
EB GUIDE TF
User guide

Version 6.8.0.190618155600

EB GUIDE TF

Page 2 of 269

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2019, Elektrobit Automotive GmbH.

EB GUIDE TF

Page 3 of 269

Table of Contents
1. About this documentation .. 13

1.1. Target audiences of the user documentation ... 13
1.1.1. System integrators .. 13
1.1.2. Application developers ... 13
1.1.3. Extension developers .. 14

1.2. Structure of user documentation ... 15
1.3. Typography and style conventions .. 15
1.4. Naming conventions ... 17

2. Safe and correct use .. 19
2.1. Intended use ... 19
2.2. Possible misuse ... 19

3. Support .. 20
4. Introduction to EB GUIDE ... 21

4.1. The EB GUIDE product line ... 21
4.2. EB GUIDE Studio .. 21

4.2.1. Modeling HMI behavior ... 21
4.2.2. Modeling HMI appearance ... 22
4.2.3. Handling data ... 22
4.2.4. Simulating the EB GUIDE model .. 22
4.2.5. Exporting the EB GUIDE model ... 23

4.3. EB GUIDE TF ... 23
5. Framework overview ... 25

5.1. Relationship between EB GUIDE Studio, EB GUIDE GTF and EB GUIDE Monitor 25
5.2. Interactions between EB GUIDE GTF and extensions .. 26
5.3. Interactions between EB GUIDE GTF and application .. 27
5.4. Interaction between EB GUIDE GTF instances .. 28
5.5. Dependencies to target platform ... 29
5.6. Structure of EB GUIDE GTF .. 30
5.7. Deployment of EB GUIDE GTF .. 33

6. General concepts ... 35
6.1. Non-blocking strategy ... 35

6.1.1. Observer patterns and callbacks .. 35
6.1.2. Delegates ... 35

7. Core concepts .. 37
7.1. Core life cycle stages .. 37
7.2. Tracing .. 39
7.3. Error handling .. 41

7.3.1. Critical errors .. 42
7.3.2. Return value of GtfStartup.exe .. 42

EB GUIDE TF

Page 4 of 269

7.4. Interface dependencies .. 42
7.5. Configuration of EB GUIDE GTF .. 43
7.6. EB GUIDE GTF plugin concept .. 44
7.7. Run modes of EB GUIDE GTF ... 45

7.7.1. Run EB GUIDE GTF with GtfStartup.exe ... 45
7.7.1.1. Command line options .. 45

7.7.2. Run EB GUIDE GTF in an existing process .. 47
7.8. Read-only memory file system support ... 47

8. Model concepts .. 50
8.1. Configure EB GUIDE GTF with an exported EB GUIDE model ... 50
8.2. Model life cycle stages ... 51
8.3. Model structure .. 55

8.3.1. Model MVC .. 55
8.3.2. Model runtime structure ... 56
8.3.3. Scene structure ... 58

8.4. Extensions description ... 60
8.5. Scenes and properties ... 62

8.5.1. Widget MVC ... 63
8.5.2. Construction and decomposition of a scene element tree ... 65
8.5.3. Renderer .. 66
8.5.4. Animations and view transition animations .. 67
8.5.5. Focus policy ... 68

8.6. Update processing in EB GUIDE GTF .. 68
8.7. Event system ... 71

8.7.1. Event publication ... 73
8.7.2. Event receipt .. 73

8.8. External input events ... 74
8.9. Datapool .. 75

8.9.1. Identifiers of datapool items ... 77
8.9.2. Synchronization of datapool items .. 77
8.9.3. Windowed lists .. 78

8.10. Aspect ... 78
8.11. Resource management ... 79
8.12. Inter-process communication .. 84

8.12.1. Connection modes .. 85
8.12.1.1. Broadcast ... 85
8.12.1.2. Multicast .. 86
8.12.1.3. Direct ... 87

9. Running EB GUIDE GTF .. 89
9.1. Configuring an EB GUIDE model for running on a target platform ... 89
9.2. Exporting an EB GUIDE model ... 89
9.3. Configuring and starting EB GUIDE GTF .. 89

EB GUIDE TF

Page 5 of 269

9.4. Running EB GUIDE GTF with a read-only memory file system (RomFS) container 90
10. Using the EB GUIDE GTF plugin mechanism ... 91

10.1. Creating an EB GUIDE GTF plugin ... 91
10.2. Writing an EB GUIDE GTF plugin ... 91
10.3. Copying the resulting .dll file ... 92
10.4. Adding an EB GUIDE GTF plugin ... 92
10.5. Starting the simulation with GtfStartup.exe .. 94

11. Resolving interface dependencies .. 96
11.1. Retrieving an item from DependencyContainer .. 96
11.2. Retrieving all instances registered to an interface ... 97
11.3. Registering an instance to the container .. 98
11.4. Unregistering an instance ... 100
11.5. Registering a catalog .. 100
11.6. Unregistering a catalog ... 101
11.7. Creating a container ... 101

12. Configuring EB GUIDE GTF .. 102
12.1. Adding a scalar item to Configuration .. 102
12.2. Adding a list item to Configuration .. 103
12.3. Adding an object item in Configuration .. 104
12.4. Retrieving an item from Configuration ... 105
12.5. Creating a path value using Configuration ... 106
12.6. Using a custom .json file to define configuration items. .. 107
12.7. Creating new Settings .. 108

13. Tracing logging messages ... 109
14. Extending EB GUIDE Script with foreign functions .. 111
15. Using the Properties module ... 112

15.1. Using Container interface .. 112
15.2. Using Children interface .. 114
15.3. Using Property interface .. 115

16. Adding widgets and widget features ... 120
17. Using external input events ... 121

17.1. Getting the ExternalInput interface .. 121
17.2. Creating and sending a key event ... 122
17.3. Creating and sending a touch event .. 123
17.4. Creating and sending a rotary event ... 124
17.5. Reading a key event .. 125
17.6. Reading a touch event ... 126
17.7. Reading a rotary event ... 126

18. Monitoring memory usage ... 127
19. References ... 128

19.1. Android events ... 128
19.2. Datapool items ... 129

EB GUIDE TF

Page 6 of 269

19.3. Data types ... 129
19.3.1. Boolean .. 129
19.3.2. Color .. 130
19.3.3. Conditional script ... 130
19.3.4. Float ... 131
19.3.5. Font .. 131
19.3.6. Function () : bool ... 132
19.3.7. Ibl ... 132
19.3.8. Image ... 132
19.3.9. Integer .. 133
19.3.10. Mesh .. 133
19.3.11. String .. 133
19.3.12. List ... 134

19.4. EB GUIDE Script ... 135
19.4.1. EB GUIDE Script keywords .. 135
19.4.2. EB GUIDE Script operator precedence ... 136
19.4.3. EB GUIDE Script standard library ... 137

