
EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

 Namespaces You have to prefix model elements when referring to them.
The following prefixes exist:
dp: for datapool items, ev: for events, v: for local variables, f: for functions

dp:x = 100; // set a datapool item
fire ev:back(); // fire an event
f:trace_string(“hello world”); // call a function

 �Accessing
datapool items

Write a datapool item by placing it at the left side of an assignment. Read a datapool
item by using it anywhere else in an expression. The redirect-link (=>) is a special form
of datapool item assignment.

dp:x = 5; // writing to x
dp:x = dp:y + dp:z; // reading y and z
length dp:aList; // �read the length of a list datapool item
dp:refX => dp:x; // redirect link

 �Sending events Syntax:
fire ev:<identifier>(<parameter-list>);

Events can be sent after a timeout.
This delayed event can be canceled with the cancel_fire expression.

Syntax:
fire_delayed <timeout>, ev:<identifier>(<parameter-list>);

cancel_fire ev:<identifier>;

fire ev:back();
fire ev:mouseClick(10, 20);

fire_delayed 3000, ev:back(); // �send the event “back”
in 3 seconds.

cancel_fire ev:back; // cancel the event

 �Reacting on
events

To react on events, use match_event. This is a special form of the if-then-else
statement. If and else branch must always have the same type. If used at the right side
of an assignment, the else branch is mandatory.

Syntax:
match_event v:<identifier> = ev:<identifier>
in <sequence>
else <sequence>

match_event v:event = ev:back in {
	 f:trace_string(„back event received“);
}

v:this.x = match_event v:event = ev:back in 10 else 0;

 �Accessing event
parameters

The in expression of a match_event has access to the event parameters.
Use the dot notation to access event parameters.

match_event v:event = ev:mouseClick in {
	 v:this.x = v:event.x;
	 v:this.y = v:event.y;
}

 �Accessing widget
properties

If a script is part of a widget (widget actions, input reactions), it has access to the pro-
perties of that widget. A special local variable called v:this is available referring to the
current widget. Use the dot notation to address widget properties.

v:this.text = “hello world”;
v:this.x = 10;

 �Navigating the
widget tree

If a script is part of a widget, it has access to the properties of other widgets. Use the
widget tree navigation operator: ->. To access the parent widget, use the identifier: ^.

v:this->^->caption.text = “Play”; // �goto parent, goto
caption, property text

v:this->^.x -= 1; // goto parent, property x

 �String formatting The + operator concatenates strings. For more string conversion functions, please refer
to the documentation.

v:this.text = “current speed: “ + f:int2string(dp:speed) +
“km/h”;

 �String comparison To compare two strings with case sensitivity, use the equality operators
== or !=.
To compare two strings without case sensitivity, use the equality operator =Aa=.

“name” == “NAME” // false
“name” != “NAME” // true
“name” =Aa= “NAME” // true

 �Changing
language

To change the language of all datapool items of an EB GUIDE model, use setLanguage.
This operation is performed asynchronously.
Syntax:
f:setLanguage(l:<identifier>, bool<isCoreScope>)

f:setLanguage(l:Standard, false) // �changes language to the
standard language at the
model scope

f:setLanguage(l:German, true) // �changes language to
German at the core scope

V 6.9 or later 1

EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

 �Changing skin To change the skin of all datapool items of an EB GUIDE model, use setSkin.
This operation is performed asynchronously.

Syntax:
f:setSkin(s:<identifier>, bool<isCoreScope>)

f:setSkin(s:Standard, true) // �changes to the standard skin
at the core scope

f:setSkin(s:“myskin“, false) // �changes to a user-defined skin
at the model scope

 Constants String constants may be written without quotes.
Color constants are in the RGBA format.

“hello world” // string constant
Napoleon // string constant
5 // integer constant
color:0,235,0,255 // EB green

 �Arithmetic, logic
and assignment
operators

Addition and string concatenation: +, subtraction: -, multiplication: *, division: /,
modulo: %, greater-than: >, less-than: <, greater-or-equal: >=, less-or-equal: <=,
equal: ==, not-equal: !=, and: &&, or: ||, not: !, assignment: =, assign-increment: +=,
assign-decrement: -=

dp:myString = “Hello” + “World”;
dp:count += 1; // increment one

 �Sequencing A sequence is either a single expression or a series of expressions enclosed in curly
braces. The last expression in a sequence is the value of the sequence.

if(dp:something)
	 dp:x = 5; // �single expression
if(dp:other) {
	 dp:x = 5; // sequence enclosed
	 dp:y = 10; // in curly braces
}

 �Local variables Use let-bindings to introduce local variables. It is not allowed to use uninitialized
variables.
let-bindings may be nested.

Syntax:
let �v:<identifier> = <expression>;

v:<identifier2> = <expression>;
...
in <sequence>

let v:x = 42;
	 v:text = “hello world”;
in {
 	 v:this.x = v:x;
 	 v:this.text = v:text;
}

 �While loop The while loop consists of two expressions: the condition and the body.
The body is repeatedly evaluated until the condition yields false.

Syntax:
while(<expression>) <sequence>

dp:i = 0;
while(dp:i <= 10) {
 	 dp:sum += i;
 	 dp:i += 1;
}

 �If-then-else If-then-else behaves like the ternary conditional operator in C and Java. If it is used
at the right side of an assignment, the else branch is mandatory and both branches
must have the same type.

Syntax:
if(<expression>) <sequence> else <sequence>

if(dp:buttonClicked) {
 	 v:this.x = dp:x;
}
else {
 	 v:this.x = 0;
}

v:this.x = if(dp:buttonClicked) dp:x else 0;

 �Comments C style block comments and
C++ style line comments are allowed.

/* this is a C style block comment */
// this is a C++ style line comment

 �Return value The last expression in a script is the return value.
To force a return value of type void, use unit or {}

dp:x + 2; // returns datapool item x plus 2

V 6.9 or later 2

