page 325 of 471

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.5. Font
To add a font to an EB GUIDE project, copy the font file to: $GUIDE_PROJECT_PATH/<project name>/
resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.6. Function () : bool
By means of Function () : bool you can create an own function.

The available operation for this data type is a read/run operation for all properties.

15.3.7. Ibl
Ibl is a data format that stores lighting information generated by the IBLGenerator.

EB GUIDE Studio
Chapter 15. References

Page 326 of 471

To add an ibl to an EB GUIDE project, copy the .ebibl file to: $GUIDE_PROJECT_PATH/<project name>/
resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store ibl properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.8. Image
To add an image to an EB GUIDE project, copy the image file to: $GUIDE_PROJECT_PATH/<project
name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.9. Integer
EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 15.3.12, “List”.

EB GUIDE Studio
Chapter 15. References

Page 327 of 471

15.3.10. Mesh
Mesh defines the shape of the 3D object.

To add a mesh to an EB GUIDE project, copy the .ebmesh file to: $GUIDE_PROJECT_PATH/<project
name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store mesh properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.11. String
EB GUIDE supports character strings, for example Hello world.

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=Aa=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 15.3.12, “List”.

15.3.12. List
EB GUIDE supports a list of values with the same data type.

The following list types are available:

► Boolean list

► Color list

► Float list

EB GUIDE Studio
Chapter 15. References

Page 328 of 471

► Font list

► Ibl list

► Image list

► Integer list

► Mesh list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

► length: (length)

► element accessor: ([])

15.4. EB GUIDE Script

15.4.1. EB GUIDE Script keywords
The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Table 15.4. EB GUIDE Script keywords

Keyword Description

cancel_fire Cancels an event that is fired with fire_delayed

color: A color parameter follows, for example {0,255,255}

dp: A datapool item follows

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows

f: A user-defined function follows

false A boolean literal value

fire Fires an event

EB GUIDE Studio
Chapter 15. References

Page 329 of 471

Keyword Description

fire_delayed Fires an event after a specified time. The time is specified in milliseconds.

function Declares a function

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

l: A language follows. Is used on f:setLanguage(l:English,true).

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a type list, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

s: A skin follows. Is used on f:setSkin(s:mySkin, true).

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows

while Repeats a statement as long as the condition is true

15.4.2. EB GUIDE Script operator precedence
The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 15.5. EB GUIDE Script operator precedence

Operator Associativity

(()), ({ }) none

([]) none

(->) left

(.) none

EB GUIDE Studio
Chapter 15. References

Page 330 of 471

Operator Associativity

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

(;) left

15.4.3. EB GUIDE Script standard library
The following chapter provides a description of all EB GUIDE Script functions.

15.4.3.1. EB GUIDE Script functions A - B

15.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 15.6. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

15.4.3.1.2. absf

The function returns the absolute value of the float number x.

EB GUIDE Studio
Chapter 15. References

Page 331 of 471

Table 15.7. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

15.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

Table 15.8. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

15.4.3.1.4. animation_before

The function checks if a running animation has passed a given point in time.

Table 15.9. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has not yet passed the point in time.

15.4.3.1.5. animation_beyond

The function checks if a running animation has passed a given point in time.

Table 15.10. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

15.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

EB GUIDE Studio
Chapter 15. References

Page 332 of 471

Table 15.11. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 15.12. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 15.13. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.9. animation_pause

The function pauses an animation.

Table 15.14. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.10. animation_play

The function starts or continues an animation.

EB GUIDE Studio
Chapter 15. References

Page 333 of 471

Table 15.15. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

15.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 15.16. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

15.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 15.17. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

15.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

Table 15.18. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

15.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

EB GUIDE Studio
Chapter 15. References

Page 334 of 471

Table 15.19. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

15.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 15.20. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

15.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 15.21. Parameters of atan2i

Parameter Type Description

y integer Argument y

x integer Argument x

<return> float The return value

15.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 15.22. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

<return> float The return value

EB GUIDE Studio
Chapter 15. References

Page 335 of 471

15.4.3.1.18. bool2string

The function converts a boolean variable to either the string true or false.

Table 15.23. Parameters of bool2string

Parameter Type Description

x boolean The value to convert to a string

<return> string true in case x was true, and false otherwise

15.4.3.2. EB GUIDE Script functions C - H

15.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 15.24. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 15.25. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

stack Popupstack ID The dynamic state machine list

sm State machine ID The dynamic state machine

priority integer The priority of the dynamic state machine in the list. Note that a
higher number means a higher priority.

15.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 15.26. Parameters of character2unicode

Parameter Type Description

str string The input string

EB GUIDE Studio
Chapter 15. References

Page 336 of 471

Parameter Type Description

<return> integer The character as Unicode value

0 in case of errors

15.4.3.2.4. clampf

The function clamps a floating-point value to a defined range [xmin, xmax], this means the function computes
max (xmin, min (xmax, x)).

Table 15.27. Parameters of clampf

Parameter Type Description

x float The value to clamp

xmin float The minimum range

xmax float The maximum range

<return> float The x value clamped to the [xmin, xmax] range

15.4.3.2.5. clampi

The function clamps an integer value to a defined range [xmin, xmax], this means the function computes
max (xmin, min (xmax, x)).

Table 15.28. Parameters of clampi

Parameter Type Description

x int The value to clamp

xmin int The minimum range

xmax int The maximum range

<return> int The x value clamped to the [xmin, xmax] range

15.4.3.2.6. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 15.29. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

EB GUIDE Studio
Chapter 15. References

Page 337 of 471

15.4.3.2.7. color2string

The function converts a color to eight hexadecimal values.

Table 15.30. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color channels
red, green, blue and alpha.

For example, opaque pure red is converted to #ff0000ff, semi-transparent pure green
is converted to #00ff007f.

15.4.3.2.8. cosf

The function returns the cosine of x, where x is given in radians.

Table 15.31. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

15.4.3.2.9. deg2rad

The function converts an angle from degrees to radians.

Table 15.32. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

<return> float The return value

15.4.3.2.10. expf

The function returns the value of e, the base of natural logarithms, raised to the power of x.

EB GUIDE Studio
Chapter 15. References

Page 338 of 471

Table 15.33. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

15.4.3.2.11. float2string

The function converts simple float to string.

Table 15.34. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

15.4.3.2.12. floor

The function returns the largest integral value not greater than the parameter value.

Table 15.35. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.2.13. fmod

The function computes the remainder of the floating-point division x/y.

Table 15.36. Parameters of fmod

Parameter Type Description

x float The floating point numerator

y float The floating point denominator

<return> float The remainder of the division x/y

15.4.3.2.14. focusMoveTo

The function forces the focus manager to forward the focus to a dedicated focusable element.

EB GUIDE Studio
Chapter 15. References

Page 339 of 471

Table 15.37. Parameters of focusMoveTo

Parameter Type Description

widget widget The widget on which the focus is moved.

<return> void

15.4.3.2.15. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 15.38. Parameters of focusNext

Parameter Type Description

<return> void

15.4.3.2.16. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 15.39. Parameters of focusPrevious

Parameter Type Description

<return> void

15.4.3.2.17. format_float

The function formats a float value.

Table 15.40. Parameters of format_float

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the num-
ber of significant digits or the number of digits after the dec-
imal-point character .

EB GUIDE Studio
Chapter 15. References

Page 340 of 471

Parameter Type Description
► type: Required conversion specifier character that deter-

mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

useDotAsDelim-

iter

boolean Defines the delimiter sign.

Possible values:

► true: Use a dot as delimiter.

► false: Use a comma as delimiter.

value float The number to format

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_float are f, a, g and e, and not more than one
type character is allowed.

15.4.3.2.18. format_int

The function formats an integer value.

Table 15.41. Parameters of format_int

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the mini-
mum number of digits that are printed.

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

value int The number to format

EB GUIDE Studio
Chapter 15. References

Page 341 of 471

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_int are d, i, o, x and u, and not more than one
type character is allowed.

15.4.3.2.19. frac

The function computes the fractional part of a floating-point value. The return value lies in the interval [0, 1].
For example, the function returns 0.5 for the parameter value x=1.5 or x=-1.5.

Table 15.42. Parameters of frac

Parameter Type Description

x float The floating point value

<return> float The fractional part of the floating-point value.

15.4.3.2.20. getAllLanguages

The function fills a datapool item with a list of language UIDs from all models or for the current model only.

Table 15.43. Parameters of getAllLanguages

Parameter Type Description

itemId dp_id The datapool item ID where the language UIDs are stored. The
datapool item type must be string list.

isCoreScope boolean Specifies the scope.

Possible values:

► true: Applies to all models

► false: Applies only to the current model

<return> void

15.4.3.2.21. getAllSkins

The function fills a datapool item with a list of skin UIDs from the core or model scope.

EB GUIDE Studio
Chapter 15. References

Page 342 of 471

Table 15.44. Parameters of getAllSkins

Parameter Type Description

itemId dp_id The datapool item ID where the skin UIDs are stored. The dat-
apool item type must be string list.

isCoreScope boolean Specifies the scope.

► true: Applies to all models

► false: Applies only to the current model

<return> void

15.4.3.2.22. getConfigItem

The function fills a datapool item with a configuration item value.

Table 15.45. Parameters of getConfigItem

Parameter Type Description

itemId dp_id The datapool ID where the configuration item is to be stored

name string The configuration item name

<return> boolean True if datapool item is successfully filled with a configuration
item value

15.4.3.2.23. getFontAscender

The function returns the ascender of the font passed as parameter.

Table 15.46. Parameters of getFontAscender

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The ascender of the font

15.4.3.2.24. getFontDescender

The function returns the descender of the font passed as parameter.

EB GUIDE Studio
Chapter 15. References

Page 343 of 471

Table 15.47. Parameters of getFontDescender

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The descender of the font

15.4.3.2.25. getFontLineGap

The function returns the line gap of the font passed as parameter.

Table 15.48. Parameters of getFontLineGap

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The line gap of the font

15.4.3.2.26. getImageHeight

The function returns the height in pixels of an image passed as parameter.

Table 15.49. Parameters of getImageHeight

Parameter Type Description

x Image widget The widget to evaluate

<return> integer The height in pixels of an image

15.4.3.2.27. getImageWidth

The function returns the width in pixels of an image passed as parameter.

Table 15.50. Parameters of getImageWidth

Parameter Type Description

x Image widget The widget to be evaluated

<return> integer The width in pixels of an image

EB GUIDE Studio
Chapter 15. References

Page 344 of 471

15.4.3.2.28. getLabelTextHeight

The function returns the total height in pixels of a label's text. The total height is calculated using the formula:

total_height = line_height * line_count + line_spacing * (line_count - 1)

The line_spacing is calculated as the sum of the font lineGap property and the lineOffset property of
the Multiple lines widget feature. Both font lineGap and the lineOffset property can be negative.

Table 15.51. Parameters of getLabelTextHeight

Parameter Type Description

widget Label widget The widget to be evaluated

<return> integer The height in pixels of the text

15.4.3.2.29. getLabelTextWidth

The function returns the width of the longest line of a label's text.

Table 15.52. Parameters of getLabelTextWidth

Parameter Type Description

widget Label widget The widget to evaluate

<return> integer The width in pixels of the longest line of the text

15.4.3.2.30. getLanguage

The function returns the current language from all models or from the current model only.

Table 15.53. Parameters of getLanguage

Parameter Type Description

isCoreScope boolean Specifies the scope.

► true: Applies to all models

► false: Applies only to the current model

<return> string The UID of the language.

15.4.3.2.31. getLanguageName

The function returns the name of the specified language UID.

EB GUIDE Studio
Chapter 15. References

Page 345 of 471

Table 15.54. Parameters of getLanguageName

Parameter Type Description

languageUid string Language for which the name is requested.

<return> string The name of the language.

15.4.3.2.32. getLanguageTag

The function returns the tag of the specified language UID. The language tag consists of a language code that
follows the ISO 639 standards for representing language names and a language region that follows ISO 3166-1
standards for representing country codes. For example, the en-US language tag means English language
in region United States.

Table 15.55. Parameters of getLanguageTag

Parameter Type Description

languageUid string Language for which the tag is requested.

<return> string The tag of the language.

15.4.3.2.33. getLineCount

The function returns the number of lines of a label's text.

Table 15.56. Parameters of getLineCount

Parameter Type Description

widget Label widget The widget to be evaluated

<return> integer The number of lines of the text

15.4.3.2.34. getLineHeight

The function returns the height of a line written with the font passed as parameter.

Table 15.57. Parameters of getLineHeight

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

EB GUIDE Studio
Chapter 15. References

Page 346 of 471

Parameter Type Description

<return> integer The height of a line written with the specified font

15.4.3.2.35. getProductString

The function returns a string with the product name of EB GUIDE GTF.

Table 15.58. Parameters of getProductString

Parameter Type Description

<return> string The product name

15.4.3.2.36. getSkin

The function returns the current skin from all models or from the current model only.

Table 15.59. Parameters of getSkin

Parameter Type Description

isCoreScope boolean Specifies the scope.

► true: Applies to all models

► false: Applies only to the current model

<return> string The UID of the skin.

15.4.3.2.37. getSkinName

The function returns the name of the specified skin UID.

Table 15.60. Parameters of getSkinName

Parameter Type Description

skinUid string Skin for which the name is required.

<return> string The name of the skin.

15.4.3.2.38. getTextHeight

The function returns the height of a text with regard to its font resource. The height represents the sum of the
font ascender and descender.

EB GUIDE Studio
Chapter 15. References

Page 347 of 471

Table 15.61. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

If the size of the font is 0 or negative, the function returns 0.

NOTE getTextHeight
The function always calculates the height value assuming that the text has a single line.

15.4.3.2.39. getTextLength

The function returns the number of characters in a text.

Table 15.62. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

NOTE Escape sequences
EB GUIDE Script does not resolve escape sequences like \n and counts every character.
For example, for the text Label\n the getTextLength function returns 7.

15.4.3.2.40. getTextWidth

The function returns the width of a text with regard to its font resource.

Table 15.63. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

If the size of the font is 0 or negative, the function returns 0.

EB GUIDE Studio
Chapter 15. References

Page 348 of 471

NOTE getTextWidth
The function always calculates the width value assuming that the text has a single line.

15.4.3.2.41. getVersionString

The function returns a string with the version number of EB GUIDE GTF.

Table 15.64. Parameters of getVersionString

Parameter Type Description

<return> string The version string

15.4.3.2.42. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 15.65. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

15.4.3.2.43. hsba2color

The function converts an HSB/HSV color to an EB GUIDE GTF color.

Table 15.66. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting EB GUIDE GTF color with the alpha value applied

EB GUIDE Studio
Chapter 15. References

Page 349 of 471

15.4.3.3. EB GUIDE Script functions I - R

15.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 15.67. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

15.4.3.3.2. int2string

The function converts a simple integer to string.

Table 15.68. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

15.4.3.3.3. isDynamicStateMachineActive

The function checks if a dynamic state machine is contained in a dynamic state machine list.

Table 15.69. Parameters of isDynamicStateMachineActive

Parameter Type Description

stack Popupstack ID The dynamic state machine list

sm State machine ID The dynamic state machine

15.4.3.3.4. isWidgetOnActiveStatemachine

The function checks if the widget belongs to an active state machine.

Table 15.70. Parameters of isWidgetOnActiveStatemachine

Parameter Type Description

widget widget The widget to be evaluated

<return> boolean True if the widget belongs to an active state machine

EB GUIDE Studio
Chapter 15. References

Page 350 of 471

15.4.3.3.5. language

Deprecated: Use setLanguage instead.

The function switches the language for all models. The operation is performed synchronous, but the model
reacts asynchronously on this change.

Table 15.71. Parameters of language

Parameter Type Description

language string The language to switch to, for example
f:language(l:German)

<return> void

15.4.3.3.6. lerp

The function calculates the linear interpolation of two values x and y using the formula (1-s) * x + s * y

Table 15.72. Parameters of lerp

Parameter Type Description

x float The first value

y float The second value

s float A value that linearly interpolates between the x and y values

<return> float Returns the linear interpolation (1-s) * x + s * y

15.4.3.3.7. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 15.73. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

15.4.3.3.8. localtime_hour

The function extracts the hours from the local time of a system time value.

EB GUIDE Studio
Chapter 15. References

Page 351 of 471

Table 15.74. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

15.4.3.3.9. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 15.75. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

15.4.3.3.10. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 15.76. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted month

15.4.3.3.11. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 15.77. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

15.4.3.3.12. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

EB GUIDE Studio
Chapter 15. References

Page 352 of 471

Table 15.78. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

15.4.3.3.13. localtime_year

The function extracts the year from the local time of a system time value.

Table 15.79. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

15.4.3.3.14. log10f

The function returns the base 10 logarithm of x.

Table 15.80. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.3.15. logf

The function returns the natural logarithm of x.

Table 15.81. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.3.16. maxf

The function computes the maximum of two floating-point values.

EB GUIDE Studio
Chapter 15. References

Page 353 of 471

Table 15.82. Parameters of maxf

Parameter Type Description

x float The first value

y float The second value

<return> float The maximum of x and y

15.4.3.3.17. maxi

The function computes the maximum of two integer values.

Table 15.83. Parameters of maxi

Parameter Type Description

x int The first value

y int The second value

<return> int The maximum of x and y

15.4.3.3.18. minf

The function computes the minimum of two floating-point values.

Table 15.84. Parameters of minf

Parameter Type Description

x float The first value

y float The second value

<return> float The minimum of x and y

15.4.3.3.19. mini

The function computes the minimum of two integer values.

Table 15.85. Parameters of mini

Parameter Type Description

x int The first value

y int The second value

<return> int The minimum of x and y

EB GUIDE Studio
Chapter 15. References

Page 354 of 471

15.4.3.3.20. nearbyint

The function rounds to nearest integer.

Table 15.86. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.3.21. popDynamicStateMachine

The function removes the dynamic state machine from a dynamic state machine list.

Table 15.87. Parameters of popDynamicStateMachine

Parameter Type Description

stack Popupstack ID The dynamic state machine list

sm State machine ID The dynamic state machine

15.4.3.3.22. powf

The function returns the value of x raised to the power of y.

Table 15.88. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

15.4.3.3.23. pushDynamicStateMachine

The function inserts a dynamic state machine in a dynamic state machine list.

Table 15.89. Parameters of pushDynamicStateMachine

Parameter Type Description

stack Popupstack ID The dynamic state machine list

sm State machine ID The dynamic state machine

priority integer The priority of the dynamic state machine in the list. Note that a
higher number means a higher priority.

EB GUIDE Studio
Chapter 15. References

Page 355 of 471

15.4.3.3.24. rad2deg

The function converts an angle form radians to degree.

Table 15.90. Parameters of rad2deg

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.3.25. rand

The function gets a random value between 0 and 231-1.