19.4.3.1. EB GUIDE Script functions A - B ... 137
19.4.3.1.1. abs ... 137
19.4.3.1.2. absf ... 137
19.4.3.1.3. acosf ... 137
19.4.3.1.4. animation_before ... 138
19.4.3.1.5. animation_beyond ... 138
19.4.3.1.6. animation_cancel ... 138
19.4.3.1.7. animation_cancel_end ... 139
19.4.3.1.8. animation_cancel_reset ... 139
19.4.3.1.9. animation_pause ... 139
19.4.3.1.10. animation_play ... 139
19.4.3.1.11. animation_reverse .. 140
19.4.3.1.12. animation_running ... 140
19.4.3.1.13. animation_set_time ... 140
19.4.3.1.14. asinf ... 140
19.4.3.1.15. atan2f ... 141
19.4.3.1.16. atan2i ... 141
19.4.3.1.17. atanf ... 141
19.4.3.1.18. bool2string ... 142

19.4.3.2. EB GUIDE Script functions C - H ... 142
19.4.3.2.1. ceil ... 142
19.4.3.2.2. changeDynamicStateMachinePriority 142
19.4.3.2.3. character2unicode ... 143
19.4.3.2.4. clampf ... 143
19.4.3.2.5. clampi ... 143

EB GUIDE TF

Page 7 of 269

19.4.3.2.6. clearAllDynamicStateMachines .. 143
19.4.3.2.7. color2string ... 144
19.4.3.2.8. cosf ... 144
19.4.3.2.9. deg2rad ... 144
19.4.3.2.10. expf ... 145
19.4.3.2.11. float2string .. 145
19.4.3.2.12. floor ... 145
19.4.3.2.13. fmod ... 145
19.4.3.2.14. focusMoveTo ... 146
19.4.3.2.15. focusNext ... 146
19.4.3.2.16. focusPrevious ... 146
19.4.3.2.17. format_float ... 146
19.4.3.2.18. format_int ... 147
19.4.3.2.19. frac ... 148
19.4.3.2.20. getConfigItem ... 148
19.4.3.2.21. getFontAscender ... 149
19.4.3.2.22. getFontDescender ... 149
19.4.3.2.23. getFontLineGap ... 149
19.4.3.2.24. getImageHeight ... 150
19.4.3.2.25. getImageWidth ... 150
19.4.3.2.26. getLabelTextHeight ... 150
19.4.3.2.27. getLabelTextWidth ... 151
19.4.3.2.28. getLineCount ... 151
19.4.3.2.29. getLineHeight ... 151
19.4.3.2.30. getProductString ... 151
19.4.3.2.31. getTextHeight ... 152
19.4.3.2.32. getTextLength ... 152
19.4.3.2.33. getTextWidth ... 152
19.4.3.2.34. getVersionString ... 153
19.4.3.2.35. has_list_window ... 153
19.4.3.2.36. hsba2color ... 153

19.4.3.3. EB GUIDE Script functions I - R .. 154
19.4.3.3.1. int2float ... 154
19.4.3.3.2. int2string ... 154
19.4.3.3.3. isDynamicStateMachineActive .. 154
19.4.3.3.4. isWidgetOnActiveStatemachine .. 155
19.4.3.3.5. language ... 155
19.4.3.3.6. lerp ... 155
19.4.3.3.7. localtime_day ... 156
19.4.3.3.8. localtime_hour ... 156
19.4.3.3.9. localtime_minute ... 156
19.4.3.3.10. localtime_month ... 156

EB GUIDE TF

Page 8 of 269

19.4.3.3.11. localtime_second .. 157
19.4.3.3.12. localtime_weekday ... 157
19.4.3.3.13. localtime_year ... 157
19.4.3.3.14. log10f ... 157
19.4.3.3.15. logf ... 158
19.4.3.3.16. maxf ... 158
19.4.3.3.17. maxi ... 158
19.4.3.3.18. minf ... 159
19.4.3.3.19. mini ... 159
19.4.3.3.20. nearbyint ... 159
19.4.3.3.21. popDynamicStateMachine .. 159
19.4.3.3.22. powf ... 160
19.4.3.3.23. pushDynamicStateMachine .. 160
19.4.3.3.24. rad2deg ... 160
19.4.3.3.25. rand ... 161
19.4.3.3.26. rgba2color ... 161
19.4.3.3.27. round ... 161

19.4.3.4. EB GUIDE Script functions S - W .. 162
19.4.3.4.1. saturate ... 162
19.4.3.4.2. seed_rand ... 162
19.4.3.4.3. shutdown ... 162
19.4.3.4.4. sinf ... 162
19.4.3.4.5. skin ... 163
19.4.3.4.6. smoothstep ... 163
19.4.3.4.7. sqrtf ... 163
19.4.3.4.8. string2float ... 163
19.4.3.4.9. string2int ... 164
19.4.3.4.10. string2string ... 164
19.4.3.4.11. substring .. 165
19.4.3.4.12. system_time ... 165
19.4.3.4.13. system_time_ms ... 165
19.4.3.4.14. tanf ... 165
19.4.3.4.15. trace_dp ... 166
19.4.3.4.16. trace_string ... 166
19.4.3.4.17. transformToScreenX ... 166
19.4.3.4.18. transformToScreenY ... 167
19.4.3.4.19. transformToWidgetX ... 167
19.4.3.4.20. transformToWidgetY ... 167
19.4.3.4.21. trunc ... 168
19.4.3.4.22. widgetGetChildCount ... 168

19.5. Events ... 168
19.5.1. Decimal codes for key events .. 169

EB GUIDE TF

Page 9 of 269

19.6. model.json configuration file .. 170
19.6.1. Example model.json in EB GUIDE Studio ... 179

19.7. OpenGL ES extensions .. 181
19.8. platform.json configuration file .. 183

19.8.1. Example platform.json in EB GUIDE Studio .. 186
19.9. Scenes .. 188
19.10. Touch screen types supported by EB GUIDE GTF ... 190
19.11. tracing.json configuration file .. 191

19.11.1. Severity levels ... 193
19.11.2. Example tracing.json ... 194

19.12. Widgets ... 194
19.12.1. View ... 194
19.12.2. Basic widgets .. 195

19.12.2.1. Alpha mask .. 196
19.12.2.2. Animation ... 197

19.12.2.2.1. Constant curve ... 198
19.12.2.2.2. Fast start curve .. 198
19.12.2.2.3. Slow start curve ... 199
19.12.2.2.4. Quadratic curve .. 199
19.12.2.2.5. Sinus curve .. 200
19.12.2.2.6. Script curve ... 200
19.12.2.2.7. Linear curve ... 201
19.12.2.2.8. Linear interpolation curve .. 201

19.12.2.3. Container ... 202
19.12.2.4. Ellipse .. 202
19.12.2.5. Image ... 203
19.12.2.6. Instantiator ... 203
19.12.2.7. Label .. 204
19.12.2.8. Rectangle ... 204

