
EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

 Namespaces You have to prefix model elements when referring to them.
The following prefixes exist:
dp: for datapool items, ev: for events, v: for local variables, f: for functions

dp:x = 100; // set a datapool item
fire ev:back(); // fire an event
f:trace_string(“hello world”); // call a function

 Accessing
datapool items

Write a datapool item by placing it at the left side of an assignment. Read a datapool
item by using it anywhere else in an expression. The redirect-link (=>) is a special form
of datapool item assignment.

dp:x = 5; // writing to x
dp:x = dp:y + dp:z; // reading y and z
length dp:aList; // read the length of a list datapool item
dp:refX => dp:x; // redirect link

 Sending events Syntax:
fire ev:<identifier>(<parameter-list>);

Events can be sent after a timeout.
This delayed event can be canceled with the cancel_fire expression.

Syntax:
fire_delayed <timeout>, ev:<identifier>(<parameter-list>);

cancel_fire ev:<identifier>;

fire ev:back();
fire ev:mouseClick(10, 20);

fire_delayed 3000, ev:back(); // send the event “back”
in 3 seconds.

cancel_fire ev:back; // cancel the event

 Reacting on
events

To react on events, use match_event. This is a special form of the if-then-else
statement. If and else branch must always have the same type. If used at the right side
of an assignment, the else branch is mandatory.

Syntax:
match_event v:<identifier> = ev:<identifier>
in <sequence>
else <sequence>

match_event v:event = ev:back in {
 f:trace_string(„back event received“);
}

v:this.x = match_event v:event = ev:back in 10 else 0;

 Accessing event
parameters

The in expression of a match_event has access to the event parameters.
Use the dot notation to access event parameters.

match_event v:event = ev:mouseClick in {
 v:this.x = v:event.x;
 v:this.y = v:event.y;
}

 Accessing widget
properties

If a script is part of a widget (widget actions, input reactions), it has access to the pro-
perties of that widget. A special local variable called v:this is available referring to the
current widget. Use the dot notation to address widget properties.

v:this.text = “hello world”;
v:this.x = 10;

 Navigating the
widget tree

If a script is part of a widget, it has access to the properties of other widgets. Use the
widget tree navigation operator: ->. To access the parent widget, use the identifier: ^.

v:this->^->caption.text = “Play”; // goto parent, goto
caption, property text

v:this->^.x -= 1; // goto parent, property x

 String formatting The + operator concatenates strings. For more string conversion functions, please refer
to the documentation.

v:this.text = “current speed: “ + f:int2string(dp:speed) +
“km/h”;

 String comparison To compare two strings with case sensitivity, use the equality operators
== or !=.
To compare two strings without case sensitivity, use the equality operator =Aa=.

“name” == “NAME” // false
“name” != “NAME” // true
“name” =Aa= “NAME” // true

 Changing
language

To change the language of all datapool items of an EB GUIDE model, use setLanguage.
This operation is performed asynchronously.
Syntax:
f:setLanguage(l:<identifier>, bool<isCoreScope>)

f:setLanguage(l:Standard, false) // changes language to the
standard language at the
model scope

f:setLanguage(l:German, true) // changes language to
German at the core scope

V 6.9 or later 1

EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

 Changing skin To change the skin of all datapool items of an EB GUIDE model, use setSkin.
This operation is performed asynchronously.

Syntax:
f:setSkin(s:<identifier>, bool<isCoreScope>)

f:setSkin(s:Standard, true) // changes to the standard skin
at the core scope

f:setSkin(s:“myskin“, false) // changes to a user-defined skin
at the model scope

 Constants String constants may be written without quotes.
Color constants are in the RGBA format.

“hello world” // string constant
Napoleon // string constant
5 // integer constant
color:0,235,0,255 // EB green

 Arithmetic, logic
and assignment
operators

Addition and string concatenation: +, subtraction: -, multiplication: *, division: /,
modulo: %, greater-than: >, less-than: <, greater-or-equal: >=, less-or-equal: <=,
equal: ==, not-equal: !=, and: &&, or: ||, not: !, assignment: =, assign-increment: +=,
assign-decrement: -=

dp:myString = “Hello” + “World”;
dp:count += 1; // increment one

 Sequencing A sequence is either a single expression or a series of expressions enclosed in curly
braces. The last expression in a sequence is the value of the sequence.

if(dp:something)
 dp:x = 5; // single expression
if(dp:other) {
 dp:x = 5; // sequence enclosed
 dp:y = 10; // in curly braces
}

 Local variables Use let-bindings to introduce local variables. It is not allowed to use uninitialized
variables.
let-bindings may be nested.

Syntax:
let v:<identifier> = <expression>;

v:<identifier2> = <expression>;
...
in <sequence>

let v:x = 42;
 v:text = “hello world”;
in {
 v:this.x = v:x;
 v:this.text = v:text;
}

 While loop The while loop consists of two expressions: the condition and the body.
The body is repeatedly evaluated until the condition yields false.

Syntax:
while(<expression>) <sequence>

dp:i = 0;
while(dp:i <= 10) {
 dp:sum += i;
 dp:i += 1;
}

 If-then-else If-then-else behaves like the ternary conditional operator in C and Java. If it is used
at the right side of an assignment, the else branch is mandatory and both branches
must have the same type.

Syntax:
if(<expression>) <sequence> else <sequence>

if(dp:buttonClicked) {
 v:this.x = dp:x;
}
else {
 v:this.x = 0;
}

v:this.x = if(dp:buttonClicked) dp:x else 0;

 Comments C style block comments and
C++ style line comments are allowed.

/* this is a C style block comment */
// this is a C++ style line comment

 Return value The last expression in a script is the return value.
To force a return value of type void, use unit or {}

dp:x + 2; // returns datapool item x plus 2

V 6.9 or later 2