Table 15.91. Parameters of rand

Parameter Type Description

<return> integer A random number between 0 and 231-1

15.4.3.3.26. rgba2color

The function converts from RGB color space to EB GUIDE GTF color.

Table 15.92. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to EB GUIDE GTF
color, with the alpha value applied

15.4.3.3.27. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 15.93. Parameters of round

Parameter Type Description

value float The value to round

EB GUIDE Studio
Chapter 15. References

Page 356 of 471

Parameter Type Description

<return> integer The rounded value

15.4.3.4. EB GUIDE Script functions S - W

15.4.3.4.1. saturate

The function clamps a floating-point value to [0, 1] range, i.e. the function computes max (0, min (1, x))
and acts as a shorthand notation for clampf(0, 1, x)

Table 15.94. Parameters of saturate

Parameter Type Description

x float The value to clamp

<return> float The x value clamped to the [0, 1] range

15.4.3.4.2. seed_rand

The function sets the seed of the random number generator.

Table 15.95. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

15.4.3.4.3. setLanguage

The function switches the language for all models or for the current model only. The operation is performed
synchronous, but the model reacts asynchronously on this change.

Table 15.96. Parameters of setLanguage

Parameter Type Description

languageUid string The language to switch to, for example
f:setLanguage(l:German, true).

isCoreScope boolean Specifies the scope.

► true: Applies to all models

EB GUIDE Studio
Chapter 15. References

Page 357 of 471

Parameter Type Description
► false: Applies only to the current model

<return> void

15.4.3.4.4. setSkin

The function switches the skin for all models or for the current model only. The operation is performed synchro-
nous, but the model reacts asynchronously on this change.

Table 15.97. Parameters of setSkin

Parameter Type Description

skinUid string The skin to switch to, for example f:setSkin(s:mySkin,
true).

isCoreScope boolean Specifies the scope.

► true: Applies to all models

► false: Applies only to the current model

<return> void

15.4.3.4.5. shutdown

The function requests the framework to shutdown the program.

15.4.3.4.6. sinf

The function returns the sine of x, where x is given in radians.

Table 15.98. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.4.7. skin

Deprecated: Use setSkin instead.

The function switches the skin for all models. The operation is performed synchronous, but the model reacts
asynchronously on this change.

EB GUIDE Studio
Chapter 15. References

Page 358 of 471

Table 15.99. Parameters of skin

Parameter Type Description

skin string The skin to switch to, for example f:skin(s:mySkin)

<return> void

15.4.3.4.8. smoothstep

The function computes the smooth hermite interpolation 3z² - 2z³ with z = (x – xmin) / (xmax –
xmin) in case it is in range [xmin, xmax] and 0 otherwise. The function returns a value in the interval [0,1].

Table 15.100. Parameters of smoothstep

Parameter Type Description

xmin float The xmin value

xmax float The xmax value

x float The value to be interpolated

<return> float Returns the hermite interpolation 3z² - 2z³ with z = (x-
xmin) / (xmax-xmin)

15.4.3.4.9. sqrtf

The function returns the non-negative square root of x.

Table 15.101. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.4.10. string2float

The function converts the initial part of a string to float.

The expected form of the initial part of the string is as follows:

1. Optional leading white space

2. Optional plus ('+') or minus ('-') sign

3. One of the following:

► Decimal number

EB GUIDE Studio
Chapter 15. References

Page 359 of 471

► Hexadecimal number

► Infinity

► NAN (not-a-number)

Table 15.102. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

15.4.3.4.11. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 15.103. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

15.4.3.4.12. string2string

The function is used to truncate a string to a given number of characters.

Table 15.104. Parameters of string2string

Parameter Type Description

str string The string to truncate

len integer The maximum length of the string

<return> string The truncated string

15.4.3.4.13. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns abc.

► substring("abc", 0, -2) returns ab.

► substring ("abcd", 1, 3) returns bc.

EB GUIDE Studio
Chapter 15. References

Page 360 of 471

Table 15.105. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

endIndex integer The first character index that is not part of the result

<return> string The language string

15.4.3.4.14. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 15.106. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

15.4.3.4.15. system_time_ms

The function gets the current system time in milliseconds.

Table 15.107. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

15.4.3.4.16. tanf

The function returns the tangent of x, where x is given in radians.

Table 15.108. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.4.17. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

EB GUIDE Studio
Chapter 15. References

Page 361 of 471

Table 15.109. Parameters of trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

15.4.3.4.18. trace_string

The function writes a string to the trace log and the connection log.

Table 15.110. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

15.4.3.4.19. transformToScreenX

The function takes a widget and a local coordinate and returns x-position in the screen-relative world coordinate
system.

Table 15.111. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The x-position of the screen coordinate

15.4.3.4.20. transformToScreenY

The function takes a widget and a local coordinate and returns y-position of a position in the screen-relative
world coordinate system.

Table 15.112. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

EB GUIDE Studio
Chapter 15. References

Page 362 of 471

Parameter Type Description

<return> integer The y-position of the screen coordinate

15.4.3.4.21. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x-position
in the widget-relative local coordinate system.

Table 15.113. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The x-position of the local coordinate

15.4.3.4.22. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y-position
in the widget-relative local coordinate system.

Table 15.114. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The y-position of the local coordinate

15.4.3.4.23. trunc

The function rounds to the nearest integer value, always towards zero.

Table 15.115. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

EB GUIDE Studio
Chapter 15. References

Page 363 of 471

15.4.3.4.24. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 15.116. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

<return> integer The number of child widgets

15.5. Events
Table 15.117. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

15.5.1. Decimal codes for key events
Table 15.118. Decimal codes of numpad keys

Numpad key Decimal code

0 5

1 6

2 7

3 8

4 9

5 10

6 11

7 12

8 13

9 14

EB GUIDE Studio
Chapter 15. References

Page 364 of 471

Table 15.119. Decimal codes of function keys

Function key Decimal code

F1 18

F2 19

F3 20

F4 21

F5 22

F6 23

F7 24

F8 25

F9 26

F10 27

F11 28

F12 29

Table 15.120. Decimal codes of ASCII keys

ASCII key Decimal code

Space 32

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

EB GUIDE Studio
Chapter 15. References

Page 365 of 471

ASCII key Decimal code

p 112

q 113

r 114

s 115

t 116

u 117

v 118

w 119

x 120

y 121

z 122

15.6. Buttons and icons
The following tables list icons that are used in EB GUIDE Studio and EB GUIDE Monitor and explain their
meaning.

Table 15.121. General icons

General icons Description

Undo

Redo

Save

Validates the project.

Starts the simulation.

Stops the simulation.

Opens and closes the project center.

Adds an element, for example, an event, a datapool item, or a state machine.

Closes a component or a tab.

Indicates a successful operation.

EB GUIDE Studio
Chapter 15. References

Page 366 of 471

General icons Description

Indicates a piece of information.

Table 15.122. Project center icons

Project center icons Description

Indicates the tab where a new project can be created.

Indicates the tab where an existing project can be opened.

Indicates the tab where several project options can be configured, such as, the
model interface, event groups, or languages and skins.

Indicates the tab where you can create an export of the EB GUIDE model.

Indicates the tab where you can access the user documentation.

Indicates the tab where you can change the user interface language.

Indicates the tab where you can see which plug-ins were loaded.

Imports the project interface.

Exports the project interface.

Table 15.123. Project editor icons

Project editor icons Description

Hides a component.

Shows a hidden component.

Synchronizes content area and the Navigation or Templates component.

Opens a property-related context menu.

The button's colors listed below indicate the following:

 Property is local.

 Property is linked to another property.

 Property is linked to a datapool item.

EB GUIDE Studio
Chapter 15. References

Page 367 of 471

Project editor icons Description

 Property value is equal to template value.

 Datapool item is skin-dependent.

 Datapool item is language-dependent.

Opens the EB GUIDE Script editor.

Opens namespace options or shows selected namespace.

Shows all namespaces.

Includes sub-namespaces.

Opens the settings.

Indicates a datapool item.

Indicates a transition.

Indicates a dynamic state machine list.

Indicates an entry action.

Indicates an exit action.

Indicates an internal transition.

Indicates a template.

Jumps to the template of this widget.

Filters search results or list elements.

Indicates a Photoshop file.

Indicates that something changed in the widget feature properties.

Indicates a trigger list.

 Toggles grouping by model interface.

Table 15.124. State icons

State icons Description

Indicates a choice state.

Indicates a deep history state.

EB GUIDE Studio
Chapter 15. References

Page 368 of 471

State icons Description

Indicates a final state.

Indicates an initial state.

Indicates a state machine.

Indicates a shallow history state.

Indicates a view state.

Table 15.125. Basic widget icons

Basic widget icons Description

Indicates an alpha mask.

Indicates a container.

Indicates a custom widget.

Indicates an ellipse.

Indicates an image.

Indicates an instantiator.

Indicates a label.

Indicates a rectangle.

Table 15.126. Animation icons

Animation icons Description

Indicates an animation widget.

Indicates an animation with a constant curve.

Indicates an animation with a fast start curve.

EB GUIDE Studio
Chapter 15. References

Page 369 of 471

Animation icons Description

Indicates an animation with a linear curve.

Indicates an animation with a linear interpolation curve.

Indicates an animation with a quadratic curve.

Indicates an animation with a script curve.

Indicates an animation with a sinus curve.

Indicates an animation with a slow start curve.

Indicates a change animation.

Indicates an entry animation.

Indicates an exit animation.

Expands the animation editor.

Minimizes the animation editor.

Indicates a pop-up on animation.

Indicates a pop-up off animation.

Indicates a broken link.

Table 15.127. 3D widget icons

3D widget icons Description

Indicates an ambient light.

Indicates a camera.

Indicates a directional light.

Indicates an image-based light.

Indicates a material.

EB GUIDE Studio
Chapter 15. References

Page 370 of 471

3D widget icons Description

Indicates a mesh.

Indicates a point light.

Indicates a scene graph.

Indicates a scene graph node.

Indicates a spot light.

Table 15.128. Problems component icons

Problems component
icons

Description

Validates the model.

Indicates an issue.

Indicates a warning.

Table 15.129. EB GUIDE Monitor icons

EB GUIDE Monitor
icons

Description

Fires an event or indicates that an event has been fired.

Indicates that a key event has been fired.

Indicates whether a connection to a host is established.

Opens the connection configuration.

 Turns the automatic scrolling of the log on and off.

Copies all log messages.

Deletes the log messages.

Exports the watch list.

Indicates a log message.

 Toggles grouping by model interface.

EB GUIDE Studio
Chapter 15. References

Page 371 of 471

15.7. Scenes
Table 15.130. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x-offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y-offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 32-bit (1): RGBA8888

► 16-bit (2): RGB565

► 24-bit (3): RGB888

► 32-bit sRGB (4):

This value uses GPU hardware support.

Use this value, if you want to have sRGB support for an image wid-
get or for a texture widget feature with an sRGB property.

► 32-bit sRGB (Emulated) (5):

Use this value only if 32-bit sRGB does not yield correct results.

antiAliasing Possible values:

► off (0): no anti-aliasing

EB GUIDE Studio
Chapter 15. References

Page 372 of 471

Property name Description
► MSAA 2x (1): 2x anti-aliasing

► MSAA 4x (2): 4x anti-aliasing

Also see section 6.3, “Anti-aliasing”.

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► off (0): Do not show FPS

► on screen (1): Show FPS on the screen

► console (2): Show FPS on the console

► console & on screen (3): Show FPS on the screen and on
the console

► on screen (large text) (4)

► console & on screen (large text) (5)

Renderer Defines a renderer for the scene.

Possible values:

► OpenGLRenderer

► OpenGL3Renderer

NOTE Using sceneID in the scene configuration
When using the same sceneID in the scene configuration, multiple state machines react
to input handling at the same time.

To avoid that and to achieve that only one state machine reacts to input handling, assign
different sceneID values to each state machine in the scene configuration.

15.8. Shortcuts

EB GUIDE Studio
Chapter 15. References

Page 373 of 471

The following table lists shortcuts available in EB GUIDE Studio and EB GUIDE Monitor and explains their
meaning.

Table 15.131. Shortcuts

Shortcut Description

Ctrl+A Select all elements

Ctrl+C Copy the selection

Ctrl+F Jump into search box

Ctrl+S Save

Ctrl+V Paste the copied selection

Ctrl+Y Redo

Ctrl+Z Undo

Enter In tables, confirm the entered value and go to the next cell.

Ctrl+Enter In the trigger filter box, add a new event.

In tables, confirm the entered value and stay in the cell.

Ctrl+Shift+Insert In the Namespaces component, add a new namespace as a child to
an existing namespace.

Alt+F4 Close the active window

Shift+F1 Open user documentation for EB GUIDE TF

F1 Open user documentation for EB GUIDE Studio

F2 Rename the selected element

Shift+F2 Rename the selected element globally, this means in all locations
where the selected element is used, for example in EB GUIDE Script.

F3 Find all references of the selected element in the EB GUIDE model

F4 Jump to origin template when applied on a selected widget.

Jump to linked target when applied on a selected datapool item or wid-
get property.

F5 Start simulation

F6 Validate

Del Delete the selected element.

- In trees, collapse the selected element.

+ In trees, expand the selected element.

* In trees, expand the selected element and all children of this element.

EB GUIDE Studio
Chapter 15. References

Page 374 of 471

Shortcut Description

Up/Down/Left/Right In the content area, move the selected state or widget one pixel up,
down, left, or right.

In tables, go through the elements.

Shift and hold the mouse button In the content area, move the selected transition label.

Ctrl and hold the mouse button In the content area, rotate the selected transition label.

Ctrl and click the left mouse button

Shift and click the left mouse but-
ton or Up arrow or Down arrow
keys

Select multiple elements.

Ctrl and rotate the wheel button

Ctrl++

Ctrl+-

Ctrl+0

In the content area, zoom in and out or reset the scaling of the content
area to 100%.

15.9. State machines

15.9.1. Haptic state machine

A state machine that describes elements that are visible in the HMI.

Table 15.132. Properties of a haptic state machine

Property name Description

Entry action Defines an action that is executed every time the state is entered.

Exit action Defines an action that is executed every time the state is exited.

Dynamic state machine
list

Enables the usage of dynamic state machines in EB GUIDE Script.

Internal transitions Adds an internal transition.

Background color Configures the background color that is displayed in EB GUIDE Studio. This
does not affect the background color on the target.

EB GUIDE Studio
Chapter 15. References

Page 375 of 471

15.9.2. Logic state machine

A state machine that describes behavior that takes place outside of visible elements.

Table 15.133. Properties of a logic state machine

Property name Description

Entry action Defines an action that is executed every time the state is entered.

Exit action Defines an action that is executed every time the state is exited.

Dynamic state machine
list

Enables the usage of dynamic state machines in EB GUIDE Script.

Internal transitions Adds an internal transition.

Background color Configures the background color that is displayed in EB GUIDE Studio. This
does not affect the background color on the target.

15.9.3. States

15.9.3.1. Initial state

Defines the starting point of the state machine. An initial state has an outgoing default transition that points to
the first state. An initial state has no incoming transition.

These states have no properties.

15.9.3.2. Compound state

Table 15.134. Properties of a Compound state

Property name Description

Entry action Defines an action that is executed every time a state or state machine is en-
tered.

Exit action Defines an action that is executed every time a state or state machine is exited.

Dynamic state machine
list

Enables the usage of dynamic state machines in EB GUIDE Script.

Internal transitions Adds an internal transition.

EB GUIDE Studio
Chapter 15. References

Page 376 of 471

Property name Description

Background color Configures the background color.

15.9.3.3. View state

Contains a view. A view represents a project specific HMI screen. The view is displayed while the corresponding
view state is active.

Table 15.135. Properties of a View state

Property name Description

Entry action Defines an action that is executed every time a state or state machine is en-
tered.

Exit action Defines an action that is executed every time a state or state machine is exited.

Dynamic state machine
list

Enables the usage of dynamic state machines in EB GUIDE Script.

Internal transitions Adds an internal transition.

Background color Configures the background color.

15.9.3.4. Choice state

Evaluates conditions and chooses a transition that matches the conditions.

These states have no properties.

15.9.3.5. Shallow history state

Stores the most recent active sub-state: the sub-state that was active just before exiting the compound state.

These states have no properties.

15.9.3.6. Deep history state

Stores a compound state and its complete sub-hierarchy just before the compound state is exited.

These states have no properties.

EB GUIDE Studio
Chapter 15. References

Page 377 of 471

15.9.3.7. Final state

Is used to exit a compound state or state machine. If the final state of the state machine is entered, the state
machine terminates. Any history states within the compound state are reset. A final state does not have any
outgoing transitions.

These states have no properties.

15.9.4. Transitions

15.9.4.1. Default transition

A default transition is triggered automatically and not by any event or datapool item update. It has no condition,
but can have an action. It is used with initial state, final state, choice state, and history states.

Table 15.136. Properties of a default transition

Property name Description

Action Defines an action that is executed every time the transition is executed.

15.9.4.2. Choice transition

A choice transition is an outgoing transition with a condition assigned to it. Its source state is a choice state.
Choice transitions are triggered by the evaluation of their condition. They result in an action. The first choice
transition that has condition true is executed.

Table 15.137. Properties of a choice transition

Property name Description

Action Defines an action that is executed every time the transition is executed.

Condition Defines a condition that must be true for this transition to be executed.

15.9.4.3. Else transition

An else transition is the mandatory counterpart of a choice transition. Every choice state needs to have one
else transition which is executed if the conditions of all its choice transitions evaluate to false.

Table 15.138. Properties of an else transition

Property name Description

Action Defines an action that is executed every time the transition is executed.

EB GUIDE Studio
Chapter 15. References

Page 378 of 471

15.9.4.4. Internal transition

An internal transition is a transition that has no target state and thus does not change the active state. The
purpose of an internal transition is to react to an event without leaving the present state. It can have a condition
and it results in an action.

Table 15.139. Properties of an internal transition

Property name Description

Action Defines an action that is executed every time the transition is executed.

Condition Defines a condition that must be true for this transition to be executed.

Trigger Defines a trigger for this transition.

15.9.4.5. Self transition

A self transition is a transition with the same state as source state and target state. Unlike an internal transition,
a self transition leaves and re-enters the state and thus executes its entry and exit actions.

Table 15.140. Properties of a self transition

Property name Description

Action Defines an action that is executed every time the transition is executed.

Condition Defines a condition that must be true for this transition to be executed.

Trigger Defines a trigger for this transition.

15.10. Widgets

15.10.1. View
Table 15.141. Properties of the View widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget

EB GUIDE Studio
Chapter 15. References

Page 379 of 471

Property name Description

y The y-coordinate of the widget

View states and view templates have additional properties for view transition animations. View transition an-
imations apply for entry animations, exit animations, change animations, pop-up on animations and pop-up
off animations.