19.12.3. 3D widgets .. 205
19.12.3.1. Ambient light .. 205
19.12.3.2. Camera .. 205
19.12.3.3. Directional light ... 206
19.12.3.4. Image-based light ... 206
19.12.3.5. Material .. 206
19.12.3.6. Mesh .. 207
19.12.3.7. PBR GGX material .. 207
19.12.3.8. PBR Phong material ... 209
19.12.3.9. Point light ... 210
19.12.3.10. Scene graph ... 210
19.12.3.11. Scene graph node ... 211
19.12.3.12. Spot light .. 212

EB GUIDE TF

Page 10 of 269

19.13. Widget features .. 212
19.13.1. Common ... 212

19.13.1.1. Child visibility selection .. 212
19.13.1.2. Enabled .. 213
19.13.1.3. Focused ... 213
19.13.1.4. Multiple lines .. 214
19.13.1.5. Pressed .. 214
19.13.1.6. Selected ... 215
19.13.1.7. Selection group ... 215
19.13.1.8. Spinning ... 216
19.13.1.9. Text truncation .. 216
19.13.1.10. Touched ... 217

19.13.2. Effect .. 218
19.13.2.1. Border .. 218
19.13.2.2. Coloration ... 218
19.13.2.3. Stroke .. 219

19.13.3. Focus .. 219
19.13.3.1. Auto focus .. 219
19.13.3.2. User-defined focus .. 220

19.13.4. Gestures ... 221
19.13.4.1. Flick gesture ... 221
19.13.4.2. Hold gesture ... 221
19.13.4.3. Long hold gesture ... 222
19.13.4.4. Path gestures ... 223

19.13.4.4.1. Gesture IDs ... 223
19.13.4.5. Pinch gesture ... 224
19.13.4.6. Rotate gesture .. 225

19.13.5. Input handling ... 226
19.13.5.1. Gestures .. 226
19.13.5.2. Key pressed ... 226
19.13.5.3. Key released .. 227
19.13.5.4. Key status changed .. 227
19.13.5.5. Key unicode ... 227
19.13.5.6. Move in .. 228
19.13.5.7. Move out .. 228
19.13.5.8. Move over .. 229
19.13.5.9. Moveable ... 229
19.13.5.10. Rotary .. 230
19.13.5.11. Touch lost ... 230
19.13.5.12. Touch move .. 231
19.13.5.13. Touch pressed .. 231
19.13.5.14. Touch released ... 232

EB GUIDE TF

Page 11 of 269

19.13.5.15. Touch status changed ... 232
19.13.6. Layout ... 233

19.13.6.1. Absolute layout ... 233
19.13.6.2. Box layout .. 233
19.13.6.3. Flow layout ... 234
19.13.6.4. Grid layout .. 235
19.13.6.5. Layout margins ... 236
19.13.6.6. List layout ... 236
19.13.6.7. Scale mode .. 237

19.13.7. List management ... 238
19.13.7.1. Line index .. 238
19.13.7.2. List index .. 238
19.13.7.3. Template index ... 238
19.13.7.4. Viewport ... 239

19.13.8. 3D .. 239
19.13.8.1. Camera viewport ... 239
19.13.8.2. Ambient texture .. 240
19.13.8.3. Diffuse texture .. 240
19.13.8.4. Emissive texture ... 241
19.13.8.5. Light map texture .. 242
19.13.8.6. Metallic texture ... 243
19.13.8.7. Normal map texture .. 244
19.13.8.8. Opaque texture ... 245
19.13.8.9. Reflection texture .. 246
19.13.8.10. Roughness texture .. 247
19.13.8.11. Shininess texture ... 248
19.13.8.12. Specular texture .. 249
19.13.8.13. Texture coordinate transformation .. 250
19.13.8.14. Tone mapping ... 251

19.13.9. Transformation .. 252
19.13.9.1. Pivot .. 252
19.13.9.2. Rotation .. 252
19.13.9.3. Scaling ... 253
19.13.9.4. Shearing ... 253
19.13.9.5. Translation .. 253

A. EB GUIDE TF APK .. 255
A.1. Installation of EB GUIDE TF on Android ... 255

A.1.1. System requirements .. 255
A.1.2. Features of the EB GUIDE TF APK ... 255
A.1.3. Description of the EB GUIDE TF APK files ... 255

A.1.3.1. Released APK and custom APK ... 257
A.1.3.2. Restrictions .. 258

EB GUIDE TF

Page 12 of 269

A.1.4. Android life cycle management .. 258
A.1.5. Directory for EB GUIDE models ... 258
A.1.6. Android layout handling ... 259

Glossary ... 260
Index .. 265

EB GUIDE TF
Chapter 1. About this documentation

Page 13 of 269

1. About this documentation

1.1. Target audiences of the user documentation
This chapter informs you about target audiences involved in an EB GUIDE project and the tasks they usually
perform.

You can categorize your tasks and find the documentation relevant to you.

The following roles exist:

► section 1.1.1, “System integrators”

► section 1.1.2, “Application developers”

► section 1.1.3, “Extension developers”

1.1.1. System integrators
System integrators make sure that all the different system parts are integrated into one complete and working
system.

System integrators perform the following tasks:

► Ensure that the different project parts are executed together

► Configure required modules and file system structures

► Integrate customer specific EB GUIDE GTF extensions and HMI applications

► Carry out settings to ensure system integrity within EB GUIDE Studio and on the target device

► Carry responsibility for the project setup in EB GUIDE Studio, for example, create a shared workspace in
projects involving different people working together on one EB GUIDE model

System integrators have the profound knowledge of the following:

► The system, including the target framework used and its restrictions

► The generating mechanism that ensures compatibility of an EB GUIDE model and the target system

1.1.2. Application developers
Application developers write source code for HMI applications, such as a CD player or a radio. Such applications
add distinct functionality to the system, for example control of hardware components.

EB GUIDE TF
Chapter 1. About this documentation

Page 14 of 269

Application developers perform the following tasks:

► Program additional functionality that is required by the system

► Write code to interface with EB GUIDE GTF, provide application data to the HMI, and provide communi-
cation with the HMI

► Consider the required communication data between the HMI model and its application

► Define datapool items and events

► Determine the flow of data between HMI model and application

► Communicate with modelers to know what data can be provided by hardware devices and how to use the
different EB GUIDE GTF communication mechanisms

Application developers have the profound knowledge of the following:

► C++, to know how to compile for the existing EB GUIDE TF C++ interfaces

► All programming languages used, as applications can be written in any programming language

► The specifications and requirements of the domain

1.1.3. Extension developers

There may be missing features that cannot be provided through simply modeling an EB GUIDE model or adding
customer-specific applications. This is when new widgets or a specific renderer may be required.