Table 15.142. Properties of a view transition animation

Property name Description

enabled Defines whether the animation is executed.

repeat The number of repetitions, 0 for infinite number.

alternating If true, the animation is executed repeatedly back and forth, i.e. bidirectional.

If false, the animation is executed repeatedly only in one direction, i.e. unidirec-
tional.

The number of repetitions is defined in the repeat property.

scale The factor by which the animation time is multiplied.

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards).

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_cancel_
end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

15.10.2. Basic widgets
There are eight basic widgets:

► Alpha mask

EB GUIDE Studio
Chapter 15. References

Page 380 of 471

► Animation

► Container

► Ellipse

► Image

► Instantiator

► Label

► Rectangle

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

15.10.2.1. Alpha mask

An alpha mask is a container widget that controls the alpha channel, i.e. the opacity, of its child widgets with
an image.

Table 15.143. Properties of the Alpha mask widget

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

enabled If true, the alpha mask is applied to the child widgets

image The image that controls the alpha channel, i.e. the opacity of the child widgets

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

EB GUIDE Studio
Chapter 15. References

Page 381 of 471

Property name Description

scaleMode The scale mode of the image. Possible values:

► original size (0)

► fit to size (1)

► keep aspect ratio (2)

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. The renderers
for OpenGL ES 2.0 or higher support .png files and .jpg files. RGB images are converted
to grayscale images before being used as alpha masks. Grayscale images are used as is.
The alpha channel in the image is ignored.

Alpha mask functionality is not applied to 9-patch images. 9-patch images are handled the
same way the PNG and JPEG file formats are.

15.10.2.2. Animation

Animation is achieved by changing a value over a duration of time. Animations are defined with animation
curves and their properties. Animations curves are available through the Animation editor.

Table 15.144. Properties of the Animation widget

Property name Description

enabled Define whether the animation is enabled.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

scale Define the scaling of the duration. Values below 1 slow down the animation.
Values above 1 speed up the animation.

onPlay Define an action that is executed when the animation is started or continued.

► animation_time: The time at which the animation is started or continued.

► forward: If true, the animation goes forward. If false, the animation is re-
versed.

onPause Define an action that is executed when the animation is paused.

► animation_time: The time at which the animation is paused.

onTerminate Define an action that is executed when the animation is terminated.

► animation_time The period of time for which the animation ran.

EB GUIDE Studio
Chapter 15. References

Page 382 of 471

Property name Description
► terminate The reason for the termination.

► 0: The animation was completed.

► 1: animation_cancel canceled the animation.

► 2: A view transition canceled the animation.

► 3: animation_cancel_end canceled the animation.

► 4: animation_cancel_reset canceled the animation.

15.10.2.2.1. Constant curve

A constant curve changes a value instantly, not gradually. The following use cases are common:

► Switching a boolean value

► Highlighting elements of the HMI

Constant curves can be applied to values of the data types integer, boolean, float, and color.

Table 15.145. Properties of the constant curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the value.

value Define towards which value the target value is changed.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.2. Fast start curve

A fast start curve changes a value quickly at the start and decelerating when the change approaches the end
value. The following use cases are common:

► Toggle buttons

► Opening menus

EB GUIDE Studio
Chapter 15. References

Page 383 of 471

► Fading in and out

► View transition animation

► Highlighting elements of the HMI

Fast start curves can be applied to values of the data types integer, float, and color.

Table 15.146. Properties of the fast start curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the start value.

start Define at which value the animation starts.

end Define at which value the animation ends.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.3. Slow start curves

A slow start curve changes a value slowly at the start and accelerating when the change approaches the end
value. The following use cases are common:

► Toggle buttons

► Opening menus

► Fading in and out

► View transition animation

► Highlighting elements of the HMI

Slow start curves can be applied to values of the data types integer, float, and color.

Table 15.147. Properties of the slow start curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

EB GUIDE Studio
Chapter 15. References

Page 384 of 471

Property name Description

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the start value.

start Define at which value the animation starts.

end Define at which value the animation ends.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.4. Quadratic curve

A quadratic curve accelerates the change of a value over a defined period of time. A quadratic equation is used
to calculate the change. There is no defined end to the change. The change stops at the value that is reached
at the end of the time. The following use cases are common:

► Fading in and out

► Perpetual animation

► Highlighting elements of the HMI

Quadratic curves can be applied to values of the data types integer, float, and color types.

Table 15.148. Properties of the quadratic curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the constant value.

acceleration Define the value that is added to the velocity at every full second of the ani-
mation.

velocity Define the value that is added gradually during one second of the animation.

constant Define at which value the animation starts.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

EB GUIDE Studio
Chapter 15. References

Page 385 of 471

15.10.2.2.5. Sinus curve

A sinus curve changes a value gradually back and forth over a defined period of time. There is no defined
end to the change. The change stops at the value that is reached at the end of the time. The following use
cases are common:

► Perpetual animation

► Circular motion

► Indicating passage of time

► Highlighting elements of the HMI

Sinus curves can be applied to values of the data types integer, float, and color.

Table 15.149. Properties of the sinus curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the constant value.

amplitude Define the amplitude of the oscillation.

constant Define the fixed point of the oscillation.

frequency Define the frequency of the oscillation in hertz.

phase Define the angular phase at which the oscillation starts.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.6. Script curve

The script curve is a curve that you can define yourself through EB GUIDE Script. Use the script curve in cases
where you want to have an animation that is not possible with the other curves or that is your own, custom
animation. This curve is especially useful if you want to have a customized trajectory for the movement of a
widget. Script curves can be applied to values of the data types integer, boolean, float, and color.

Table 15.150. Properties of the script curve

Property name Description

enabled Define whether the animation is enabled.

EB GUIDE Studio
Chapter 15. References

Page 386 of 471

Property name Description

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the curve value.

curve Define your curve function in EB GUIDE Script. Two parameters are provided:

► diff: The time in ms since the last execution. At the start of the animation
diff is 0.

► t_anim: The time in ms since the start of the animation.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.7. Linear curve

A linear curve changes a value by repeatedly adding a defined value over a defined period of time. There is no
defined end to the change. The change stops at the value that is reached at the end of the time. The following
use cases are common:

► Perpetual animation

► Indicating passage of time

► Highlighting elements of the HMI

Linear curves can be applied to values of the data types integer, float, and color.

Table 15.151. Properties of the linear curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the constant value.

velocity Define the value that is added gradually during one second of the animation.

constant Define at which value the animation starts.

EB GUIDE Studio
Chapter 15. References

Page 387 of 471

Property name Description

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.2.8. Linear interpolation curve

A linear interpolation curve changes a value gradually towards an end value adding increments of equal value
per unit of time. The following use cases are common:

► Indicating limited time

► Indicating passage of time

► Highlighting elements of the HMI

Linear interpolation curves can be applied to values of the data types integer, float, and color.

NOTE Linear key value interpolation curve
During import of a 3D graphic file, if the imported 3D scene has animations, linear key value
interpolation integer curve and linear key value interpolation float curve are created. The
underlying key-value pairs of these curves cannot be modified in EB GUIDE Studio.

Table 15.152. Properties of the linear interpolation curve

Property name Description

enabled Define whether the animation is enabled.

delay Define how long the start of the animation is delayed in milliseconds.

duration Define the duration of the animation in milliseconds.

repeat Define how many times the animation is repeated. 0 means infinite repetition.

alternating If enabled, every second repetition is a reversed animation.

relative If enabled, the target value is added to the start value.

start Define at which value the animation starts.

end Define at which value the animation ends.

target Define which property or datapool item is animated and its value before the ani-
mation. This value is overwritten during the animation.

15.10.2.3. Container

A container holds several widgets as child widgets and thus groups the widgets.

EB GUIDE Studio
Chapter 15. References

Page 388 of 471

Table 15.153. Properties of the Container widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

15.10.2.4. Ellipse

An ellipse draws a colored ellipse with the dimensions and coordinates of the widget into a view. The widget
can also be used to draw a sector or an arc.

Table 15.154. Properties of the Ellipse widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the ellipse

arcWidth The width of the arc of the ellipse

centralAngle The angle in degrees which defines a sector of the ellipse

sectorRotation The angle in degrees which describes the rotation of the ellipse's sector

15.10.2.5. Image

An image places a picture into a view.

Table 15.155. Properties of the Image widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

EB GUIDE Studio
Chapter 15. References

Page 389 of 471

Property name Description

y The y-coordinate of the widget relative to its parent widget

image The image the widget displays

sRGB If this property is enabled, the image that is selected in image, is rendered using
sRGB color space.

Note that to use sRGB functionality, in the project center under Configure >
Profiles for the colorMode property select 32-bit sRGB (4) or 32-bit
sRGB (Emulated) (5).

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. The renderers
for OpenGL ES 2.0 or higher support .png files and .jpg files.

15.10.2.6. Instantiator

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables
with dynamic or static content. The child widgets of an instantiator serve as line templates for the list or table
which is created during run-time. By default the instantiator only instantiates the first line template.

Table 15.156. Properties of the Instantiator widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

numItems The number of instantiated child widgets. If numItems is 0, no child widgets are
created.

lineMapping Defines which child widget is the line template for which line, i.e. defines the or-
der of instantiation

15.10.2.7. Label

EB GUIDE Studio
Chapter 15. References

Page 390 of 471

A label places text into a view.

NOTE Character replacement
When you enter a text to the text property of a label, the following characters are replaced:

► The sequence \\\\ is replaced by \\.

► The sequence \\n is replaced by \n.

► In case the text is displayed in one line, \n is replaced by a space character.

Table 15.157. Properties of the Label widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

text The text the label displays. If the text does not fit into the widget area it is trun-
cated at the end by default.

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

15.10.2.8. Rectangle

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 15.158. Properties of the Rectangle widget

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

EB GUIDE Studio
Chapter 15. References

Page 391 of 471

15.10.3. 3D widgets

15.10.3.1. Ambient light

An ambient light is a light that uniformly illuminates the scene. An ambient light affects the ambient color
property of material, PBR GGX material, and PBR Phong material.

Table 15.159. Properties of the Ambient light widget

Property name Description

enabled If true, the widget is enabled

color The color of the light

intensity The intensity of the light, with the lower limit value 0.0 as no ambient light

15.10.3.2. Camera

A camera defines the view of the scene from a particular point of view. Use several cameras to show the scene
from different points of view.

Table 15.160. Properties of the Camera widget

Property name Description

enabled If true, the widget is enabled

nearPlane The nearest distance from the camera in view direction at which the scene be-
comes visible. The measurement unit is defined when you create a 3D model in
third-party 3D modeling software.

farPlane The farthest distance from the camera in view direction up to which the scene is
visible. The measurement unit is defined when you create a 3D model in third-
party 3D modeling software.

fieldOfView The camera's vertical viewing angle in degrees, with the maximum value of 180

projectionType Defines the projection type of the camera. The objects are rendered either with
perspective (0) or orthographic (1) projection.

If the projection type is orthographic, the viewing volume is calculated by using
the fieldOfView angle.

15.10.3.3. Directional light

A directional light illuminates the scene from one direction.

EB GUIDE Studio
Chapter 15. References

Page 392 of 471

Table 15.161. Properties of the Directional light widget

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no directional light

15.10.3.4. Image-based light

An image-based light is a light that illuminates the scene by lighting information of the real world that was stored
in a .pfm or .hdr file. The .pfm or .hdr files serve as input data for the IBLGenerator to create an .ebibl file.

Table 15.162. Properties of the Image-based light widget

Property name Description

enabled If true, the widget is enabled

ibl The IBL file .ebibl created manually.

intensity The intensity of the light, with 0.0 as no image-based light

environmentMap Defines whether the IBL environment map is visible or not.

15.10.3.5. Material

A material defines the visual appearance of the mesh surface using the Phong reflection model.

Table 15.163. Properties of the Material widget

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If no am-
bient light is added to the parent scene graph, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Diffuse texture widget feature is added, this property has
no effect.

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

shininess The shininess factor

Note that only values between 0.0 and 1.0, as for example 0.3, are valid.

When the Shininess texture widget feature is used, the shininess property is
ignored.

EB GUIDE Studio
Chapter 15. References

Page 393 of 471

Property name Description

specular The color that an object with a shiny surface reflects. If the Specular texture
widget feature is added or the shininess property is set to 0.0, the specular
property has no effect.

opacity The opacity value

Note that only values between 0.0 and 1.0, as for example 0.3, are valid.

15.10.3.6. Mesh

A mesh defines the shape of the 3D object.

Table 15.164. Properties of the Mesh widget

Property name Description

visible If true, the widget and its child widgets are visible

mesh The automatically created mesh file *.ebmesh

culling Defines whether no triangles (0), only front-facing triangles (1), or only back-fac-
ing triangles (2) are culled from the mesh

15.10.3.7. PBR GGX material

A PBR GGX material defines the visual appearance of the mesh surface using the physically correct Cook-
Torrance model.

Table 15.165. Properties of the PBR GGX material widget

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If the
Ambient texture widget feature is added, this property has no effect.

baseColor The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Base color texture widget feature is added, this property
has no effect.

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

reflectance The color that an object with a shiny surface reflects. If the Reflectance tex-
ture widget feature is added or the shininess property is set to 0.0, the re-
flectance property has no effect.

metallic The value for the surface quality of being metallic

This value interpolates between the base color and the reflectance contribution.

EB GUIDE Studio
Chapter 15. References

Page 394 of 471

Property name Description
Note that only values between 0 and 1 are valid, as for example 0.3.

roughness The value for the surface quality of being rough

This value controls the surface’s microstructure.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid, as for example 0.3.

Figure 15.1. Example for a physically-based material

15.10.3.8. PBR Phong material

A PBR Phong material defines the visual appearance of the surface of the mesh using the physically correct
Phong reflection model.

Table 15.166. Properties of the PBR Phong material widget

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If the
Ambient texture widget feature is added, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Diffuse texture widget feature is added, this property has
no effect.

EB GUIDE Studio
Chapter 15. References

Page 395 of 471

Property name Description

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

shininess The shininess factor

specular The color that an object with a shiny surface reflects. If the Specular texture
widget feature is added or the shininess property is set to 0.0, the specular
property has no effect.

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid , as for example 0.3.

Figure 15.2. Example for a non-normalized material (left) and a normalized material (right)

15.10.3.9. Point light

A point light adds a light to the scene that emits light in all directions like a light bulb.

Table 15.167. Properties of the Point light widget

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no point light and the
upper limit value depending on attenuation factors

EB GUIDE Studio
Chapter 15. References

Page 396 of 471

Property name Description

attenuationConstant The constant factor by which the light intensity weakens with increasing dis-
tance. The 0.0 value means that the factor is not used.

attenuationLinear The linear factor by which the light intensity weakens with increasing distance.
The 0.0 value means that the factor is not used.

attenuationQuadrat-

ic

The quadratic factor by which the light intensity weakens with increasing dis-
tance. The 0.0 value means that the factor is not used.

15.10.3.10. Scene graph

A scene graph places a 3D object into a view.

Table 15.168. Properties of the Scene graph widget

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

gamma Corrects the luminance output of the scene graph. The default value is set to 2.-
2.

15.10.3.11. Scene graph node

A scene graph node is a child node and is added to the scene graph or to another scene graph node. You
use scene graph nodes to place 3D widgets in the 3D scene with transformation properties. You can add the
following 3D widgets to the scene graph node:

► Ambient light

► Camera

► Directional light

► Image-based light

► Mesh

► Point light

► Spot light

EB GUIDE Studio
Chapter 15. References

Page 397 of 471

Table 15.169. Properties of the Scene graph node widget

Property name Description

visible If true, the widget and its child widgets are visible

rotationX The rotation around the x-axis

rotationY The rotation around the y-axis

rotationZ The rotation around the z-axis

scalingX The scaling along the x-axis

scalingY The scaling along the y-axis

scalingZ The scaling along the z-axis

translationX The translation along the x-axis

translationY The translation along the y-axis

translationZ The translation along the z-axis

15.10.3.12. Spot light

A spot light adds a light which restricts illumination to a cone of influence.

Table 15.170. Properties of the Spot light widget

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no spot light and the
upper limit value depending on attenuation factors

attenuationConstant The constant factor by which the light intensity weakens with increasing distance

attenuationLinear The linear factor by which the light intensity weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light intensity weakens with increasing dis-
tance

coneAngleInner The light's inner cone angle in degrees, with the maximum value of 180

coneAngleOuter The light's outer cone angle in degrees, with the maximum value of 180

15.11. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

EB GUIDE Studio
Chapter 15. References

Page 398 of 471

15.11.1. Common

15.11.1.1. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. You can define a single
widget to be visible or you can define groups of child widgets to be visible at the same time. To define groups,
map the index of child widgets to the same group value.

Table 15.171. Properties of the Child visibility selection widget feature

Property name Description Set by EB GUIDE
GTF

containerIndex Controls the visibility of child widgets.

If containerMapping is not filled, containerIndex makes a
single child widget visible. The child widget that is visible is iden-
tified by its order in the widget tree. The topmost child has con-
tainerIndex 0, next containerIndex 1 etc.

If containerMapping is filled, containerIndex refers to a
group of child widgets. Define the group in containerMap-
ping.

no

containerMap-

ping

Use this property to create groups of child widgets. The Index
column identifies the child widget. The Value column defines the
group.

The number of rows must match the number of child widgets.
Otherwise the mapping is not used.

no

15.11.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 15.172. Properties of the Enabled widget feature

Property name Description Set by EB GUIDE
GTF

enabled If true, the widget reacts on touch and press input no

15.11.1.3. Focused

EB GUIDE Studio
Chapter 15. References

Page 399 of 471

The Focused widget feature enables a widget to have input focus.

Table 15.173. Properties of the Focused widget feature

Property name Description Set by EB GUIDE
GTF

focusable Defines whether the widget receives the focus or not. Possible
values:

► not focusable (0)

► only by touch (1)

► only by key (2)

► focusable (3)

no

focused If true, the widget has focus yes

15.11.1.4. Font metrics

With the Font metrics widget feature, you can change settings of a font that is used in a label.

For instructions on how to change the lineGap, see section 8.5.3, “Changing the line spacing”.

Restrictions:

► The Font metrics widget feature is only available for the Label widget.

► If the label has a multifont support added, the Font metrics widget feature overwrites the baseline value
of the default font.

Table 15.174. Properties of the Font metrics widget feature

Property name Description Set by EB GUIDE
GTF

ascender The portion of a letter that extends above the baseline of a font. no

descender The portion of a letter that extends below the baseline of a font. no

lineGap The line spacing that is contained by default in every font. A
positive value increases the spacing, a negative value decreas-
es the spacing.

no

15.11.1.5. Multiple lines

The Multiple lines widget feature enables line breaks. The line break is set between words or characters
depending on the width property that is set for the label widget. To mark the end of a line, you can also use
the hard line break character \n.

EB GUIDE Studio
Chapter 15. References

Page 400 of 471

Restrictions:

► The Multiple lines widget feature is only available for the Label widget.

Table 15.175. Properties of the Multiple lines widget feature

Property name Description Set by EB GUIDE
GTF

lineOffset The size of the spacing between the lines. A positive value in-
creases the spacing, a negative value decreases the spacing.

When the lineOffset is too small (high negative value), it has
no effect anymore and the text is rendered in one line. This oc-
curs for example, when the font style is set to PT_Sans_Nar-
row, size is set to 30 and the lineOffset is defined as -50.

no

maxLineCount The maximum number of visible lines. 0 = no limitation no

TIP Number of lines used
With the script function getLineCount, you can obtain the number of lines of the text.

For more information on this, see section 15.4.3.2.33, “getLineCount”.

NOTE Character replacement
When you enter a text to the text property of a label, the following characters are replaced:

► The sequence \\\\ is replaced by \\.

► The sequence \\n is replaced by \n.

► In case the text is displayed in one line, \n is replaced by a space character.

15.11.1.6. Pressed

The Pressed widget feature defines that a widget can be pressed.

Restrictions:

► Adding the Pressed widget feature automatically adds the Focused widget feature.

Table 15.176. Properties of the Pressed widget feature

Property name Description Set by EB GUIDE
GTF

pressed If true, a key is pressed while the widget is focused yes

EB GUIDE Studio
Chapter 15. References

Page 401 of 471

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

15.11.1.7. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 15.177. Properties of the Selected widget feature

Property name Description Set by EB GUIDE
GTF

selected If true, the widget is selected.

When the Selection group widget feature is added, it evaluates
if buttonID and buttonValue are identical. If true, the button
is selected.

no

Note: If the Selec-
tion group widget
feature is added,
the property is auto-
matically set by EB
GUIDE GTF.

15.11.1.8. Selection group

The Selection group widget feature is used to model a list of radio buttons. In the list, every radio button has
the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an application that sets the but-
tonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding a con-
dition that sets the button value.

Restrictions:

► Adding the Selection group widget feature automatically adds the Selected widget feature.

Table 15.178. Properties of the Selection group widget feature

Property name Description Set by EB GUIDE
GTF

buttonId The ID that identifies a button within a button group no

EB GUIDE Studio
Chapter 15. References

Page 402 of 471

Property name Description Set by EB GUIDE
GTF

buttonValue The current value of a button. If this value matches the but-
tonId, the button is selected.

no

15.11.1.9. Spinning

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 15.179. Properties of the Spinning widget feature

Property name Description Set by EB GUIDE
GTF

currentValue The current rotary value yes

maxValue The maximum value for the currentValue property no

minValue The minimum value for the currentValue property no

incValueTrigger If true, the currentValue property is incremented by 1 no

incValueReac-

tion

The reaction to an incrementation of the currentValue prop-
erty

no

decValueTrigger If true, the current value is decremented by 1 no

decValueReac-

tion

Reaction to a decrementation of the currentValue property no

steps The number of steps to calculate the increment or decrement for
the currentValue property

no

valueWrapAround Possible values:

► true: The currentValue property continues at the inverse
border, if minValue or maxValue is exceeded.

► false: The currentValue property does not decrease/in-
crease, if minValue or maxValue is exceeded.

no

15.11.1.10. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area. The widget feature enables a different truncation than the default setting trailing.

Restrictions:

EB GUIDE Studio
Chapter 15. References

Page 403 of 471

► The Text truncation widget feature is only available for the Label widget.

Table 15.180. Properties of the Text truncation widget feature

Property name Description Set by EB GUIDE
GTF

truncationSym-

bol

The string that is shown instead of the text part. The default
truncation symbol is

If the label has a multifont support added, the truncation symbol
will use the font and size as specified for its Unicode character
range.

no

truncationPoli-

cy

For single-line texts, the truncationPolicy property defines
the position of the truncation. Possible values:

► leading (0): Text is replaced at the beginning of the text

► trailing (1): Text is replaced at the end of the text

For multi-line texts, the truncationPolicy property defines
where text is replaced. Possible values:

► leading (0): Lines at the beginning are replaced and
text of the first visible line is truncated at the beginning of
the text.

► trailing (1) Lines at the end are replaced and text of
the last visible line is truncated at the end of the text.

no

15.11.1.11. Touched

The Touched widget feature enables a widget to react to touch input.

Table 15.181. Properties of the Touched widget feature

Property name Description Set by EB GUIDE
GTF

touchable If true, the widget reacts on touch input no

touched If true, the widget is currently touched yes

touchPolicy Defines how to handle touch and movement that crosses widget
boundaries. Possible values:

► press then react (0): Press first, then the widget re-
acts. Notifications of moving and releasing are only active
within the widget area.

no

EB GUIDE Studio
Chapter 15. References

Page 404 of 471

Property name Description Set by EB GUIDE
GTF

► press and grab (1): Press to grab the contact. The
contact remains grabbed even if it moves away from the
widget area.

► press then react on contact (2): Even if the con-
tact enters the pressed state outside the widget boundaries,
the subsequent move and release events are delivered to
the widget.

touchBehavior Defines touch evaluation. Possible values:

► whole area (0): To identify the touched widget, the ren-
derer evaluates the widget's clipping rectangle.

► visible pixels (1): To identify the touched widget, the
renderer evaluates the widget the touched pixel belongs to.

Transparent pixels in an image with alpha transparency or
pixels inside letters such as in O or A are not touchable.

Note that the Visible pixels value has no effect on la-
bels.

no

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation
If performance is an important issue in your project, set the touchBehavior property to
whole area (0). EB GUIDE GTF evaluates whole area (0) faster than visible
pixels (1).

15.11.2. Effect

15.11.2.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Restrictions:

► The Border widget feature is only available for the Rectangle widget.

EB GUIDE Studio
Chapter 15. References

Page 405 of 471

Table 15.182. Properties of the Border widget feature

Property name Description Set by EB GUIDE
GTF

borderThickness The thickness of the border in pixels no

borderColor The color that is used to render the border no

borderStyle The style that is used to render the border no

15.11.2.2. Coloration

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 15.3.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

Table 15.183. Properties of the Coloration widget feature

Property name Description Set by EB GUIDE
GTF

colorationEn-

abled

If true, coloration is used no

colorationColor The color used for the coloration no

15.11.2.3. Circular text

The Circular text widget feature adds a text effect to a Label widget to place text along a circle curved path.

Restrictions:

► Clipping of the text on widget boundaries is disabled when widget features Circular text and Stroke are
both enabled. Use widget feature Viewport as a workaround.

EB GUIDE Studio
Chapter 15. References

Page 406 of 471

► Only Latin script fonts are supported.

► Circular text cannot be used in combination with verticalAlign.

► Circular text cannot be used in combination with Multiple lines.

► Circular text cannot be used in combination with Font metrics.

If you want your text to follow a path of any arbitrary shaped curve, you can develop your own widget feature
with the EB GUIDE SDK.

Table 15.184. Properties of the Circular text widget feature

Property name Description Set by EB GUIDE
GTF

enabled If true, circular text is used no

centerX The x-coordinate of the circle center no

centerY The y-coordinate of the circle center no

radius The radius of the circle no

direction Define the text direction along the circle. Possible values:

► clockwise (0)

► counterclockwise (1)

no

startingAngle The starting angle of the text along the circular path no

characterSpac-

ing

Increase or decrease the character spacing for all characters no

15.11.2.4. Stroke

The Stroke widget feature activates a configurable text outline, i.e. a label border.

Restrictions:

► The Stroke widget feature is only available for the Label widget.

Table 15.185. Properties of the Stroke widget feature

Property name Description Set by EB GUIDE
GTF

strokeEnabled If true, stroke is used no

strokeThickness The thickness of the outline in pixels no

strokeColor The color that is used to render the outline no

EB GUIDE Studio
Chapter 15. References

Page 407 of 471

15.11.3. Focus
The Focus widget feature category provides the widget features relating to focus management.

15.11.3.1. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. The Auto
focus widget feature checks the widget subtree for child widgets with the focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Restrictions:

► The widget feature Auto focus automatically adds the Focused widget feature.

Table 15.186. Properties of the Auto focus widget feature

Property name Description Set by EB GUIDE
GTF

focusNext The condition on which the focus index is incremented no

focusPrev The condition on which the focus index is decremented no

focusFlow The behavior for focus changes within the hierarchy. Possible
values:

► stop at hierarchy (0)

► wrap within hierarchy level (1)

► step up in hierarchy (2)

no

focusedIndex The index of the currently focused child widget as the n-th child
widget which is focusable

yes

initFocus The index defines the focused child widget at initialization. If the
widget is not focusable, the next focusable child is used.

no

15.11.3.2. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Restrictions:

► The widget feature User-defined focus automatically adds the Focused widget feature.

EB GUIDE Studio
Chapter 15. References

Page 408 of 471

Table 15.187. Properties of the User-defined focus widget feature

Property name Description Set by EB GUIDE
GTF

focusNext The trigger that assigns the focus to the next child widget no

focusOrder The focusOrder property makes it possible to skip child wid-
gets when assigning focus. The ID of a child widget corre-
sponds to its position in the subtree. Child widgets that are not
focusable are skipped by default. Order in which the child wid-
gets are focused:

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, other-
wise widgets are ignored for focus management. Example: fo-
cusOrder=1|0|2 means the second widget receives focus first,
then the first widget receives focus, and finally the third widget.

no

focusPrev The trigger that assigns the focus to the previous child no

focusFlow The behavior for focus changes within the hierarchy. Possible
values:

► stop at hierarchy level (0)

► wrap within hierarchy level (1)

► step up in hierarchy (2)

no

focusedIndex The index defines the position of the child widget in the focu-
sOrder list. If the widget is not focusable, the child next in the
list is used.

yes

initFocus The index of the focused child widget at initialization no

15.11.4. Gestures

15.11.4.1. Flick gesture

A quick brush of a contact over a surface

Restrictions:

► Adding the Flick gesture widget feature automatically adds the Gestures and Touched widget features.

EB GUIDE Studio
Chapter 15. References

Page 409 of 471

Table 15.188. Properties of the Flick gesture widget feature

Property name Description Set by EB GUIDE
GTF

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flick-
MaxTime

► directionX: x-part of the direction vector of the gesture

► directionY: y-part of the direction vector of the gesture

yes

flickMaxTime The maximal time in milliseconds the contact may stay in place
for the gesture to be recognized as a flick gesture

no

flickMinLength The minimal distance in pixels a contact has to move on the sur-
face to be recognized as a flick gesture

no

15.11.4.2. Hold gesture

A hold gesture without movement

Restrictions:

► Adding the Hold gesture widget feature automatically adds the Gestures and Touched widget features.

► The Hold gesture widget feature does not trigger the Touch lost widget feature.

Table 15.189. Properties of the Hold gesture widget feature

Property name Description Set by EB GUIDE
GTF

onGestureHold The reaction that is triggered once the gesture is recognized.
The reaction is triggered only once per contact: when holdDu-
ration is expired and the contact still is in a small boundary
box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

yes

holdDuration The minimal time in milliseconds the contact must stay in place
for the gesture to be recognized as a hold gesture

no

EB GUIDE Studio
Chapter 15. References

Page 410 of 471

15.11.4.3. Long hold gesture

A long hold gesture without movement

Restrictions:

► Adding the Long hold gesture widget feature automatically adds the Gestures and Touched widget
features.

► The Long hold gesture widget feature does not trigger the Touch lost widget feature.

Table 15.190. Properties of the Long hold gesture widget feature

Property name Description Set by EB GUIDE
GTF

onGestureLong-

Hold

The reaction that is triggered once the gesture is recognized.
The reaction is triggered only once per contact: when long-
HoldDuration has expired and the contact still is in a small
boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

yes

longHoldDura-

tion

The minimal time in milliseconds the contact must stay in place
for the gesture to be recognized as a long hold gesture

no

15.11.4.4. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

Restrictions:

► Adding the Path gesture widget feature automatically adds the Gestures and Touched widget features.

Table 15.191. Properties of the Path gesture widget feature

Property name Description Set by EB GUIDE
GTF

onPath The reaction that is triggered when the entered shape matches.
The reaction is only triggered if onPathStart has been trig-
gered already. Reaction argument:

► gestureId: ID of the path that was matched

yes

onPathStart The reaction that is triggered once a contact moves beyond the
minimal box (pathMinXBox, pathMinYBox).

yes

EB GUIDE Studio
Chapter 15. References

Page 411 of 471

Property name Description Set by EB GUIDE
GTF

onPathNotRecog-

nized

The reaction that triggered when the entered shape does not
match. The reaction is only triggered if onPathStart has been
triggered already.

yes

pathMinXBox The x-coordinate of the minimal distance in pixels a contact
must move so that the path gesture recognizer starts consider-
ing the input

no

pathMinYBox The y-coordinate of the minimal distance in pixels a contact
must move so that the path gesture recognizer starts consider-
ing the input

no

15.11.4.4.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 15.192. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

3 Horizontal line right to left

EB GUIDE Studio
Chapter 15. References

Page 412 of 471

ID Shape Description

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

15.11.4.5. Pinch gesture

Two contacts that move closer together or further apart

Restrictions:

► Adding the Pinch gesture widget feature automatically adds the Gestures and Touched widget features.

Table 15.193. Properties of the Pinch gesture widget feature

Property name Description Set by EB GUIDE
GTF

onGesture-

PinchStart

The reaction that is triggered once the start of the gesture is rec-
ognized. Reaction arguments:

► ratio: Current contact distance to initial contact distance
ratio

► centerX: x-coordinate of the current center point between
the two contacts

► centerY: y-coordinate of the current center point between
the two contacts

yes

onGesture-

PinchUpdate

The reaction that is triggered when the pinch ratio or center
point change. Reaction arguments:

► ratio: Current contact distance to initial contact distance
ratio

yes

EB GUIDE Studio
Chapter 15. References

Page 413 of 471

Property name Description Set by EB GUIDE
GTF

► centerX: x-coordinate of the current center point between
the two contacts

► centerY: y-coordinate of the current center point between
the two contacts

onGesture-

PinchEnd

The reaction that is triggered once the gesture is finished. Reac-
tion arguments:

► ratio: Current contact distance to initial contact distance
ratio

► centerX: x-coordinate of the current center point between
the two contacts

► centerY: y-coordinate of the current center point between
the two contacts

yes

pinchThreshold The minimal distance in pixels each contact has to move from
its initial position for the gesture to be recognized

no

15.11.4.6. Rotate gesture

Two contacts that move along a circle

Restrictions:

► Adding the Rotate gesture widget feature automatically adds the Gestures and Touched widget features.

Table 15.194. Properties of the Rotate gesture widget feature

Property name Description Set by EB GUIDE
GTF

onGes-

tureRotateStart

The reaction that is triggered once the start of the gesture is rec-
ognized

yes

onGestureRota-

teUpdate

The reaction that is triggered when the recognized angle or cen-
ter point changes

yes

onGestureRota-

teEnd

The reaction that is triggered once the gesture is finished yes

rotateThreshold The minimal distance in pixels each contact has to move from
its initial position for the start of the gesture to be recognized

no

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUp-
date:

EB GUIDE Studio
Chapter 15. References

Page 414 of 471

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: x-coordinate of the current center point between the two contacts

► centerY: y-coordinate of the current center point between the two contacts

15.11.5. Input handling

15.11.5.1. Gestures

The Gestures widget feature enables the widget to react on touch gestures.

Restrictions:

► Adding the Gestures widget feature automatically adds the Touched widget feature.

► The Gestures widget feature has no additional properties.

15.11.5.2. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Restrictions:

► Adding the Key pressed widget feature automatically adds the Pressed and Focused widget features.

Table 15.195. Properties of the Key pressed widget feature

Property name Description Set by EB GUIDE
GTF

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: The ID of the key that is processed

yes

15.11.5.3. Key released

The Key released widget feature enables a widget to react on a key being released.

Restrictions:

► Adding the Key released widget feature automatically adds the Pressed and Focused widget features.

EB GUIDE Studio
Chapter 15. References

Page 415 of 471

Table 15.196. Properties of the Key released widget feature

Property name Description Set by EB GUIDE
GTF

keyShortRe-

leased

The widget's reaction on a key being released

Reaction argument:

► keyId: The ID of the key that is processed

yes

15.11.5.4. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Restrictions:

► Adding the Key status changed widget feature automatically adds the Pressed and Focused widget
features.

Table 15.197. Properties of the Key status changed widget feature

Property name Description Set by EB GUIDE
GTF

keySta-

tusChanged

The widget's reaction on a key being pressed or released

Reaction arguments:

► keyId: The ID of the key that is processed

► status: The numeric ID of the status change

yes

15.11.5.5. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Restrictions:

► Adding the Key unicode widget feature automatically adds the Pressed and Focused widget features.

Table 15.198. Properties of the Key unicode widget feature

Property name Description Set by EB GUIDE
GTF

keyUnicode The widget's reaction on a Unicode key input yes

EB GUIDE Studio
Chapter 15. References

Page 416 of 471

Property name Description Set by EB GUIDE
GTF

Reaction argument:

► keyId: The ID of the key that is processed

15.11.5.6. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Restrictions:

► Adding the Move in widget feature automatically adds the Touched widget feature.

Table 15.199. Properties of the Move in widget feature

Property name Description Set by EB GUIDE
GTF

moveIn The widget's reaction on a movement into its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

yes

15.11.5.7. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Restrictions:

► Adding the Move out widget feature automatically adds the Touched widget feature.

Table 15.200. Properties of the Move out widget feature

Property name Description Set by EB GUIDE
GTF

moveOut The widget's reaction on a movement out of its boundaries yes

EB GUIDE Studio
Chapter 15. References

Page 417 of 471

Property name Description Set by EB GUIDE
GTF

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

15.11.5.8. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Restrictions:

► Adding the Move over widget feature automatically adds the Touched widget feature.

Table 15.201. Properties of the Move over widget feature

Property name Description Set by EB GUIDE
GTF

moveOver The widget's reaction on a movement within its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

yes

15.11.5.9. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Restrictions:

EB GUIDE Studio
Chapter 15. References

Page 418 of 471

► Adding the Moveable widget feature automatically adds the Touched and Touch moved widget features.

Table 15.202. Properties of the Moveable widget feature

Property name Description Set by EB GUIDE
GTF

moveDirection The direction into which the widget moves. Possible values:

► horizontal (0)

► vertical (1)

► free (2)

no

15.11.5.10. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Restrictions:

► Adding the Rotary widget feature automatically adds the Focused widget feature.

Table 15.203. Properties of the Rotary widget feature

Property name Description Set by EB GUIDE
GTF

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts
on an incoming rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when
the incoming event is sent

yes

15.11.5.11. Touch lost

The Touch lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Restrictions:

EB GUIDE Studio
Chapter 15. References

Page 419 of 471

► Adding the Touch lost widget feature automatically adds the Touched widget feature.