Extension developers perform the following tasks:

► Communicate with members of the EB GUIDE development team through chapter 3, “Support“ to find out
if there are already solutions to problems

► Work on the framework and develop new features, EB GUIDE Studio extensions or EB GUIDE GTF ex-
tensions

► Write code for additional modules for the following items:

► Existing EB GUIDE GTF modules such as widgets or the shaders

► Existing EB GUIDE Studio extensions such as additional toolbar buttons

Extension developers have the profound knowledge of the following:

► EB GUIDE interfaces

► Interaction between the central modules

► Structure of the framework's data

EB GUIDE TF
Chapter 1. About this documentation

Page 15 of 269

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
The following pictographs and signal words are used in this documentation to indicate important information.

The signal word WARNING indicates information that is vital for the success of the configuration.

WARNING Source and kind of problem
What can happen to the software?

What are the consequences of the problem?

How does the user avoid the problem?

The signal word NOTE indicates important information on a subject.

EB GUIDE TF
Chapter 1. About this documentation

Page 16 of 269

NOTE Important information
Gives important information on a subject.

The signal word TIP provides helpful hints, tips and shortcuts.

TIP Helpful hints
Gives helpful hints

Throughout the documentation you will find words and phrases that are displayed in bold or in italic or mono-
spaced font.

To find out what these conventions mean, see the following examples.

All default text is written in Arial Regular font.

Font Description Example

Arial italics to emphasize new or important terms The basic building blocks of a configuration are
module configurations.

Arial boldface for GUI elements and keyboard keys 1. In the Project drop-down list box, select
Project_A.

2. Press the Enter key.

Monospaced font
(Courier)

for file names, directory names and
chapter names

Put your script in the function_name/abcdi-
rectory.

Monospaced font
(Courier)

for user input, code, and file directo-
ries

CC_FILES_TO_BUILD =(PROJECT_PATH)/

source/network/can_node.c CC_-

FILES_TO_BUILD += $(PROJECT_PATH)/

source/network/can_config.c

The module calls the BswM_Dcm_Re-
questSessionMode() function.

For the project name, enter Project_Test.

Square brackets
[]

to denote optional parameters; for
command syntax with optional para-
meters

insertBefore [<opt>]

Curly brackets {} to denote mandatory parameters; for
command syntax with mandatory pa-
rameters

insertBefore {<file>}

EB GUIDE TF
Chapter 1. About this documentation

Page 17 of 269

Font Description Example

Three dots … to indicate further parameters; for
command syntax with multiple para-
meters

insertBefore [<opt>…]

A vertical bar | to indicate all available parameters;
for command syntax in which you se-
lect one of the available parameters

allowinvalidmarkup {on|off}

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.8

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH/platform/<platform name>.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.8/platform/win64

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

EB GUIDE TF
Chapter 1. About this documentation

Page 18 of 269

C:/Users/[user name]/Documents/EB GUIDE 6.8/projects/

► The directory to which you export your EB GUIDE model is referred to as $EXPORT_PATH.

EB GUIDE TF
Chapter 2. Safe and correct use

Page 19 of 269

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by Elektrobit Automotive GmbH to implement human
machine interfaces in safety-relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety-relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact Elektrobit Automotive GmbH for clarification at chapter 3, “Support“.

EB GUIDE TF
Chapter 3. Support

Page 20 of 269

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click Help. The version number is located in the lower right corner of
the dialog.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 21 of 269

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE prod-
uct line provides tooling and platform for graphical or speech user interfaces. The EB GUIDE product line is
intended to be used in projects for infotainment head units, cluster instruments and selected industry applica-
tions. Main use cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. EB GUIDE TF is available for
development PCs and for different embedded platforms.

The EB GUIDE model that is created with EB GUIDE Studio and the exported EB GUIDE model that is executed
on EB GUIDE TF are completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

State machines
A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

States
States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 22 of 269

4.2.2. Modeling HMI appearance
In EB GUIDE Studio you define the graphical user interface and the speech user interface of the EB GUIDE
model.

Widgets
To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that
define the look. They are mainly used to display information, for example text labels or images. Widgets
also allow users to control system behavior, for example buttons or sliders. Multiple widgets are assembled
to a structure, which is called view.

Spidgets
To create a speech user interface EB GUIDE Studio offers spidgets. Spidgets are used to specify the
fundamental parts of a speech dialog. Speech recognition as user input and speech synthesis as system
output. A prompt spidget allows the modeling of text that is played through a text-to-speech synthesizer
(TTS). A command spidget allows the modeling of grammars that describe what a speech recognizer
understands. Related spidgets are grouped together through model elements. This group is called talk.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

Datapool
The datapool is an embedded database that holds all data to be displayed and further internal information.
Datapool items store and exchange data.

Event system
Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

Application software can access events and the datapool through the API.

4.2.4. Simulating the EB GUIDE model
With EB GUIDE Studio you can test the functionality of your EB GUIDE model during simulation. You start the
simulation with a mouse-click and can immediately experience the look and feel of your EB GUIDE model.

You interact with simulation using input devices like mouse, keyboard, or touch screen.

You can also control your EB GUIDE model with EB GUIDE Monitor and do the following:

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 23 of 269

► Change the displayed data by changing values of datapool items

► Simulate user input by firing events

► Track all changes in the log

► Start scripts

You can also use EB GUIDE Monitor as a stand-alone application.

4.2.5. Exporting the EB GUIDE model
To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
EB GUIDE TF consists of the GtfStartup executable file and a set of libraries, which are required to execute
an EB GUIDE model.

Depending on the project type selected in EB GUIDE Studio you execute:

► EB GUIDE GTF

EB GUIDE Graphics Target Framework is the run-time environment executing a graphical HMI.

► EB GUIDE STF

EB GUIDE Speech Target Framework is the run-time environment executing speech functionality in the
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 24 of 269

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstrac-
tion to the real graphic system on your hardware. EB GUIDE TF supports various renderers for different
platforms.

► Audio abstraction

The speech user interface requires access to audio hardware. The audio abstraction provides access to
microphones and speakers. EB GUIDE STF implements speech recognition and text-to-speech synthesis.
For this purpose EB GUIDE STF incorporates third-party speech engines.

EB GUIDE TF
Chapter 5. Framework overview

Page 25 of 269

5. Framework overview

5.1. Relationship between EB GUIDE Studio, EB
GUIDE GTF and EB GUIDE Monitor
EB GUIDE Studio provides input to EB GUIDE GTF in form of the exported EB GUIDE model. The EB GUIDE
model comprises the binary model description files that are generated during export. For more information on
export, see EB GUIDE Studio user documentation.

Within the EB GUIDE product line, EB GUIDE GTF is responsible for the following:

► EB GUIDE GTF executes the content of an exported EB GUIDE model on the dedicated target platform.
A target platform for EB GUIDE GTF is typically defined by concrete target architecture, operating system
and graphics API.