► If you add Touch lost, in the touchPolicy drop-down box of the Touched widget feature, select press
and grab (1).

Touch lost does not work with the other touch policies.

Table 15.204. Properties of the Touch lost widget feature

Property name Description Set by EB GUIDE
GTF

onTouchGrabLost The widget's reaction on a lost touch contact

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

yes

15.11.5.12. Touch move

The Touch move widget feature enables a widget to react on being touched or on being touched and then
moved.

Restrictions:

► Adding the Touch move widget feature automatically adds the Touched widget feature.

Table 15.205. Properties of the Touch move widget feature

Property name Description Set by EB GUIDE
GTF

touchMoved The widget's reaction on being touched or on being touched and
then moved

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

yes

EB GUIDE Studio
Chapter 15. References

Page 420 of 471

Property name Description Set by EB GUIDE
GTF

► fingerId: The ID of the contact that moves across the
widget

15.11.5.13. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

Restrictions:

► Adding the Touch pressed widget feature automatically adds the Touched widget feature.

Table 15.206. Properties of the Touch pressed widget feature

Property name Description Set by EB GUIDE
GTF

touchPressed The widget's reaction on being pressed

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

yes

15.11.5.14. Touch released

The Touch released widget feature enables a widget to react on being released.

Restrictions:

► Adding the Touch released widget feature automatically adds the Touched widget feature.

Table 15.207. Properties of the Touch released widget feature

Property name Description Set by EB GUIDE
GTF

touchShortRe-

leased

The widget's reaction on being released

Reaction arguments:

yes

EB GUIDE Studio
Chapter 15. References

Page 421 of 471

Property name Description Set by EB GUIDE
GTF

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the
widget

15.11.5.15. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Restrictions:

► Adding the Touch status changed widget feature automatically adds the Touched widget feature.

Table 15.208. Properties of the Touch status changed widget feature

Property name Description Set by EB GUIDE
GTF

touchSta-

tusChanged

The widget's reaction on changes of its touch status

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked
or released

► x: The x-coordinate

► y: The y-coordinate

► touchStatus: The ID of the type of touch

Possible values:

► 0: new contact

► 1: touch press

► 2: touch move

► 3: touch released

► 4: movement without touch

► 5: touch gone

► fingerId: The ID of the contact that moves across the
widget

yes

EB GUIDE Studio
Chapter 15. References

Page 422 of 471

15.11.6. Layout

15.11.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Restrictions:

► The Absolute layout widget feature excludes the following widget features:

► Box layout

► Flow layout

► Grid layout

► List layout

Table 15.209. Properties of the Absolute layout widget feature

Property name Description Set by EB GUIDE
GTF

itemLeftOffset An integer list that stores the offset from the left border for the
child widgets. Each list element is mapped to a child widget.

no

itemTopOffset An integer list that stores the offset from the top border for the
child widgets. Each list element is mapped to a child widget.

no

itemRightOffset An integer list that stores the offset from the right border for the
child widgets. Each list element is mapped to a child widget.

no

itemBottomOff-

set

An integer list that stores the offset from the bottom border for
the child widgets. Each list element is mapped to a child widget.

no

15.11.6.2. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Box layout widget feature excludes the following widget features:

► Absolute layout

► Flow layout

EB GUIDE Studio
Chapter 15. References

Page 423 of 471

► Grid layout

► List layout

Table 15.210. Properties of the Box layout widget feature

Property name Description Set by EB GUIDE
GTF

gap The space between two child widgets, depending on the layout
direction

no

layoutDirection The direction in which the list elements i.e. the child widgets are
positioned. Possible values:

► horizontal (0)

► vertical (1)

no

15.11.6.3. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Flow layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Grid layout

► List layout

Table 15.211. Properties of the Flow layout widget feature

Property name Description Set by EB GUIDE
GTF

horizontalGap The horizontal space between two child widgets no

verticalGap The vertical space between two child widgets no

layoutDirection The direction in which the list elements i.e. the child widgets are
positioned. Possible values:

► horizontal (0)

► vertical (1)

no

EB GUIDE Studio
Chapter 15. References

Page 424 of 471

Property name Description Set by EB GUIDE
GTF

horizontal-

ChildAlign

The horizontal alignment of child widgets. Possible values:

► leading (0): The child widget is placed on the left side.

► center (1): The child widget is placed in the center.

► trailing (2): The child widget is placed on the right
side.

no

vertical-

ChildAlign

The vertical alignment of child widgets. Possible values:

► center (0): The child widget is placed in the center.

► top (1): The child widget is placed at the top

► bottom (2): The child widget is placed at the bottom.

no

15.11.6.4. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Grid layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► List layout

Table 15.212. Properties of the Grid layout widget feature

Property name Description Set by EB GUIDE
GTF

horizontalGap The horizontal space between two child widgets no

verticalGap The vertical space between two child widgets no

numRows Defines the number of rows no

numColumns Defines the number of columns no

15.11.6.5. Layout margins

EB GUIDE Studio
Chapter 15. References

Page 425 of 471

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout, Ab-
solute layout, Box layout, or Grid layout widget feature.

Table 15.213. Properties of the Layout margins widget feature

Property name Description Set by EB GUIDE
GTF

leftMargin The margin of the left border no

topMargin The margin of the top border no

rightMargin The margin of the right border no

bottomMargin The margin of the bottom border no

15.11.6.6. List layout

The List layout widget feature defines position and size of each child widget in pixels.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, see section 15.11.7.2, “List index”.

Restrictions:

► The List layout widget feature is intended to be used with instantiator.

► The List layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► Grid layout

Table 15.214. Properties of the List layout widget feature

Property name Description Set by EB GUIDE
GTF

layoutDirection The direction in which the list elements i.e. the child widgets are
positioned. Possible values:

► horizontal (0)

► vertical (1)

no

scrollOffset The number of pixels to scroll the list yes

EB GUIDE Studio
Chapter 15. References

Page 426 of 471

Property name Description Set by EB GUIDE
GTF

scrollOffsetRe-

base

If the scrollOffsetRebase property changes, the current
scrollOffset is translated to scrollIndex. The remaining
offset is written to the scrollOffset property.

no

firstListIndex The list index of the first visible list element, defined by the wid-
get feature

yes

scrollIndex The base list index the scrollOffset property applies to.
Scrolling starts at the list elements given in the scrollIndex
property.

yes

scrollValue The current scroll value in pixels yes

scrollValueMax The maximum scroll value in pixels, which is mapped to the end
of the list

no

scrollValueMin The minimum scroll value in pixels, which is mapped to the be-
ginning of the list

no

bounceValue The bounceValue property is zero as long as the
scrollOffset property results in a position inside the valid
scroll range. It has a positive value if the scroll position exceeds
the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to
scrollOffset, the scroll position is back in range.

yes

bounceValueMax The maximum value which scrollOffset can move outside
the valid scroll range. scrollOffset is truncated if the user
tries to scroll further.

no

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

no

listLength The number of list elements no

wrapAround Possible values:

► true: The scrollValue property continues at the inverse
border, if scrollValueMin or scrollValueMax is ex-
ceeded.

► false: The scrollValue property does not decrease/in-
crease, if scrollValueMin or scrollValueMax is ex-
ceeded.

no

15.11.6.7. Scale mode

EB GUIDE Studio
Chapter 15. References

Page 427 of 471

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

Restrictions:

► The Scale mode widget feature is only available for the Image widget.

Table 15.215. Properties of the Scale mode widget feature

Property name Description Set by EB GUIDE
GTF

scaleMode The scale mode of the image. Possible values:

► original size (0)

► fit to size (1)

► keep aspect ratio (2)

no

15.11.7. List management

15.11.7.1. Line index

The Line index widget feature defines the unique position for each line of your list or table.

Restrictions:

► The Line index widget feature is intended to be used in combination with the Instantiator widget.

Table 15.216. Properties of the Line index widget feature

Property name Description Set by EB GUIDE
GTF

lineIndex The index of the current line in a table yes

15.11.7.2. List index

The List index widget feature defines the unique position of a widget in a list.

Restrictions:

► The List index widget feature is intended to be used in combination with the List layout widget feature.

EB GUIDE Studio
Chapter 15. References

Page 428 of 471

Table 15.217. Properties of the List index widget feature

Property name Description Set by EB GUIDE
GTF

listIndex The index of the current widget in a list yes

15.11.7.3. Template index

The Template index widget feature defines the unique position of the used line template.

Restrictions:

► The Template index widget feature is intended to be used in combination with the Instantiator widget.

Table 15.218. Properties of the Template index widget feature

Property name Description Set by EB GUIDE
GTF

lineTemplateIn-

dex

The index of the used line template yes

15.11.7.4. Viewport

The Viewport widget feature clips oversized elements at the widget borders.

Restrictions:

► The Viewport widget feature is intended to be used in combination with the Container widget or lists.

► The Viewport widget feature takes effect on the following model elements:

► Child widgets of the widget you added Viewport to are clipped inside the dimensions of the widget.

► The widget you added Viewport is clipped inside the dimensions of its parent view.

Table 15.219. Properties of the Viewport widget feature

Property name Description Set by EB GUIDE
GTF

xOffset The horizontal offset of the visible clipping within the drawn area
of child widgets

no

yOffset The vertical offset of the visible clipping within the drawn area of
child widgets

no

EB GUIDE Studio
Chapter 15. References

Page 429 of 471

15.11.8. 3D

Widget features in the 3D category are only available for 3D widgets.

15.11.8.1. Anti-aliasing mode

Table 15.220. Properties of the Anti-aliasing mode widget feature

Property name Description Set by EB GUIDE
GTF

antiAliasing Defines the anti-aliasing mode for a scene graph. This overrides
the configuration of the scene. To use the same value that is
configured in the scene use Global (5).

► off (0)

► MSAA 2x (1)

► MSAA 4x (2)

► MSAA 8x (3)

► FXAA (4)

► global (5)

no

15.11.8.2. Camera bloom

The Camera bloom widget feature is a post-processing effect. It produces fringes of light extending from the
borders of bright areas in an image, contributing to the illusion of an extremely bright light overwhelming the
camera or eye capturing the scene.

Restrictions:

► The Camera bloom widget feature is only available for the camera.

Table 15.221. Properties of the Camera bloom widget feature.

Property name Description Set by EB GUIDE
GTF

enabled If true, the bloom effect is applied to the camera. no

threshold The intensity (brightness) value that defines the split between
the affected areas. Possible values are between 0.0 and 1.0.

no

EB GUIDE Studio
Chapter 15. References

Page 430 of 471

Property name Description Set by EB GUIDE
GTF

If the Tone mapping widget feature is added to the parent
scene graph, the threshold can be greater than 1.0.

strength Strength of the bloom effect. no

radius The radius of the glow. no

Figure 15.3. Example for objects without bloom effect (left) and with bloom effect (right)

15.11.8.3. Camera depth of field

The Camera depth of field widget feature is a post-processing effect. It simulates the focus properties of a
camera lens by focusing sharply only on an object at a specific distance. Objects that are nearer or farther
from the camera appear blurred.

Restrictions:

► The Camera depth of field widget feature is only available for the Camera widget.

Table 15.222. Properties of the Camera depth of field widget feature

Property name Description Set by EB GUIDE
GTF

enabled If true, the depth of field effect is applied to the camera. no

focusDistance Distance from the camera position, in world space. It should be
between the nearPlane and farPlane property of the cam-
era.

no

fStop Defines the size of the focus region. no

EB GUIDE Studio
Chapter 15. References

Page 431 of 471

Figure 15.4. Example for objects with depth of field effect off (left) and with depth of field effect on (right)

15.11.8.4. Camera viewport

The Camera viewport widget feature defines the camera's drawing region within the scene graph.

Restrictions:

► The Camera viewport widget feature is available for the Camera widget.

Table 15.223. Properties of the Camera viewport widget feature

Property name Description Set by EB GUIDE
GTF

viewportX The x-origin of the viewport within the scene graph no

viewportY The y-origin of the viewport within the scene graph no

viewportWidth The viewport's width in pixels no

viewportHeight The viewport's height in pixels no

15.11.8.5. Clear coat

The Clear coat widget feature adds a reflection layer to simulate a multi-layer surface.

Restrictions:

► The Clear coat widget feature is available for the PBR GGX material and PBR Phong material widgets.

Table 15.224. Properties of the Clear coat widget feature

Property name Description Set by EB GUIDE
GTF

clearCoatStrength The strength of the clear coat layer. Possible values are be-
tween 0.0 and 1.0.

no

EB GUIDE Studio
Chapter 15. References

Page 432 of 471

Property name Description Set by EB GUIDE
GTF

clearCoatRough-

ness

Perceived roughness of the clear coat layer. Possible values
are between 0.0 and 1.0.

no

15.11.8.6. Ambient texture

The Ambient texture widget feature adds extended configuration values to a material.

Restrictions:

► The Ambient texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

► When the Ambient texture is added, the ambient property is ignored.

Table 15.225. Properties of the Ambient texture widget feature

Property name Description Set by EB GUIDE
GTF

ambientTexture The file name of the texture no

ambientTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

ambientTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

ambientFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

no

EB GUIDE Studio
Chapter 15. References

Page 433 of 471

Property name Description Set by EB GUIDE
GTF

► trilinear (2): Most expensive, but yields better results
than linear filtering.

ambientSRGB If this property is enabled, the texture that is selected in ambi-
entTexture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

no

15.11.8.7. Anisotropy

The Anisotropy widget feature adds an anisotropic reflection to a surface. Materials with grooves, scratches
or fibers on the surface, like brushed metal, can be replicated using an anisotropic model.

Restrictions:

► The Anisotropy widget feature is available for the PBR GGX material widget.

► For correct shading the tangent vectors must be available in the mesh.

Table 15.226. Properties of the Anisotropy widget feature

Property name Description Set by EB GUIDE
GTF

anisotropy Amount and direction of anisotropic reflection. Positive val-
ues give elongated highlights shaped along the bitangent di-
rection. Negative values give highlights shaped along the tan-
gent direction. Possible values are between -1.0 and 1.0.

no

15.11.8.8. Diffuse texture

The Diffuse texture widget feature adds extended configuration values to a material.

Restrictions:

► The Diffuse texture widget feature is available for the Material and PBR Phong material widgets.

For PBR GGX material, the Base color texture widget feature is available. For more information see
section 15.11.8.9, “Base color texture”.

EB GUIDE Studio
Chapter 15. References

Page 434 of 471

► When the Diffuse texture is added, the diffuse property is ignored.

Table 15.227. Properties of the Diffuse texture widget feature

Property name Description Set by EB GUIDE
GTF

diffuseTexture The file name of the texture no

diffuseTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

diffuseTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

diffuseFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

diffuseSRGB If this property is enabled, the texture that is selected in dif-
fuseTexture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

no

15.11.8.9. Base color texture

The Base color texture widget feature adds extended configuration values to a PBR GGX material.

Restrictions:

EB GUIDE Studio
Chapter 15. References

Page 435 of 471

► The Base color texture widget feature is available for the PBR GGX material widget.

For material or PBR Phong material, the Diffuse texture widget feature is available. For more information
see section 15.11.8.8, “Diffuse texture”.

► When the Base color texture is added, the baseColor property is ignored.

Table 15.228. Properties of the Base color texture widget feature

Property name Description Set by EB GUIDE
GTF

baseColorTex-

ture

The file name of the texture no

baseColorTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

baseColorTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

baseColorFil-

terMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

baseColorSRGB If this property is enabled, the texture that is selected in baseC-
olorTexture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

no

EB GUIDE Studio
Chapter 15. References

Page 436 of 471

15.11.8.10. Emissive texture

The Emissive texture widget feature adds extended configuration values to a material.

Restrictions:

► The Emissive texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

► When the Emissive texture is added, the emissive property is ignored.

Table 15.229. Properties of the Emissive texture widget feature

Property name Description Set by EB GUIDE
GTF

emissiveTexture The file name of the texture no

emissiveTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

emissiveTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

emissiveFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

emissiveSRGB If this property is enabled, the texture that is selected in emis-
siveTexture, is rendered using sRGB color space.

no

EB GUIDE Studio
Chapter 15. References

Page 437 of 471

Property name Description Set by EB GUIDE
GTF

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

15.11.8.11. Light map texture

The Light map texture widget feature adds extended configuration values to a material.

Restrictions:

► The Light map texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

Table 15.230. Properties of the Light map texture widget feature

Property name Description Set by EB GUIDE
GTF

lightMapTexture The file name of the texture no

lightMapTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

lightMapTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

lightMapFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

no

EB GUIDE Studio
Chapter 15. References

Page 438 of 471

Property name Description Set by EB GUIDE
GTF

► trilinear (2): Most expensive, but yields better results
than linear filtering.

15.11.8.12. Metallic texture

The Metallic widget feature adds extended configuration values to a material. The texture controls the metallic
parameter of the PBR GGX material and PBR Phong material widgets.

Restrictions:

► The Metallic texture widget feature is available for the PBR GGX material and PBR Phong material wid-
gets.

► The Metallic texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Metallic texture is added, the metallic property is ignored.

Table 15.231. Properties of the Metallic texture widget feature

Property name Description Set by EB GUIDE
GTF

metallicTexture The file name of the texture no

metallicMinFac-

tor

The minimal metallic parameter as a float to interpolate the tex-
ture values

no

metallicMaxFac-

tor

The maximal metallic parameter as a float to interpolate the tex-
ture values

no

metallicTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

metallicTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

EB GUIDE Studio
Chapter 15. References

Page 439 of 471

Property name Description Set by EB GUIDE
GTF

metallicFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

15.11.8.13. Normal map texture

The Normal map widget feature adds extended configuration values to a material.

Restrictions:

► The Normal map texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

Table 15.232. Properties of the Normal map widget feature

Property name Description Set by EB GUIDE
GTF

normalMapTex-

ture

The file name of the texture no

normalMapTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

normalMapTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

EB GUIDE Studio
Chapter 15. References

Page 440 of 471

Property name Description Set by EB GUIDE
GTF

normalMapFil-

terMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

15.11.8.14. Opaque texture

The Opaque texture widget feature adds extended configuration values to a material.

Restrictions:

► The Opaque texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

Table 15.233. Properties of the Opaque texture widget feature

Property name Description Set by EB GUIDE
GTF

opaqueTexture The file name of the texture no

opaqueTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

opaqueTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

opaqueFilter-

Mode

The filter mode of the texture. Possible values: no

EB GUIDE Studio
Chapter 15. References

Page 441 of 471

Property name Description Set by EB GUIDE
GTF

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

15.11.8.15. Reflection texture

The Reflection texture widget feature adds extended configuration values to a material.

Restrictions:

► The Reflection texture widget feature is available for the Material, PBR Phong material, and PBR GGX
material widgets.