► EB GUIDE GTF runs the EB GUIDE model for the simulation in EB GUIDE Studio.

You can connect EB GUIDE Monitor to EB GUIDE GTF, which allows you to observe, manipulate, and test an
EB GUIDE model that runs on EB GUIDE GTF. EB GUIDE Monitor and EB GUIDE GTF communicate using
TCP/IP.

EB GUIDE GTF interacts with third-party applications using API. Applications have access to the configuration
files of the exported EB GUIDE model.

EB GUIDE TF
Chapter 5. Framework overview

Page 26 of 269

EB GUIDE Studio

EB GUIDE GTF

EB GUIDE
Monitor

Custom
applications

exports uses configuration

uses configuration

interprets

communicates
using TCP/IP

interacts

Exported EB
GUIDE model

mandatory

optional

Figure 5.1. Workflow overview

5.2. Interactions between EB GUIDE GTF and ex-
tensions
An EB GUIDE GTF extension is a supplement to EB GUIDE GTF which provides additional features in EB
GUIDE Studio but is only valid for one EB GUIDE model.

The typical EB GUIDE GTF extensions are the following:

► New widgets

► New widget features

► New EB GUIDE Script functions

EB GUIDE TF
Chapter 5. Framework overview

Page 27 of 269

EB GUIDE GTF extensions are dynamic link library (.dll) or shared object (.so) files.

Place the EB GUIDE GTF extension, including their third-party libraries, into the following directory:

$GUIDE_PROJECT_PATH/<project name>/resources/target

EB GUIDE Studio

EB GUIDE GTFCustom
extensions

provides
information

on extensions

loads

configures
extensions

to be loaded

provides

mandatory

optional

Figure 5.2. Workflow overview

EB GUIDE GTF loads an additional custom extension and provides data on the extension to EB GUIDE Studio.
This is the way EB GUIDE Studio gets the necessary data and is able to configure the extension.

For instructions, see chapter 10, “Using the EB GUIDE GTF plugin mechanism“.

5.3. Interactions between EB GUIDE GTF and ap-
plication

EB GUIDE TF
Chapter 5. Framework overview

Page 28 of 269

EB GUIDE product line abstracts all communication data between an application and EB GUIDE GTF in an
application programming interface (API). An application is for example a media player or a navigation system.
The API is defined by datapool items and events. Datapool and event system of an application exchange data
with datapool and event system of EB GUIDE GTF.

EB GUIDE GTFCustom
application

uses
configuration

exchanges
data

interprets

Exported EB
GUIDE model

Datapool

Event
system

Datapool

Event
system

mandatory

optional

Figure 5.3. Workflow overview

5.4. Interaction between EB GUIDE GTF instances
Since every EB GUIDE GTF instance executes only one EB GUIDE model, to make your HMI model more
configurable, you can use several EB GUIDE GTF instances. Multiple EB GUIDE GTF instances may exchange
information, for example datapool items or events, using the inter-process communication (IPC) mechanism.

Example 5.1.
Multiple EB GUIDE GTF instances

Depending on your HMI model, you can have several combinations for using EB GUIDE GTF:

► You have only one target device that is connected to several displays, and one EB GUIDE GTF in-
stance that interprets one EB GUIDE model.

► You have only one target device that is connected to several displays, and several EB GUIDE GTF
instances. Each of these EB GUIDE GTF instances interprets a separate EB GUIDE model.

► You have several target devices and several EB GUIDE GTF instances. Each of these target de-
vices connects to a separate display. Each of these EB GUIDE GTF instances interprets a sepa-
rate EB GUIDE model.

EB GUIDE TF
Chapter 5. Framework overview

Page 29 of 269

If you have several displays and want to avoid blocking, it is advisable to have several EB GUIDE mod-
els and therefore use several EB GUIDE GTF instances.

EB GUIDE GTF EB GUIDE GTF

exchanges
data

interprets

Exported EB
GUIDE model

Datapool

Event
system

Exported EB
GUIDE model

Datapool

Event
system

interprets

IPC IPC

Custom
application

uses
configuration

Datapool

Event
system

exchanges
data

mandatory

optional

Figure 5.4. Workflow overview for several EB GUIDE GTF instances with optional application

The figure above shows the typical interactions between several EB GUIDE GTF instances that are valid for
the IPC and non-IPC use cases.

5.5. Dependencies to target platform
To be able to run an EB GUIDE GTF instance, make sure that your target platform meets the following minimal
requirements.

Table 5.1. Minimal requirements

Compiler Support of C++11 is required.

Operating system Operating system with Posix-compliant interface: Windows, Linux,
QNX, Greenhills integrity

GPU DirectX 11 for Windows

OpenGL ES 2 and 3 for target platforms if applicable.

EB GUIDE TF
Chapter 5. Framework overview

Page 30 of 269

Note that for Windows an emulation for both GPUs is used.

File system EB GUIDE GTF runs on systems with a file system.

CPU 32-bit, little endian CPU, 64-bit

NOTE Contact support
For more information on customization and target platforms, contact support.

5.6. Structure of EB GUIDE GTF
EB GUIDE GTF is based on a microkernel architecture. This means EB GUIDE GTF consists of a core with
base functionality and plugins, i.e. extensions and applications, that enable the execution of EB GUIDE models.

.png HMI model

Core

Application

Graphics API

Operating system

Project-specific
middleware

UI

Data

Execution

Extension

OSAL

Launcher Configuration

ConfigurationImporter DependencyResolver

CommandLine PluginLoader

Tracing

Figure 5.5. EB GUIDE GTF overview

EB GUIDE GTF is embedded in an environment that contains an operating system, a graphics API, and project-
specific middleware.

The core includes the following:

EB GUIDE TF
Chapter 5. Framework overview

Page 31 of 269

► Abstraction of the dedicated operating system that is called Operating System Abstraction Layer (OSAL)

► The Launcher interface that launches EB GUIDE GTF

► DependencyResolver, a dependency resolving mechanism

► The PluginLoader interface that loads plugins

► The Configuration interface that accesses configuration items

► The ConfigurationImporter interface that loads configuration files

► The CommandLine interface that parses given command line parameters

► Interface for tracing purposes

Applications are plugins for EB GUIDE GTF. This means the core loads applications at the start-up before the
start of an EB GUIDE model is initiated. Applications are bound to the global accessible API and cannot directly
access EB GUIDE model content.

Extensions are plugins for an EB GUIDE model. Extensions are initiated during the EB GUIDE model start-up.
Extensions can access model-specific content directly and extend the EB GUIDE model content, for example
using widgets, features or EB GUIDE script functions.

The HMI model in this context is the summary of all components that are necessary to run an exported EB
GUIDE model. This includes components that manage the user interface, the data and the execution of the
dynamic behavior of an EB GUIDE model.

EB GUIDE TF
Chapter 5. Framework overview

Page 32 of 269

.png HMI model

Graphics API

Core

UI

Data

Execution

Extension

Aspect

Script

StateMachine

Animations

ModelRunner

Datapool

Scene

EventSystem

Resources

Properties

Renderer TextEngine Decoder

Figure 5.6. HMI model components

The execution components take care of the dynamic behavior of an EB GUIDE model. This means the exe-
cution of the following:

► State machine

► EB GUIDE Script that is part of the datapool, state machine or widget tree

► Animations that describe property changes within the widget tree

► Parts of an EB GUIDE model that are described using languages and skins

► EB GUIDE models for which the ModelRunner is responsible

The data components take care of data definition and management.

EB GUIDE GTF considers the following items as data items of an EB GUIDE model:

► Datapool items

► Events that are managed using EventSystem

► Resources

► Scenes built up from views and widget trees

EB GUIDE TF
Chapter 5. Framework overview

Page 33 of 269

► Widget properties

The user interface components take care of functions required to support graphical user interfaces. These
components enable EB GUIDE GTF to perform the following:

► The TextEngine component supports processing and rendering of internationalized and localized texts.

► The Decoder component loads and decodes various types of resources, for example images as .png,
.jpeg.

► The Renderer component creates the visual representation using the available EB GUIDE GTF graphics
abstraction layer.

HMI model

EB GUIDE GTF

Custom
applications

Target OS
Target hardware

Graphics API
Project-
specific

middleware

Figure 5.7. Overview Architecture

5.7. Deployment of EB GUIDE GTF
EB GUIDE GTF consists of GtfStartup.exe and several optional assemblies. The default delivery of EB
GUIDE GTF runs on operating systems that support shared libraries, for example Windows 10, Linux or QNX.
EB GUIDE GTF is divided into the following components to fit most customer projects out of the box:

► GtfStartup.exe

The executable file that contains platform-specific start-up code and interprets the configuration files. Gt-
fStartup.exe is configurable with parameters. For more information, see section 7.7.1, “Run EB GUIDE
GTF with GtfStartup.exe”.

EB GUIDE TF
Chapter 5. Framework overview

Page 34 of 269

► GtfCore

Shared library that contains all mandatory modules for each GUI project based on EB GUIDE Studio and
EB GUIDE GTF.

► GtfRuntime

Shared library that contains all mandatory functionality for EB GUIDE GTF based projects.

► GtfGui

Shared library that is responsible for text and resource handling and is required for EB GUIDE GTF based
GUI projects.

► GtfGuiOpenGLES20

Shared library that contains the OpenGL ES 2.0 API renderer implementation.

► GtfGuiOpenGLES3

Shared library that contains the OpenGL ES 3.0 API renderer implementation.

► GtfGuiDirectX11

Shared library that contains the DirectX 11 API renderer implementation.

► GtfService

Shared library that is required to establish TCP connection to an EB GUIDE GTF instance, used by for
example EB GUIDE Monitor or GtfIpc.

► GtfIpc

Shared library that extends GtfService and provides possibility for the inter-process communication
(IPC).

► GtfFileOutput

Shared library that is used by the trace logging system for the file output on all target platforms.

► GtfProfilingOutput

Shared library that is used by the trace logging system for the output of the profiling data on all target
platforms.

► GtfVsDebugOutput

Shared library that is used by the trace logging system for the output inside of the IDE on Win64 target
platforms.

► GtfKernelEventOutput

Shared library that is used by the trace logging system for the output using Kernel event traces on QNX
target platforms.

EB GUIDE TF
Chapter 6. General concepts

Page 35 of 269

6. General concepts

6.1. Non-blocking strategy
EB GUIDE GTF does not block while waiting for changes. To implement the non-blocking strategy, use callbacks
that are registered using delegates.

6.1.1. Observer patterns and callbacks

To track when a subject changes its state, for example if the property of a widget is changed, EB GUIDE GTF
uses the observer pattern. The observer pattern happens through a callback function that you register using
gtf::delegate. This function is invoked for each modification of the subject's state. For more information,
see section 6.1.2, “Delegates”.

Example 6.1.
Delegate example

The event system provides an event queue which purpose is to control the point in time when event
processing happens. The event system provides a subscribe method which takes a callback as para-
meter. The callback is processed when the event occurs.

gtf::utils::Delegate<void(gtf::eventsystem::EventHandle<const char*>)>

const subscriberCallback =

gtf::utils::Delegate<void(gtf::eventsystem::global::EventHandle)>::create

<EventApplication, &EventApplication::processEvent>(this);

 eventQueue->subscribe(gtf::eventsystem::SubscriptionType::Event

 , GLOBAL_EVENT_GROUP_GLOBAL

 , GLOBAL_EVENT_MSG_ID_WHATTODO

 , this

 , subscriberCallback);

6.1.2. Delegates

A delegate is a data type that represents references to methods with a particular parameter list and return type.
To pass methods as arguments to other methods, use delegates. Any method from any accessible class or
struct that matches the delegate type can be assigned to the delegate. The method can be either a static or
an instance method. Also it can be used on constant methods.

EB GUIDE TF
Chapter 6. General concepts

Page 36 of 269

To store callbacks, use the delegate templates. Empty delegates are not allowed.

The delegate class provides the gtf::utils::Delegate<R(Params)>::create <Class, F&> ()
method that returns gtf::utils::Delegate<R(Params)>. This method expects a specialization of the
delegate class, which takes as template arguments the return type of the function and the type of the parame-
ters. The create method expects as template arguments the class name and a reference to the actual method
from that class. As parameter, the instance of the specific class is provided.

Create delegates as follows:

► Create a delegate for an object method:

gtf::utils::Delegate<R(Params)> delegate =

 gtf::utils::Delegate<Class, R(Params)>::create <Class,F&> (instance);

► Create a delegate for a static method or a function:

gtf::utils::Delegate<R(Params)> delegate =

 gtf::utils::Delegate<R(Params)>::create <F>();

In case of static methods or functions, do not specify neither the class name as template argument nor
the instance as parameter.

► Create a delegate for const function or const arguments:

There is no difference in creating a delegate for a constant or non-constant argument.

You can also initialize a delegate using the bind method:

gtf::utils::Delegate<R(Params)> delegate;

delegate.bind<&F>();

NOTE Change of function
If you declared a delegate and it has a function assigned, the bind method changes the
function with another function if it has the same return type and arguments list.

EB GUIDE TF
Chapter 7. Core concepts

Page 37 of 269

7. Core concepts

7.1. Core life cycle stages
The life cycle consists of stages. Stages are ordered and the start-up is done according to the order. The
shutdown is done in the reverse order. There are separate life cycle stages for the core and for the EB GUIDE
model. For the EB GUIDE model life cycle, see section 8.2, “Model life cycle stages”.