Table 15.234. Properties of the Reflection texture widget feature

Property name Description Set by EB GUIDE
GTF

reflectionTop-

Texture

The file name of the texture no

reflectionBot-

tomTexture

The file name of the texture no

reflectionLeft-

Texture

The file name of the texture no

reflection-

RightTexture

The file name of the texture no

reflection-

FrontTexture

The file name of the texture no

reflectionBack-

Texture

The file name of the texture no

reflectionFil-

terMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

no

EB GUIDE Studio
Chapter 15. References

Page 442 of 471

Property name Description Set by EB GUIDE
GTF

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

NOTE Reflection texture widget feature
EB GUIDE Studio displays the Reflection texture widget feature, only when an image file
is selected for all of the following properties:

► reflectionTopTexture

► reflectionBottomTexture

► reflectionLeftTexture

► reflectionRightTexture

► reflectionFrontTexture

► reflectionBackTexture

The image files must have the same size and quadratic shape.

15.11.8.16. Roughness texture

The Roughness texture widget feature adds extended configuration values to a material. The texture controls
the roughness parameter of the PBR GGX material widget.

Restrictions:

► The Roughness texture widget feature is available for the PBR GGX material widget.

► The Roughness texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Roughness texture is active, the roughness property is ignored.

Table 15.235. Properties of the Roughness texture widget feature

Property name Description Set by EB GUIDE
GTF

roughnessTex-

ture

The file name of the texture no

roughnessMin-

Factor

The minimal roughness parameter as a float to interpolate the
texture values

no

EB GUIDE Studio
Chapter 15. References

Page 443 of 471

Property name Description Set by EB GUIDE
GTF

roughnessMax-

Factor

The maximal roughness parameter as a float to interpolate the
texture values

no

roughnessTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

roughnessTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

roughnessFil-

terMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

15.11.8.17. Shininess texture

The Shininess texture widget feature adds extended configuration values to a material. The texture modulates
the shininess strength by multiplying the texture value with the scalar shininess property.

Restrictions:

► The Shininess texture widget feature is available for the Material and PBR Phong material widgets.

► The Shininess texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Shininess texture widget feature is used, the shininess property is ignored.

EB GUIDE Studio
Chapter 15. References

Page 444 of 471

Table 15.236. Properties of the Shininess texture widget feature

Property name Description Set by EB GUIDE
GTF

shininessTex-

ture

The file name of the texture no

shininessMin-

Factor

The minimal shininess parameter as a float to interpolate the
texture values

no

shininessMax-

Factor

The maximal shininess parameter as a float to interpolate the
texture values

no

shininessTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

shininessTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

shininessFil-

terMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

15.11.8.18. Specular texture

The Specular texture widget feature adds extended configuration values to a material.

Restrictions:

► The Specular texture widget feature is available for the Material and PBR Phong material widgets.

EB GUIDE Studio
Chapter 15. References

Page 445 of 471

For PBR GGX material, the Reflectance texture widget feature is available. For more information see
section 15.11.8.19, “Reflectance texture”.

► When the Specular texture is added, the specular property is ignored.

Table 15.237. Properties of the Specular texture widget feature

Property name Description Set by EB GUIDE
GTF

specularTexture The file name of the texture no

specularTex-

tureAddress-

ModeU

The address mode of the texture along the u-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

specularTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

specularFilter-

Mode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

specularSRGB If this property is enabled, the texture that is selected in specu-
larTexture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

no

15.11.8.19. Reflectance texture

EB GUIDE Studio
Chapter 15. References

Page 446 of 471

The Reflectance texture widget feature adds extended configuration values to a PBR GGX material.

Restrictions:

► The Reflectance texture widget feature is available for the PBR GGX material widget.

For the Material and PBR Phong material widgets, the Specular texture widget feature is available. For
more information see section 15.11.8.18, “Specular texture”.

► When the Reflectance texture is added, the reflectance property is ignored.

Table 15.238. Properties of the Reflectance texture widget feature

Property name Description Set by EB GUIDE
GTF

reflectanceTex-

ture

The file name of the texture no

reflectanceTex-

tureAddressMod-

eV

The address mode of the texture along the v-direction. Possible
values:

► repeat (0): When accessed outside the texture bounds,
the texture is repeated. Also known as wrap or tile

► clamp (1): When accessed outside the texture bounds,
the pixels at the edge of the texture are used.

no

reflectance-

FilterMode

The filtering mode of the texture. Possible values:

► point (0): Texture is not smoothed at all. Least expen-
sive but prone to aliasing artifacts when texture is mini-
mized.

► linear (1): Also known as bilinear filtering. Smoothens
the texture when minimized to reduce aliasing artifacts.

► trilinear (2): Most expensive, but yields better results
than linear filtering.

no

reflectanceSRGB If this property is enabled, the texture that is selected in re-
flectanceTexture is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go
to Configure > Profiles and for the colorMode property select
32-bit sRGB (4) or 32-bit sRGB (Emulated) (5).

no

EB GUIDE Studio
Chapter 15. References

Page 447 of 471

15.11.8.20. Texture coordinate transformation

The Texture coordinate transformation widget feature makes it possible to modify the coordinates of the
material texture.

Restrictions:

► This feature is available for the Material, PBR Phong material, and PBR GGX material.

Table 15.239. Properties of the Texture coordinate transformation widget feature

Property name Description Set by EB GUIDE
GTF

uOffset Defines the offset of the texture coordinates in u-direction no

vOffset Defines the offset of the texture coordinates in v-direction no

uScale Defines the scaling of the texture coordinates in u-direction no

vScale Defines the scaling of the texture coordinates in v-direction no

Example 15.4.
Example for Texture coordinate transformation

uOffset: 1.0
vOffset: 1.0
uScale: 1.0
vScale: 1.0

0.5
1.0
1.0
1.0

1.0
0.5
1.0
1.0

1.0
1.0
0.5
0.5

1.0
1.0
3.0
3.0

15.11.8.21. Tone mapping

The Tone mapping widget feature enables tone mapping, i.e. the technique to map a luminance value to a
limited range, for the scene graph.

Restrictions:

► The Tone mapping widget feature is available for the Scene graph widget.

EB GUIDE Studio
Chapter 15. References

Page 448 of 471

Note that the Tone mapping widget feature implements the global tone mapping operator described by Erik
Reinhard et al. 1

Table 15.240. Properties of the Tone mapping widget feature

Property name Description Set by EB GUIDE
GTF

pureWhiteLumi-

nance

The smallest luminance value that is mapped to pure white.
Note that only values bigger or equal to 0 are valid.

no

Figure 15.5. Example for image without tone mapping (left) and with tone mapping (right)

15.11.8.22. Screen space ambient occlusion

The Screen space ambient occlusion widget feature is a post-processing effect. It provides an approximation
of indirect lighting by calculating how ambient light will affect a scene.

Restrictions:

► The Screen space ambient occlusion widget feature is only available for the Scene graph widget.

Table 15.241. Properties of the Screen space ambient occlusion widget feature

Property name Description Set by EB GUIDE
GTF

enabled If true, the effect is applied. no

radius Defines the radius of the samples sphere, in which sample-
sCount will be used, around the point of interest. The value is a
positive value between 0.0 and 1.0.

no

fallOff Inner sphere that defines the minimal distance, beginning with
which points can be occluded. The value is a positive value be-

no

1Photographic tone reproduction for digital images Reinhard, Erik et al. in "Proceedings of the 29th annual conference on Computer
graphics and interactive techniques" 2002, Pages 267-276

EB GUIDE Studio
Chapter 15. References

Page 449 of 471

Property name Description Set by EB GUIDE
GTF

tween 0.0 and 1.0. The value should be lower than the value of
radius.

samples Number of samples in the samples sphere. The higher the num-
ber, the higher the quality of occlusion. Value is between 8 and
64 samples.

no

radius

fallOff

point of
interest

samples
is applied

occluded
points

Figure 15.6. Sample sphere and properties of the Screen space ambient occlusion widget feature

Figure 15.7. Example for objects with Screen space ambient occlusion off (left) and on (right)

15.11.9. Transformation
The widget features of the category Transformation modify location, form, and size of widgets.

EB GUIDE Studio
Chapter 15. References

Page 450 of 471

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

6. Rotation around x-axis

15.11.9.1. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

Restrictions:

► Adding the Pivot widget feature automatically adds the Rotation, Scaling and Shearing widget features.

Table 15.242. Properties of the Pivot widget feature

Property name Description Set by EB GUIDE
GTF

pivotX The pivot point on the x-axis relative to parent widget no

pivotY The pivot point on the y-axis relative to parent widget no

pivotZ The pivot point on the z-axis relative to parent widget if widget is
a scene graph

no

15.11.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 15.243. Properties of the Rotation widget feature

Property name Description Set by EB GUIDE
GTF

rotationEnabled Defines whether rotation is used or not no

rotationAngleX The rotation angle on the x-axis. This property only affects
scene graph.

no

EB GUIDE Studio
Chapter 15. References

Page 451 of 471

Property name Description Set by EB GUIDE
GTF

rotationAngleY The rotation angle on the y-axis. This property only affects
scene graph.

no

rotationAngleZ The rotation angle on the z-axis no

15.11.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 15.244. Properties of the Scaling widget feature

Property name Description Set by EB GUIDE
GTF

scalingEnabled Defines whether scaling is used or not no

scalingX The scaling on the x-axis in percent no

scalingY The scaling on the y-axis in percent no

scalingZ The scaling on the z-axis in percent if widget is a scene graph no

15.11.9.4. Shearing

The Shearing widget feature is used to distort the widget and its subtree.

Table 15.245. Properties of the Shearing widget feature

Property name Description Set by EB GUIDE
GTF

shearingEnabled Defines whether shearing is used or not no

shearingXbyY The shearing of x-axis by y-axis no

shearingXbyZ The shearing of x-axis by z-axis if widget is a scene graph no

shearingYbyX The shearing of y-axis by x-axis no

shearingYbyZ The shearing of y-axis by z-axis if widget is a scene graph no

shearingZbyX The shearing of z-axis by x-axis if widget is a scene graph no

shearingZbyY The shearing of z-axis by y-axis if widget is a scene graph no

15.11.9.5. Translation

EB GUIDE Studio
Chapter 15. References

Page 452 of 471

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 15.246. Properties of the Translation widget feature

Property name Description Set by EB GUIDE
GTF

translationEn-

abled

Defines whether translation is used or not no

translationX The translation on the x-axis no

translationY The translation on the y-axis no

translationZ The translation on the z-axis if widget is a scene graph no

EB GUIDE Studio
Chapter 16. Installation of EB GUIDE Studio

Page 453 of 471

16. Installation of EB GUIDE Studio

16.1. Background information

16.1.1. Restrictions

NOTE Compatibility
EB GUIDE product line 6 is not compatible with any previous major version.

NOTE User rights
To install EB GUIDE on Windows 10 systems, you require administrator rights.

16.1.2. System requirements

Observe the following settings:

Table 16.1. Recommended settings for EB GUIDE Studio

Hardware PC with quad core CPU with at least 2 GHz CPU
speed and 8 GB RAM

Operating system Windows 10 (64-bit)

Screen resolution 1920 x 1080 pixels or more

Two separate monitors recommended

Software Microsoft .NET Framework 4.7.2 or later

Table 16.2. Recommended settings for EB GUIDE SDK

Development environment (IDE) Microsoft Visual Studio 2013 or newer

File integration CMake

EB GUIDE Studio
Chapter 16. Installation of EB GUIDE Studio

Page 454 of 471

16.2. Downloading EB GUIDE
To download the community edition of EB GUIDE, go to https://www.elektrobit.com/ebguide/try-eb-guide/ and
follow the instructions.

To download the enterprise edition of EB GUIDE, go to EB Command.

NOTE Activate your account
After ordering a product, you receive an email from sales department. Click the link in the
email. Follow the steps to create an account as directed in the email and in the browser,
then proceed to log in.

EB Command is the server from which you are going to download the EB GUIDE product line software. For
the instructions on how to download from EB Command, see https://www.elektrobit.com/support/download-
ing-from-eb-command/.

16.3. Installing EB GUIDE

Installing EB GUIDE

Prerequisite:

■ You downloaded the setup file studio_setup.exe.
■ You have administrator rights on the operating system.

Step 1
Double-click the setup file studio_setup.exe.

A dialog opens.

Step 2
Click Yes.

The Setup - EB GUIDE Studio dialog opens.

Step 3
Accept the license agreement and click Next.

Step 4
Select a folder for installation.

The default installation folder is C:/Program Files/Elektrobit/EB GUIDE <version>.

https://www.elektrobit.com/ebguide/try-eb-guide/
https://www.elektrobit.com/support/downloading-from-eb-command/
https://www.elektrobit.com/support/downloading-from-eb-command/

EB GUIDE Studio
Chapter 16. Installation of EB GUIDE Studio

Page 455 of 471

Step 5
Click Next.

A summary dialog displays all selected installation settings.

Step 6
To confirm the installation with the settings displayed, click Install.

The installation starts.

Step 7
To exit the setup click Finish.

You have installed EB GUIDE.

TIP Multiple installations
It is possible to install more than one EB GUIDE versions.

16.4. Uninstalling EB GUIDE

Uninstalling EB GUIDE

NOTE Removing EB GUIDE permanently
If you follow the instruction, you remove EB GUIDE permanently from your PC.

Prerequisite:

■ EB GUIDE is installed.
■ You have administrator rights on the operating system.

Step 1
On the Windows Start menu, click All Programs.

Step 2
On Elektrobit menu, click the version you want to uninstall.

Step 3
On the submenu, click Uninstall.

Glossary

Page 456 of 471

Glossary

#
3D graphic A 3D graphic is a virtual picture of a 3D scene. A 3D scene is a collection of 3D

models (meshes or shapes), materials, light sources, and cameras. Materials
define the visual appearance of 3D models through colors and textures and
the behavior under virtual lighting. A camera provides the view point from
where a virtual picture of the 3D scene is taken.

A
ADAS ECU Advanced Driver Assistance System Electronic Control Unit

Open scalable platform based on ISO 26262 hardware design and software
architecture that hosts algorithms from Autoliv, customers, or third parties.

ADASIS Advanced Driver Assistance System Interface Specifications

anti-aliasing Technique used in computer graphics to remove the aliasing effect. The an-
ti-aliasing effect gives graphics a smoother appearance.

API Application programming interface

application In the context of EB GUIDE, an application is computer software that interacts
with one or more EB GUIDE models at EB GUIDE GTF run-time by means of,
for example, the event system and datapool. An application is, for example,
entertainment software like media player, communication software like phone,
etc.
See Also API.

aspect In EB GUIDE, an aspect is an appearance-related modification of an EB
GUIDE model that is applied at EB GUIDE GTF run-time. Two types of as-
pects exist: skins, with which you can define different looks for your EB GUIDE
model, and languages.

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

Glossary

Page 457 of 471

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE arware EB GUIDE arware is a software framework that enables the creation of aug-

mented reality solutions to enhance the driving experience.

EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product
line and is part of EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the sum of all elements that defines the look and
behavior of an HMI. It is built entirely in EB GUIDE Studio. You can simulate
the EB GUIDE model on your PC.

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE project An EB GUIDE project consists of an EB GUIDE model and settings that are
needed for running the EB GUIDE model on the target device.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

Glossary

Page 458 of 471

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of EB GUIDE. It consists of EB
GUIDE GTF. It is required to run an EB GUIDE model.

extension In EB GUIDE, an extension is an addition to any of the EB GUIDE products.
An extension is a plug-in in form of libraries (.dll or .so files) that add a
certain functionality to EB GUIDE Studio, EB GUIDE GTF, or EB GUIDE Mon-
itor. Such functionality could be, for example, a data exporter or an additional
widget feature.

G
GL Graphics library

GPS Global Positioning System

GUI Graphical user interface

H
HMI human machine interface

HMI model An HMI model is the sum of all elements that defines the look and behavior
of an HMI. It is created with an HMI software tool.

I
IPC Inter-process communication

IBL image-based lighting

IBLGenerator IBLGenerator is the tool to process environment lighting information.

L
library A library is a collection of pre-compiled software parts, sub-routines, or pro-

grams that are used in EB GUIDE. Libraries that are necessary for an EB
GUIDE project are defined in the project center. Two file types are supported:
.dll and .so.

Glossary

Page 459 of 471

M
MEF Managed Extensibility Framework. See https://docs.microsoft.com/en-us/dot-

net/framework/mef/.

model element A model element is an object within an EB GUIDE model, for example a state,
a widget, or a datapool item.
See Also EB GUIDE model.

model interface The defined set of model elements that are used for the communication be-
tween exported EB GUIDE models on the target device.

multifont support Aggregation of multiple fonts for different character ranges acting as a single
font.

MVC Model-view-controller

N
namespace In EB GUIDE Studio, with namespaces you create groups of model elements

like datapool items and events. These groups have usually a defined function-
ality. Each namespace creates a naming scope for model elements so that
model elements in different namespaces can have the same name.

O
OS Operating system

P
PBR Physically-based rendering

profile In the project center, a profile is a set of specifications. In a profile you define li-
braries, messages and scenes for your project. During export of an EB GUIDE
model the data in the profile is written to the model.json configuration file.

project center All project-related functions are located in the project center, for example pro-
files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

R

https://docs.microsoft.com/en-us/dotnet/framework/mef/
https://docs.microsoft.com/en-us/dotnet/framework/mef/

Glossary

Page 460 of 471

resource A resource is a data package that is part of the EB GUIDE project. Examples
for resources are fonts, images, meshes. Resources are stored outside of the
EB GUIDE model, for example in files, depending on the operating system.