Run

Prepare

Model life cycle

Core life cycle

Running

Loaded

Initialized

Prepared

Run

Load

Initialize

Prepare

Figure 7.1. Overview of the EB GUIDE GTF life cycle stages

A stage is a named interface only. There may be multiple implementations for each of the stages. On start-up
all implementations of one stage are created, before the next stage is entered. On shutdown all instances of
one stage are destroyed, before the next stage is left.

You can customize the life cycle of EB GUIDE GTF by implementing predefined stages or by adding and
implementing custom stages.

One and the same gtf::dependencyresolver::DependencyContainer instance is provided to each
core stage create function. This instance is dedicated to the core and differs from the instance provided to
stages of the EB GUIDE model life cycle.

EB GUIDE TF
Chapter 7. Core concepts

Page 38 of 269

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model 1

…

DependencyContainer Model N

Figure 7.2. Integration of the core stages

The following two core stages are predefined:

PrepareStage

Use this stage to prepare your application.

All EB GUIDE GTF plugins, listed in the platform.json, are loaded. Configuration is ready and depen-
dencies of the EB GUIDE GTF core functionality are resolved.

RunStage

Use this stage to start your application.

At this stage EB GUIDE GTF starts:

► EB GUIDE model

► EB GUIDE Monitor service

► Custom applications

To implement predefined stages, see stage classes gtf::launcher::PrepareStage or
gtf::launcher::RunStage. Register the stage at
gtf::dependencyresolver::DependencyCatalog.

EB GUIDE TF
Chapter 7. Core concepts

Page 39 of 269

Derive custom core stages from gtf::launcher::Stage. You also need to create your own custom Stage-
Provider that returns the custom stage name in the gtf::launcher::StageProvider::stage() func-
tion. Derive your CustomStageProvider from gtf::launcher::StageProvider. Register the stage at
gtf::dependencyresolver::DependencyCatalog.

For an example on how to add a custom stage, see the EB GUIDE SDK example CoreStageExam-
ple. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

For more information on classes and interfaces, see EB GUIDE GTF API.

7.2. Tracing
With EB GUIDE GTF you can use traces on your platform. In the default EB GUIDE GTF delivery, traces are
enabled. To customize the usage of traces on your platform, you need to create and configure a tracing.json
configuration file. Depending on your configuration, you can provide output not only for your traces, but also
for the EB GUIDE GTF traces. For each level of traces you can define the severity.

NOTE Traces
If you enable traces on your platform, the system may respond with delays.

For instructions on how to create, configure, and use traces, see chapter 13, “Tracing logging messages“.

For more information on the configuration items of the tracing.json configuration file, see section 19.11,
“tracing.json configuration file”.

For an example, see section 19.11.2, “Example tracing.json”.

For an example of the tracing.json configuration file, see the EB GUIDE SDK example TraceOutputEx-
ample. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

EB GUIDE GTF provides the possibility of logging messages from an application using the Logging interface.

Based on the message severity, you can use the following trace macros from the $GTF_INSTALL_PATH
\win64\include\gtf\tracing\Logging.h header file.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
../gtf_api/index.html
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 7. Core concepts

Page 40 of 269

Table 7.1. Trace macros

Trace macro Description

GTF_DEBUG(channelName, MSG) The debug level provides fine-grained informational
messages to debug an application.

GTF_INFO(channelName, MSG) The information level provides informational mes-
sages that highlight the progress of the application at
the high level.

GTF_NOTICE(channelName, MSG) The notice level provides informational messages
that highlight the progress of the application at the
highest level.

GTF_WARNING(channelName, MSG) The warning level provides potentially harmful situa-
tions or interfaces that are not used as expected.

GTF_ERROR(channelName, MSG) The error level provides errors that might still allow
the application to continue running.

GTF_FATAL(channelName, MSG) The fatal level provides very severe errors that may
lead the application to abort.

Tracing output is configured using the tracing.json configuration file.

The following table contains the available tracing output plugins.

Table 7.2. Available tracing output plugins

Plugin Platform compatibility Description

GtfFileOutput All platforms Writes the traces to the log.-
txt file. log.txt is located in
the same directory as trac-
ing.json.

GtfKernelEventOutput QNX For debugging with kernel event
traces

GtfVsDebugOutput Windows If connected with the Visual Studio
debugger, forwards the traces to
Visual Studio debugger console

In case no plugins are configured in tracing.json, the default outputs in the following table are used, de-
pending on the platform.

Table 7.3. Integrated tracing outputs

Output Platform compatibility Description

stderr/stdout All platforms except Android Forwards the traces to stderr
and stdout streams:

EB GUIDE TF
Chapter 7. Core concepts

Page 41 of 269

Output Platform compatibility Description

► Warning, Error and Fatal
are traced to stderr

► Debug, Info and Notice are
traced to stdout

LogCat Android Forwards the traces to LogCat

The severities are mapped to the
Android log levels as follows:

► None is mapped to AN-
DROID_LOG_UNKNOWN

► Debug is mapped to AN-
DROID_LOG_DEBUG

► Info and Notice are
mapped to ANDROID_LOG_-
INFO

► Warning is mapped to AN-
DROID_LOG_WARN

► Error is mapped to AN-
DROID_LOG_ERROR

► Fatal is mapped to AN-
DROID_LOG_FATAL

EB GUIDE Monitor Windows Traces having severity Notice
and above are displayed in the EB
GUIDE Monitor Logger compo-
nent.

For more information on the configuration items of the tracing.json configuration file, see section 19.11,
“tracing.json configuration file”.

7.3. Error handling
If an error occurs, EB GUIDE GTF produces tracing messages. The corresponding tracing severity is used
based on the level of the occurred error. For more information about the tracing severities, see section 7.2,
“Tracing”.

The following table contains error levels that are managed by EB GUIDE GTF.

EB GUIDE TF
Chapter 7. Core concepts

Page 42 of 269

Table 7.4. Error levels in EB GUIDE GTF

Error level Description Example

Critical EB GUIDE GTF shuts down, if possible, or
produces a crash. The trace message is
printed out using the fatal severity.

The system is out of memory, or an un-
supported renderer plugin is used.

Controllable EB GUIDE GTF tries to initialize an or-
dered, i.e. normal, shut down.

The model binary directory contains in-
valid information.

Minor EB GUIDE GTF execution is not affected
by the error, trace messages are generat-
ed.

An EB GUIDE GTF plugin is not valid and
cannot be loaded.

7.3.1. Critical errors
To indicate critical errors, use the GTF_OSAL_CRITICAL_ERROR macro in custom applications and extensions.
It is recommended to use GTF_OSAL_CRITICAL_ERROR when you start EB GUIDE GTF in an already existing
process.

For an example on how to manage critical errors, see the EB GUIDE SDK examples. Download the EB_-
GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://www.elektrobit.com/ebguide/
learn/resources/. For instructions on how to work with the EB GUIDE SDK examples, see the EB GUIDE
Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed in the .zip archive.