RomFS Read-only memory file system

S
shared library A shared library, as opposed to a static library, can be loaded when preparing

a program for execution. On Windows platforms shared libraries are called
dynamic link libraries and have a .dll file extension. On Unix systems shared
libraries are called shared objects and have an .so file extension.

state A state defines the status of the state machine. States and state transitions
are modeled in state charts.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

VTA View transition animation

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

WPF Windows Presentation Foundation. See https://docs.microsoft.com/en-us/
dotnet/framework/wpf/.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/

Index

Page 461 of 471

Index
Symbols
.psd file format, 163
3D graphics, 38, 86, 87, 456

adding, 162
image-based lighting, 86
importing, 39, 295
meshes, 87
supported formats, 38, 86, 87

3D objects, 38
3D widgets, 38, 86, 87, 125

references, 391

A
absolute layout

references, 422
actions

adding, 142
ADAS ECU, 456
ADASIS, 456
adding entry animation, 155
alpha mask

adding, 161
references, 380

Alpha mask
adding, 161

ambient lights
references, 391

ambient texture
references, 432

Animation, 41
adding, 153

animation curves, 41
animations, 41

adding, 289, 312
adding change animations, 155
change animations, 42
colors, 160
datapool items, 159
entry animations, 42, 154

exit animations, 42, 154
rearranging animations, 156
references, 381
script curves, 44
view transitions, 154
widgets, 153

anisotropy
references, 433

anti-aliasing, 44, 456
API (see application programming interface)
application programming interface, 45, 456
applications, 456
aspects, 456

languages, 74
skins, 103

auto focus
references, 407

auto-hide, 58

B
base color texture

references, 434
basic widgets, 125

references, 379
best practices

conditional scripts, 263
boolean

data types, 323
boolean lists

data types, 323
border

references, 404
box layout

references, 422
buttons

user interface, 365

C
camera bloom

references, 429
camera depth of field

references, 430

Index

Page 462 of 471

camera viewport
references, 431

cameras
references, 391

change animations, 155
references, 379

character
position, 187

child visibility selection
references, 398

circular text, 193
references, 405

clear coat
reference, 431

coloration
references, 405

colors
data types, 323

command area
project editor, 55

command line, 235, 321
EB GUIDE Monitor options, 322
exporting, 228
options for EB GUIDE Studio, 321
syntax, 321
validating, 226

command line interpreter (see command line)
communication context, 456

adding, 217
reader application, 45
writer application, 45

components
docking, 58
undocking, 58

conditional scripts
data types, 324

conditions
adding, 141

console (see command line)
constant curves

references, 382
Container

adding, 150
containers

adding, 150
references, 387

content area
project center, 47
project editor, 51

copy
datapool items, 215
events, 210

D
data types

boolean, 323
boolean lists, 323
colors, 323
conditional scripts, 324
floats, 324
fonts, 325
Function () : bool, 325
ibl, 325
images, 326
integers, 326
linking, 172
lists, 327
mesh lists, 327
meshes, 327
references, 323
strings, 327

datapool, 59, 457
accessing with EB GUIDE Script, 96
concepts, 59
datapool items, 59
windowed lists, 60

datapool items, 457
adding, 214
adding language support, 291
animating, 158
changing in EB GUIDE Monitor, 246
copying, 215
deleting, 220
editing lists, 215

Index

Page 463 of 471

exporting, 233
importing, 234
linking, 172, 218
pasting, 215
references, 323

diffuse texture
references, 433

directional lights
references, 391

display
configuring, 232

docking
components, 58

dynamic state machines
adding, 134, 264

E
easing, 41
EB GUIDE arware, 457
EB GUIDE extensions (see extensions)
EB GUIDE GTF, 457
EB GUIDE GTF extensions, 69, 457
EB GUIDE GTF SDK, 457
EB GUIDE model, 457

simulating, 226
validating, 225

EB GUIDE models, 60
.gdata, 61
export set, 227
exporting, 227
exporting languages, 227
exporting skins, 227
exporting using command line, 228
model elements, 61
storage format, 61
validating, 64, 65

EB GUIDE Monitor, 65
changing datapool items, 246
changing language, 242
command line, 241
components, 56, 58
configuring, 242

connection, 242
exporting watch list, 252
firing events, 245
importing watch list, 252
loading configuration, 244
monitor.cfg, 244
scripting example, 247
simulating, 226
stand-alone, 241
starting, 241
starting scripts, 251
tabs, 56

EB GUIDE Monitor extensions, 69, 457
EB GUIDE product line, 457
EB GUIDE project, 457
EB GUIDE projects, 60
EB GUIDE Script, 88, 457

best practices, 263
comments, 89
converting, 216
datapool access, 96
events, 99
expressions, 90
foreign function calls, 95
functions, 330
identifiers, 88
if-then-else, 94
keywords, 328
l-values, 92
lists, 98
local variables, 92
minimal evaluation, 94
operators, 329
prefixes, 88
r-values, 92
references, 328, 329, 330
scripted values, 101
short-circuit evaluation, 94
standard library, 101
string formatting, 101
todo comments, 89
types, 89

Index

Page 464 of 471

using functions, 272
while loops, 93
widget properties, 97

EB GUIDE SDK, 457
EB GUIDE Studio, 457
EB GUIDE Studio extensions, 68, 457
EB GUIDE Studio SDK, 457
EB GUIDE TF, 457
effect

widget feature, 404
Ellipse

adding, 146
editing, 147

ellipses
references, 388

emissive texture
references, 436

enabled
references, 398

entry actions (see states)
entry animations, 155

references, 379
event groups

adding, 211
event system, 66
events, 66

adding, 209
adding parameters, 210
copying, 210
deleting, 213
EB GUIDE Script functions, 99
event group, 66
event ID, 66
firing in EB GUIDE Monitor, 245
key events, 363
mapping keys, 211
pasting, 210
references, 363

exit actions (see states)
exit animations, 154

references, 379
export

language-dependent texts, 233
extension developers, 19

required knowledge, 19
extensions, 68, 457

EB GUIDE model, 256
EB GUIDE Studio, 255
EB GUIDE UI, 258

F
fast start curves

references, 382
finger ID, 122
flick gesture

references, 408
floats

data types, 324
flow layout

references, 423
focused

references, 398
font

changing, 184
Font metrics

ascender, 187
descender, 187

font metrics
references, 399

font settings
changing, 183

fonts, 83
bitmap fonts, 83
data types, 325
multifont support, 84
opentype fonts, 83
truetype fonts, 83

Function () : bool
data types, 325

G
gamma

rendering, 300
gamma correction

Index

Page 465 of 471

concepts, 71
rendering, 71

gesture IDs
references, 411

gestures, 121
finger ID, 122
multi-touch input, 122
non-path gestures, 121
path gestures, 122
references, 408, 414

Global Positioning System, 458
graphics library, 458
grid layout

references, 424
GUI (see user interface)

H
HMI model, 458
hold gesture

references, 409
human machine interface, 458

I
IBL (see image-based lighting)
ibl

data types, 325
IBLGenerator, 73, 458
icons

user interface, 365
Image

adding, 148
Image-based light, 73

adding, 164
image-based lighting, 73, 86

IBLGenerator, 73
importing, 164
rendering, 74

image-based lightings, 458
image-based lights

references, 392
images

9-patch, 86

adding, 148
data types, 326
references, 388
supported formats, 86

import
language-dependent texts, 234

Instantiator
adding, 151

instantiators
adding, 151
line template, 151
line templates, 389
references, 389
using, 281

integers
data types, 326

inter-process communication, 458
internal transitions

adding, 143
IPC, 458

K
key pressed

references, 414
key released

references, 414
key status changed

references, 415
key unicode

references, 415
keyboard keys, 211
keyboard shortcuts (see shortcuts)

L
Label

adding, 149
label

character position, 187
circular text, 193
text position, 187

Label settings
changing, 183

Index

Page 466 of 471

labels
adding, 149
references, 389

language-dependent texts, 291
exporting, 233
importing, 234

languages, 194
adding, 194
changing, 228, 291
deleting, 195
export, 74, 196
exporting, 75, 227
importing, 75
language support, 74

layout margins
references, 424

libraries (see extensions)
adding, 229

light map texture
references, 437

line index
references, 427

line spacing
changing, 185

linear curves
references, 386

linear interpolation curves
references, 387

linear interpolation integer curve
adding, 289

lineGap, 185
lineOffset, 185
links

datapool items, 218
widget property to datapool item, 171
widget property to widget property, 168

list index
references, 427

list layout
references, 425

lists
creating, 281

data types, 327
editing, 215
linking, 172

long hold gesture
references, 410

M
materials

PBR GGX materials, 393, 459
PBR Phong materials, 394, 459
references, 392, 393, 394

mesh lists
data types, 327

meshes, 87
data types, 327
references, 393

metallic texture
references, 438

model elements, 61, 459
deleting, 138
renaming, 224
renaming globally, 224

model interface, 60, 459
importing, 238

model interfaces, 80
adding, 236
datapool items, 80
deleting, 239
event groups, 81
events, 80
exporting, 237
namespaces, 81

model view controller, 459
modelers, 18

required knowledge, 18
move in

references, 416
move out

references, 416
move over

references, 417
moveable

Index

Page 467 of 471

references, 417
multifont support, 84, 459

adding, 190
adding for type list font, 191

multiple lines
references, 399

multisampling (see anti-aliasing)

N
namespaces, 78, 459

adding, 206
adding model elements, 207
deleting, 208
moving model elements, 207
renaming, 206

naming
model elements, 64

navigation area
project center, 46

navigation component
project editor, 48

normal map texture
references, 439

O
opaque texture

references, 440
operating systems, 459

P
paste

datapool items, 215
events, 210

path gesture
references, 410

path gestures
adding, 279
references, 411

Photoshop file format, 82
extracting, 82
importing, 82

pinch gesture

references, 412
pivot

references, 450
plug-ins (see extensions)
point lights

references, 395
pop-up off animations

references, 379
pop-up on animations

references, 379
pressed

references, 400
problems component

project editor, 56
profiles, 228, 459

adding, 229
cloning, 229

progress bar
modelling, 316

project center, 46, 459
content area, 47
navigation area, 46

project editor, 47, 459
command area, 54
content area, 51
navigation component, 48
problems component, 56
templates component, 56
toolbox, 50
toolbox component, 50
VTA component, 56

projects
creating, 222
exporting, 226
opening, 222
simulating, 226
validating, 225

properties component
best practices, 263
command area, 50
project editor, 50

PSD (see Photoshop file format)

Index

Page 468 of 471

Q
quadratic curves

references, 384

R
read-only memory file system, 459
rectangles

references, 390
reflectance texture

references, 445
reflection texture

references, 441
renderer

configuring, 232
rendering

gamma correction, 71
resource

image-based lighting, 86
resource management (see resources)
resources, 82, 459

.psd file format, 82
3D graphics, 86, 87
fonts, 83
images, 86
meshes, 87
Photoshop file format, 82
PSD, 82

revision control system, 61
rotary

references, 418
rotate gesture

references, 413
rotation

references, 450
roughness texture

references, 442

S
scale mode

references, 426
scaling

references, 451

Scene graph, 38
adding, 162
customizing, 295

scene graph nodes
references, 396

scene graphs, 38, 86, 87
adding, 162
customizing, 295
references, 396

scenes
configuring, 232, 371
references, 371

Screen space ambient occlusion
references, 448

script curve
adding, 312

script curves, 44
references, 385

scripted values, 101
best practices, 263
converting, 216

selected
references, 401

selection group
references, 401

shared libraries, 460
shearing

references, 451
shell (see command line)
shininess texture

references, 443
shortcuts

user interface, 372
simulation, 226
sinus curves

references, 385
skins

adding, 197
deleting, 199
export, 103, 200
exporting, 227
support, 103

Index

Page 469 of 471

switching, 199
slow start curve

references, 383
specular texture

references, 444
spinning

references, 402
spot lights

references, 397
state, 268
state machines, 104, 460

adding, 131
adding actions to transitions, 142
adding conditions to transitions, 141
adding dynamic state machines, 134
adding internal transitions, 143
comparison to UML, 119
deleting, 133
Dynamic state machine, 104
entry actions, 132
executing, 116
exit actions, 132
haptic, 104
Haptic state machine, 104
logic, 104
Logic state machine, 104
Main state machine, 104
states, 106, 116
Transition, 113
transitions, 113, 116
UML 2.5 notation, 119
using transitions, 139
using triggers for transitions, 141

states, 106, 116, 460
adding, 135
adding a Choice state, 136
adding to a Compound state, 135
Choice state, 108
choice states, 108
Compound state, 107
compound states, 107
connecting, 139

Deep history state, 109
deep history states, 109
deleting, 138
entry actions, 137
exit actions, 137
Final state, 112
final states, 112
history states, 109
Initial state, 107
initial states, 107
Shallow history state, 109
shallow history states, 109
using transitions, 138
View state, 107
view states, 107

strings
data types, 327

stroke
references, 406

T
template index

references, 428
template interface

adding property, 202
removing property, 202

templates, 127
adding, 201
creating, 201
deleting, 203
template interface, 202
using, 203
widget template interface, 128

templates component
project editor, 56

text
position, 187

text truncation
references, 402

tone mapping
references, 447

toolbox (see toolbox component)

Index

Page 470 of 471

toolbox component
project editor, 50

touch gestures (see gestures)
touch input (see gestures)
touch lost

references, 418
touch move

references, 419
touch pressed

references, 420
touch released

references, 420
touch status changed

references, 421
touched

references, 403
transitions, 113, 116, 460

adding, 139
adding actions, 142
adding conditions, 141
adding internal transitions, 143
changing priority, 144
labels, 140
moving, 139
shape, 140
types, 114
using triggers, 141

translation
references, 451

triggers
defining, 141

U
UI (see user interface)
undocking

components, 58
user interface, 45, 458

problems component, 225
user-defined focus

references, 407
user-defined properties

adding, 175

adding Function (): bool, 176
renaming, 177

V
version control system, 61
View

adding, 145
view states

references, 379
view templates

references, 378, 379
view transition animation

adding, 303
view transition animations, 154, 460
viewport

references, 428
views, 123, 460

adding, 145
references, 378

visibility, 398 (see widgets visibility)
visibility group, 398
VTA (see view transition animations)
VTA component

project editor, 56

W
watch lists (see EB GUIDE Monitor)
widget feature, 127
widget features, 126, 129

adding, 180
adding path gesture, 279
focus, 70
list management, 130
removing, 182

widget properties, 126
accessing with EB GUIDE Script, 97
adding user-defined properties, 175
linking to datapool item, 171, 172
linking to widget property, 168
templates, 128
type list, 177
user-defined property, 175

Index

Page 471 of 471

widget property
default property, 127
user-defined property, 127
widget feature property, 127

widget templates (see templates)
widgets, 123, 460

3D widgets, 125
adding, 146
basic, 125
custom widgets, 125
deleting, 166
grouping, 150
Instantiator, 130
instantiators, 130
linking, 76
linking to datapool item, 171, 172
linking to widget property, 168
managing visibility, 178
positioning, 166
resizing, 167
templates, 125
types, 123
View, 123
views, 123
widget features, 126, 129
widget properties, 126
widget templates, 128

widgets visibility, 178
multiple child widgets, 179
single child widget, 179

windowed lists, 60

	EB GUIDE Studio
	Table of Contents
	1.About this documentation
	1.1. Target audiences of the user documentation
	1.1.1. Target audience: Modelers
	1.1.2. Target audience: Extension developers

	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions
	1.5. Path conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Simulating the EB GUIDE model
	4.2.5. Exporting the EB GUIDE model

	4.3. EB GUIDE TF
	4.3.1. Modularization

	4.4. EB GUIDE arware

	5.Getting started
	5.1. Starting EB GUIDE
	5.2. Creating a project
	5.3. Modeling HMI behavior
	5.4. Modeling HMI appearance
	5.5. Starting the simulation

	6.Background information
	6.1. 3D graphics
	6.1.1. Supported 3D graphic formats
	6.1.2. Settings for 3D graphic files
	6.1.3. Import of a 3D graphic file

	6.2. Animations
	6.2.1. Execution of animations
	6.2.2. Widget animation
	6.2.3. Datapool item animation
	6.2.4. View transition animation
	6.2.5. Color animation
	6.2.6. Script curve

	6.3. Anti-aliasing
	6.4. Application programming interface between application and model
	6.5. Communication context
	6.6. Components of the graphical user interface
	6.6.1. Graphical user interface of EB GUIDE Studio
	6.6.1.1. Project center
	6.6.1.1.1. Navigation area
	6.6.1.1.2. Content area

	6.6.1.2. Project editor
	6.6.1.2.1. Navigation component
	6.6.1.2.2. Outline component
	6.6.1.2.3. Toolbox component
	6.6.1.2.4. Properties component
	6.6.1.2.5. Content area
	6.6.1.2.6. Events component
	6.6.1.2.7. Datapool component
	6.6.1.2.8. Assets component
	6.6.1.2.9. Namespaces component
	6.6.1.2.10. Command area
	6.6.1.2.11. Problems component
	6.6.1.2.12. VTA component
	6.6.1.2.13. Templates component

	6.6.2. Graphical user interface of EB GUIDE Monitor
	6.6.3. Dockable components

	6.7. Datapool
	6.7.1. Concept
	6.7.2. Datapool items
	6.7.3. Windowed lists

	6.8. EB GUIDE model and EB GUIDE project
	6.8.1. Storage format
	6.8.2. Export format
	6.8.3. Naming of model elements
	6.8.4. Validation criteria for EB GUIDE project
	6.8.4.1. Validation while opening an EB GUIDE project
	6.8.4.2. Validation using the Problems component

	6.9. EB GUIDE Monitor
	6.10. Event handling
	6.10.1. Event system
	6.10.2. Events

	6.11. Extensions
	6.11.1. EB GUIDE Studio extension
	6.11.2. EB GUIDE GTF extension
	6.11.3. EB GUIDE Monitor extensions

	6.12. Focus handling
	6.13. Gamma-correct rendering
	6.13.1. Concepts
	6.13.2. Gamma correction in EB GUIDE Studio

	6.14. Image-based lighting
	6.14.1. IBLGenerator, file formats and importing
	6.14.2. Limitations to IBL with an OpenGL renderer

	6.15. Languages
	6.15.1. Display languages in EB GUIDE Studio
	6.15.2. Languages in the EB GUIDE model
	6.15.3. Export and import of language-dependent texts

	6.16. Linking
	6.17. Namespaces
	6.18. Model interfaces
	6.18.1. Import of datapool items
	6.18.2. Import of events
	6.18.3. Import of event groups
	6.18.4. Import of namespaces

	6.19. Photoshop file format support
	6.20. Resource management
	6.20.1. Fonts
	6.20.1.1. Bitmap fonts
	6.20.1.2. Multifont support

	6.20.2. Image-based lighting for 3D graphics
	6.20.3. Images
	6.20.3.1. 9-patch images

	6.20.4. Meshes for 3D graphics

	6.21. Scripting language EB GUIDE Script
	6.21.1. Capabilities and areas of application
	6.21.2. Prefixes and identifiers
	6.21.3. Comments
	6.21.4. Types
	6.21.5. Expressions
	6.21.6. Constants and references
	6.21.7. Arithmetic and logic expressions
	6.21.8. L-values and r-values
	6.21.9. Local variables
	6.21.10. While loops
	6.21.11. If-then-else
	6.21.12. Foreign function calls
	6.21.13. Datapool access
	6.21.14. Widget properties
	6.21.15. Lists
	6.21.16. Events
	6.21.17. String formatting
	6.21.18. The standard library

	6.22. Scripted values
	6.23. Skins
	6.24. State machines and states
	6.24.1. Dynamic state machines
	6.24.2. States
	6.24.2.1. Initial state
	6.24.2.2. View state
	6.24.2.3. Compound state
	6.24.2.4. Choice state
	6.24.2.5. History states
	6.24.2.6. Final state

	6.24.3. Transitions
	6.24.4. Execution of a state machine
	6.24.5. EB GUIDE notation in comparison to UML notation
	6.24.5.1. Supported elements
	6.24.5.2. Not supported elements
	6.24.5.3. Deviations from UML

	6.25. Touch input
	6.25.1. Non-path gestures
	6.25.2. Path gestures
	6.25.3. Input processing and gestures
	6.25.4. Multi-touch input

	6.26. Widgets
	6.26.1. View
	6.26.2. Widget categories
	6.26.3. Widget properties
	6.26.4. Widget templates
	6.26.5. Widget features
	6.26.5.1. List management widget feature category

	7.Modeling HMI behavior
	7.1. Modeling a state machine
	7.1.1. Adding a state machine
	7.1.2. Defining an entry action for a state machine
	7.1.3. Defining an exit action for a state machine
	7.1.4. Deleting a state machine

	7.2. Modeling a dynamic state machine
	7.2.1. Enabling a dynamic state machine list
	7.2.2. Adding a dynamic state machine
	7.2.3. Controlling a dynamic state machine

	7.3. Modeling states
	7.3.1. Adding a state
	7.3.2. Adding a state to a Compound state
	7.3.3. Adding a Choice state
	7.3.4. Defining an entry action for a state
	7.3.5. Defining an exit action for a state
	7.3.6. Deleting a model element from a state machine

	7.4. Connecting states through transitions
	7.4.1. Adding a transition between two states
	7.4.2. Moving a transition
	7.4.3. Moving transition labels
	7.4.4. Defining a trigger for a transition
	7.4.5. Adding a condition to a transition
	7.4.6. Adding an action to a transition
	7.4.7. Adding an internal transition to a state
	7.4.8. Changing the priority of choice transitions

	8.Modeling HMI appearance
	8.1. Changing the background color of states and state machines
	8.2. Working with widgets
	8.2.1. Adding a View
	8.2.2. Adding a basic widget to a View
	8.2.2.1. Adding a Rectangle
	8.2.2.2. Adding an Ellipse
	8.2.2.2.1. Editing an Ellipse

	8.2.2.3. Adding an Image
	8.2.2.4. Adding a Label
	8.2.2.5. Adding a container
	8.2.2.6. Adding an Instantiator
	8.2.2.7. Adding an Animation
	8.2.2.7.1. Animating a widget
	8.2.2.7.2. Animating a view transition
	Adding an entry animation
	Adding a change animation
	Rearranging animations

	8.2.2.7.3. Animating with a script curve
	8.2.2.7.4. Animating a datapool item
	8.2.2.7.5. Animating colors

	8.2.2.8. Adding an Alpha mask

	8.2.3. Adding a 3D widget to a View
	8.2.3.1. Adding a Scene graph to a View

	8.2.4. Importing a .psd file to a View
	8.2.5. Extracting images from a .psd file
	8.2.6. Importing IBL files
	8.2.7. Deleting a widget from a View

	8.3. Working with widget properties
	8.3.1. Positioning a widget
	8.3.2. Resizing a widget
	8.3.3. Linking between widget properties
	8.3.4. Linking a widget property to a datapool item
	8.3.5. Linking to a list element
	8.3.6. Adding a user-defined property to a widget
	8.3.6.1. Adding a user-defined property of type Function (): bool

	8.3.7. Renaming a user-defined property
	8.3.8. Editing a property of type list
	8.3.9. Managing order and visibility of widgets

	8.4. Extending a widget by widget features
	8.4.1. Adding a widget feature
	8.4.2. Removing a widget feature

	8.5. Changing the Label settings
	8.5.1. Changing the font size of a Label
	8.5.2. Changing the font of a Label
	8.5.3. Changing the line spacing
	8.5.3.1. Changing the default line spacing
	8.5.3.2. Changing the line spacing for multiple lines

	8.5.4. Changing the text position
	8.5.5. Managing multifont support
	8.5.6. Placing text along a circular path

	8.6. Working with language support
	8.6.1. Adding a language to the EB GUIDE model
	8.6.2. Adding language support to a datapool item
	8.6.3. Deleting a language
	8.6.4. Creating an export set for languages

	8.7. Working with skin support
	8.7.1. Adding a skin to the EB GUIDE model
	8.7.2. Adding skin support to a datapool item
	8.7.3. Switching between skins
	8.7.4. Deleting a skin
	8.7.5. Creating an export set for skins

	8.8. Working with templates
	8.8.1. Adding a template
	8.8.2. Creating a template from widget tree
	8.8.3. Defining the template interface
	8.8.4. Using a template
	8.8.5. Deleting a template

	8.9. Enabling anti-aliasing
	8.9.1. Enabling anti-aliasing globally
	8.9.2. Enabling anti-aliasing for scene graphs

	9.Handling data
	9.1. Working with namespaces
	9.1.1. Adding a namespace
	9.1.2. Adding model elements to a namespace
	9.1.3. Moving model elements between namespaces
	9.1.4. Deleting a namespace

	9.2. Working with events
	9.2.1. Adding an event
	9.2.2. Adding a parameter to an event
	9.2.3. Addressing an event
	9.2.4. Mapping a key to an event
	9.2.5. Adding events to a model interface
	9.2.6. Deleting an event

	9.3. Working with datapool items
	9.3.1. Adding a datapool item
	9.3.2. Editing datapool items of type list
	9.3.3. Converting a property to a scripted value
	9.3.4. Establishing external communication
	9.3.5. Linking between datapool items
	9.3.6. Adding datapool items to a model interface
	9.3.7. Deleting a datapool item

	10.Handling a project
	10.1. Creating a project
	10.2. Opening a project
	10.2.1. Opening a project from the file explorer
	10.2.2. Opening a project within EB GUIDE Studio

	10.3. Renaming model elements
	10.4. Validating and simulating an EB GUIDE model
	10.4.1. Validating an EB GUIDE model
	10.4.1.1. Validating an EB GUIDE model in EB GUIDE Studio
	10.4.1.2. Validating an EB GUIDE model using command line

	10.4.2. Starting and stopping the simulation

	10.5. Exporting an EB GUIDE model
	10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio
	10.5.2. Exporting an EB GUIDE model using command line

	10.6. Changing the display language of EB GUIDE Studio
	10.7. Configuring profiles
	10.7.1. Adding a profile
	10.7.2. Adding a library
	10.7.3. Configuring a scene

	10.8. Exporting and importing language-dependent texts
	10.8.1. Exporting language-dependent texts
	10.8.2. Importing language-dependent texts
	10.8.2.1. Importing language-dependent texts using EB GUIDE Studio
	10.8.2.2. Importing language-dependent texts using command line

	10.9. Working with model interfaces
	10.9.1. Adding a model interface
	10.9.2. Exporting a model interface
	10.9.3. Importing a model interface
	10.9.4. Updating an imported model interface
	10.9.5. Deleting a model interface

	11.Working with EB GUIDE Monitor
	11.1. Starting EB GUIDE Monitor as a stand-alone application
	11.2. Configuring EB GUIDE Monitor
	11.3. Loading configurations into EB GUIDE Monitor
	11.4. Firing an event in EB GUIDE Monitor
	11.5. Changing the value of the datapool item with EB GUIDE Monitor
	11.6. Using scripts in EB GUIDE Monitor
	11.6.1. Writing script files for EB GUIDE Monitor
	11.6.2. Starting scripts in EB GUIDE Monitor

	11.7. Exporting and importing watch lists

	12.Extending EB GUIDE Studio
	12.1. Concepts
	12.1.1. Dependency injection
	12.1.2. EB GUIDE model extensions
	12.1.3. EB GUIDE Studio UI extensions

	12.2. Creating an extension project
	12.3. Disabling copying of the assemblies
	12.4. Running an extension

	13.Best practices
	13.1. Best practice: Handling scripted values

	14.Tutorials
	14.1. Tutorial: Adding a dynamic state machine
	14.2. Tutorial: Modeling button behavior with EB GUIDE Script
	14.3. Tutorial: Modeling a path gesture
	14.4. Tutorial: Creating a list with dynamic content
	14.5. Tutorial: Making an ellipse move across the screen
	14.6. Tutorial: Adding a language-dependent text to a datapool item
	14.7. Tutorial: Working with a 3D graphic
	14.8. Tutorial: Rendering gamma correctly
	14.9. Tutorial: Using view transition animations
	14.10. Tutorial: Using script curves for animations
	14.11. Tutorial: Creating a horizontal progress bar

	15.References
	15.1. Command line options
	15.1.1. Command line options for Studio.Console.exe
	15.1.2. Command line options for Monitor.Console.exe

	15.2. Datapool items
	15.3. Data types
	15.3.1. Boolean
	15.3.2. Color
	15.3.3. Conditional script
	15.3.4. Float
	15.3.5. Font
	15.3.6. Function () : bool
	15.3.7. Ibl
	15.3.8. Image
	15.3.9. Integer
	15.3.10. Mesh
	15.3.11. String
	15.3.12. List

	15.4. EB GUIDE Script
	15.4.1. EB GUIDE Script keywords
	15.4.2. EB GUIDE Script operator precedence
	15.4.3. EB GUIDE Script standard library
	15.4.3.1. EB GUIDE Script functions A - B
	15.4.3.1.1. abs
	15.4.3.1.2. absf
	15.4.3.1.3. acosf
	15.4.3.1.4. animation_before
	15.4.3.1.5. animation_beyond
	15.4.3.1.6. animation_cancel
	15.4.3.1.7. animation_cancel_end
	15.4.3.1.8. animation_cancel_reset
	15.4.3.1.9. animation_pause
	15.4.3.1.10. animation_play
	15.4.3.1.11. animation_reverse
	15.4.3.1.12. animation_running
	15.4.3.1.13. animation_set_time
	15.4.3.1.14. asinf
	15.4.3.1.15. atan2f
	15.4.3.1.16. atan2i
	15.4.3.1.17. atanf
	15.4.3.1.18. bool2string

	15.4.3.2. EB GUIDE Script functions C - H
	15.4.3.2.1. ceil
	15.4.3.2.2. changeDynamicStateMachinePriority
	15.4.3.2.3. character2unicode
	15.4.3.2.4. clampf
	15.4.3.2.5. clampi
	15.4.3.2.6. clearAllDynamicStateMachines
	15.4.3.2.7. color2string
	15.4.3.2.8. cosf
	15.4.3.2.9. deg2rad
	15.4.3.2.10. expf
	15.4.3.2.11. float2string
	15.4.3.2.12. floor
	15.4.3.2.13. fmod
	15.4.3.2.14. focusMoveTo
	15.4.3.2.15. focusNext
	15.4.3.2.16. focusPrevious
	15.4.3.2.17. format_float
	15.4.3.2.18. format_int
	15.4.3.2.19. frac
	15.4.3.2.20. getAllLanguages
	15.4.3.2.21. getAllSkins
	15.4.3.2.22. getConfigItem
	15.4.3.2.23. getFontAscender
	15.4.3.2.24. getFontDescender
	15.4.3.2.25. getFontLineGap
	15.4.3.2.26. getImageHeight
	15.4.3.2.27. getImageWidth
	15.4.3.2.28. getLabelTextHeight
	15.4.3.2.29. getLabelTextWidth
	15.4.3.2.30. getLanguage
	15.4.3.2.31. getLanguageName
	15.4.3.2.32. getLanguageTag
	15.4.3.2.33. getLineCount
	15.4.3.2.34. getLineHeight
	15.4.3.2.35. getProductString
	15.4.3.2.36. getSkin
	15.4.3.2.37. getSkinName
	15.4.3.2.38. getTextHeight
	15.4.3.2.39. getTextLength
	15.4.3.2.40. getTextWidth
	15.4.3.2.41. getVersionString
	15.4.3.2.42. has_list_window
	15.4.3.2.43. hsba2color

	15.4.3.3. EB GUIDE Script functions I - R
	15.4.3.3.1. int2float
	15.4.3.3.2. int2string
	15.4.3.3.3. isDynamicStateMachineActive
	15.4.3.3.4. isWidgetOnActiveStatemachine
	15.4.3.3.5. language
	15.4.3.3.6. lerp
	15.4.3.3.7. localtime_day
	15.4.3.3.8. localtime_hour
	15.4.3.3.9. localtime_minute
	15.4.3.3.10. localtime_month
	15.4.3.3.11. localtime_second
	15.4.3.3.12. localtime_weekday
	15.4.3.3.13. localtime_year
	15.4.3.3.14. log10f
	15.4.3.3.15. logf
	15.4.3.3.16. maxf
	15.4.3.3.17. maxi
	15.4.3.3.18. minf
	15.4.3.3.19. mini
	15.4.3.3.20. nearbyint
	15.4.3.3.21. popDynamicStateMachine
	15.4.3.3.22. powf
	15.4.3.3.23. pushDynamicStateMachine
	15.4.3.3.24. rad2deg
	15.4.3.3.25. rand
	15.4.3.3.26. rgba2color
	15.4.3.3.27. round

	15.4.3.4. EB GUIDE Script functions S - W
	15.4.3.4.1. saturate
	15.4.3.4.2. seed_rand
	15.4.3.4.3. setLanguage
	15.4.3.4.4. setSkin
	15.4.3.4.5. shutdown
	15.4.3.4.6. sinf
	15.4.3.4.7. skin
	15.4.3.4.8. smoothstep
	15.4.3.4.9. sqrtf
	15.4.3.4.10. string2float
	15.4.3.4.11. string2int
	15.4.3.4.12. string2string
	15.4.3.4.13. substring
	15.4.3.4.14. system_time
	15.4.3.4.15. system_time_ms
	15.4.3.4.16. tanf
	15.4.3.4.17. trace_dp
	15.4.3.4.18. trace_string
	15.4.3.4.19. transformToScreenX
	15.4.3.4.20. transformToScreenY
	15.4.3.4.21. transformToWidgetX
	15.4.3.4.22. transformToWidgetY
	15.4.3.4.23. trunc
	15.4.3.4.24. widgetGetChildCount

	15.5. Events
	15.5.1. Decimal codes for key events

	15.6. Buttons and icons
	15.7. Scenes
	15.8. Shortcuts
	15.9. State machines
	15.9.1. Haptic state machine
	15.9.2. Logic state machine
	15.9.3. States
	15.9.3.1. Initial state
	15.9.3.2. Compound state
	15.9.3.3. View state
	15.9.3.4. Choice state
	15.9.3.5. Shallow history state
	15.9.3.6. Deep history state
	15.9.3.7. Final state

	15.9.4. Transitions
	15.9.4.1. Default transition
	15.9.4.2. Choice transition
	15.9.4.3. Else transition
	15.9.4.4. Internal transition
	15.9.4.5. Self transition

	15.10. Widgets
	15.10.1. View
	15.10.2. Basic widgets
	15.10.2.1. Alpha mask
	15.10.2.2. Animation
	15.10.2.2.1. Constant curve
	15.10.2.2.2. Fast start curve
	15.10.2.2.3. Slow start curves
	15.10.2.2.4. Quadratic curve
	15.10.2.2.5. Sinus curve
	15.10.2.2.6. Script curve
	15.10.2.2.7. Linear curve
	15.10.2.2.8. Linear interpolation curve

	15.10.2.3. Container
	15.10.2.4. Ellipse
	15.10.2.5. Image
	15.10.2.6. Instantiator
	15.10.2.7. Label
	15.10.2.8. Rectangle

	15.10.3. 3D widgets
	15.10.3.1. Ambient light
	15.10.3.2. Camera
	15.10.3.3. Directional light
	15.10.3.4. Image-based light
	15.10.3.5. Material
	15.10.3.6. Mesh
	15.10.3.7. PBR GGX material
	15.10.3.8. PBR Phong material
	15.10.3.9. Point light
	15.10.3.10. Scene graph
	15.10.3.11. Scene graph node
	15.10.3.12. Spot light

	15.11. Widget features
	15.11.1. Common
	15.11.1.1. Child visibility selection
	15.11.1.2. Enabled
	15.11.1.3. Focused
	15.11.1.4. Font metrics
	15.11.1.5. Multiple lines
	15.11.1.6. Pressed
	15.11.1.7. Selected
	15.11.1.8. Selection group
	15.11.1.9. Spinning
	15.11.1.10. Text truncation
	15.11.1.11. Touched

	15.11.2. Effect
	15.11.2.1. Border
	15.11.2.2. Coloration
	15.11.2.3. Circular text
	15.11.2.4. Stroke

	15.11.3. Focus
	15.11.3.1. Auto focus
	15.11.3.2. User-defined focus

	15.11.4. Gestures
	15.11.4.1. Flick gesture
	15.11.4.2. Hold gesture
	15.11.4.3. Long hold gesture
	15.11.4.4. Path gestures
	15.11.4.4.1. Gesture IDs

	15.11.4.5. Pinch gesture
	15.11.4.6. Rotate gesture

	15.11.5. Input handling
	15.11.5.1. Gestures
	15.11.5.2. Key pressed
	15.11.5.3. Key released
	15.11.5.4. Key status changed
	15.11.5.5. Key unicode
	15.11.5.6. Move in
	15.11.5.7. Move out
	15.11.5.8. Move over
	15.11.5.9. Moveable
	15.11.5.10. Rotary
	15.11.5.11. Touch lost
	15.11.5.12. Touch move
	15.11.5.13. Touch pressed
	15.11.5.14. Touch released
	15.11.5.15. Touch status changed

	15.11.6. Layout
	15.11.6.1. Absolute layout
	15.11.6.2. Box layout
	15.11.6.3. Flow layout
	15.11.6.4. Grid layout
	15.11.6.5. Layout margins
	15.11.6.6. List layout
	15.11.6.7. Scale mode

	15.11.7. List management
	15.11.7.1. Line index
	15.11.7.2. List index
	15.11.7.3. Template index
	15.11.7.4. Viewport

	15.11.8. 3D
	15.11.8.1. Anti-aliasing mode
	15.11.8.2. Camera bloom
	15.11.8.3. Camera depth of field
	15.11.8.4. Camera viewport
	15.11.8.5. Clear coat
	15.11.8.6. Ambient texture
	15.11.8.7. Anisotropy
	15.11.8.8. Diffuse texture
	15.11.8.9. Base color texture
	15.11.8.10. Emissive texture
	15.11.8.11. Light map texture
	15.11.8.12. Metallic texture
	15.11.8.13. Normal map texture
	15.11.8.14. Opaque texture
	15.11.8.15. Reflection texture
	15.11.8.16. Roughness texture
	15.11.8.17. Shininess texture
	15.11.8.18. Specular texture
	15.11.8.19. Reflectance texture
	15.11.8.20. Texture coordinate transformation
	15.11.8.21. Tone mapping
	15.11.8.22. Screen space ambient occlusion

	15.11.9. Transformation
	15.11.9.1. Pivot
	15.11.9.2. Rotation
	15.11.9.3. Scaling
	15.11.9.4. Shearing
	15.11.9.5. Translation

	16.Installation of EB GUIDE Studio
	16.1. Background information
	16.1.1. Restrictions
	16.1.2. System requirements

	16.2. Downloading EB GUIDE
	16.3. Installing EB GUIDE
	16.4. Uninstalling EB GUIDE

	Glossary
	Index