To set callbacks to handle errors, use the gtf_osal_set_assert_handlers method.

7.3.2. Return value of GtfStartup.exe
If EB GUIDE GTF has detected an error, the GtfStartup.exe executable file returns EXIT_FAILURE. Oth-
erwise it returns EXIT_SUCCESS.

7.4. Interface dependencies
EB GUIDE GTF provides a mechanism to manage the hierarchy of interfaces.

This mechanism is implemented by means of the DependencyResolver module. It enforces loose coupling
between modules and is thread safe.

The interfaces of DependencyResolver module are found in the namespace gtf::dependencyresolver:

► DependencyContainer: Main interface that is used to register and retrieve instances.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 7. Core concepts

Page 43 of 269

► DependencyObject: Helper class that is used for adding data to a catalog.

► Interface: Parent for all interfaces that are registered in DependencyContainer.

For more information, see API documentation module DependencyResolver.

For instructions how to register interfaces and retrieve implementations of registered interfaces, see chapter 11,
“Resolving interface dependencies“.

For an example on DependencyResolver, see the EB GUIDE SDK example DependencyResolverEx-
ample. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

7.5. Configuration of EB GUIDE GTF
EB GUIDE GTF has the possibility to read the configuration items that are included in the platform.json
and model.json files. The .json files are part of the exported EB GUIDE model and contain configuration
items that were specified in EB GUIDE Studio.

► To configure EB GUIDE GTF globally for all EB GUIDE models, use platform.json which contains
core-related information.

► To configure a single EB GUIDE model, use model.json, which contains configuration items like model
identifier, display size, or color mode.

For more information on these .json files, see section 19.6, “model.json configuration file” and section 19.8,
“platform.json configuration file”.

For more information about JSON format, see http://www.json.org.

The Configuration module gives you the possibility to build, add and retrieve configuration items. User-
defined applications or extensions can use these configuration items as well as retrieve them from the Con-
figuration module using the Settings interface. The Settings interface is the main interface of the
Configuration module.

Besides the standard .json files that EB GUIDE GTF uses, you can use your own .json files to register
custom configuration items. To register the custom configuration items, use the ConfigurationImporter
interface that parses a .json file and adds its elements into the Configuration module. For instructions,
see section 12.6, “Using a custom .json file to define configuration items.”. You can also create your own
Settings instances. For instructions, see section 12.7, “Creating new Settings”.

EB GUIDE GTF stores the items that were read from the model.json file at the model level Settings and
the items that were read from the platform.json file at the core level Settings. However, since the model

dce://gtf_api/DependencyResolver
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
http://www.json.org

EB GUIDE TF
Chapter 7. Core concepts

Page 44 of 269

level Settings interface is a child of the core level Settings, the model level Settings also has access to
the configuration items stored at the core level. Note that this is not valid in the opposite direction. This means
that each Settings instance has access to the configuration items of its ancestors, but has no knowledge
about the configuration items of its children. For more information, see section 12.7, “Creating new Settings”.

A configuration item is a key-value pair. The key must be unique. Configuration items can have the values of
the following types:

► BooleanScalar

► IntegerScalar

► FloatScalar

► StringScalar

► BooleanList

► IntegerList

► FloatList

► StringList

► Object

► ObjectList

The key naming structure is namespace1.namespace2.[...].namespaceN.itemName, for example
gtf.core.pluginstoload or gtf.core.servicemapper.port.

NOTE Thread safety of the Configuration API
Adding and retrieving operations of the Configuration module are thread-safe.

For instructions on how to use the Configuration module, see chapter 12, “Configuring EB GUIDE GTF“.

For more information, see API documentation: Configuration module.

7.6. EB GUIDE GTF plugin concept
Plugins are external libraries that EB GUIDE GTF can load and thus gain additional functionalities. EB GUIDE
GTF differentiates between two types of plugins:

► Applications

For more information, see section 5.3, “Interactions between EB GUIDE GTF and application”.

► Extensions

dce://gtf_api/Configuration

EB GUIDE TF
Chapter 7. Core concepts

Page 45 of 269

For more information, see section 5.2, “Interactions between EB GUIDE GTF and extensions”.

For instructions, see chapter 10, “Using the EB GUIDE GTF plugin mechanism“.

7.7. Run modes of EB GUIDE GTF

7.7.1. Run EB GUIDE GTF with GtfStartup.exe
On most target platforms EB GUIDE GTF is started by executing the GtfStartup.exe executable file. With
this approach EB GUIDE GTF starts its own process. You can add own project-specific extensions and appli-
cations using EB GUIDE GTF plugins.

For more information, see section 7.6, “EB GUIDE GTF plugin concept”.

The GtfStartup.exe executable file provides platform-specific start-up code and interprets the model.json
and platform.json configuration files. Additional functionality is available for specific platforms, for example
command line parameter handling or detection of other EB GUIDE GTF instances.

7.7.1.1. Command line options

The following table lists command line options available in EB GUIDE GTF for GtfStartup.exe and explains
their meaning. Undefined commands are ignored.

The general syntax for a command line is as follows: GtfStartup.exe <option>

Table 7.5. Command line options

Option Description

--version Optional parameter. Displays the EB GUIDE GTF
version.

--romfs $ROMFS_FILE_PATH $ROMFS_ROOT_-
FOLDER

Optional parameter. In order to run, EB GUIDE GTF
needs a file system. Therefore, if the target device
has no file system available, read-only memory file
system (RomFS) is used. If specified, the given Rom-
FS is loaded. $ROMFS_FILE_PATH is the path to the
RomFS container file and $ROMFS_ROOT_FOLDER is
the root location in the RomFS file system.

$MODEL_JSON_PATH Path to the model.json configuration file

You can specify either of the following:

EB GUIDE TF
Chapter 7. Core concepts

Page 46 of 269

Option Description

► Only the directory where the file is stored. In
this case the file with the name model.json is
used.

► Only the file name, if the file is stored in the di-
rectory in which you called GtfStartup.exe.

► The directory where the file is stored and the file
name, if the file name is not model.json.

$PLATFORM_JSON_PATH Path to the platform.json configuration file

You can specify either of the following:

► Only the directory where the file is stored. In this
case the file with the name platform.json is
used.

► Only the file name, if the file is stored in the di-
rectory in which you called GtfStartup.exe.

► The directory where the file is stored and the file
name, if the file name is not platform.json.

For examples on how to redirect stdout and stderr messages to a file, see the table below.

Table 7.6. Redirecting stdout and stderr messages to a file

Option Description

> <output_file.txt> Redirects the output of stdout to a .txt file. The
output file is created in the current working directory.

> <output_file.txt> 2>&1 Redirects stderr to stdout and then stdout to
a .txt file. The output file is created in the current
working directory.

Note that the output messages are not displayed after you entered a command line option. To see the output
messages, use the > redirect option.

For more information about usage of stdout and stderr with the Tracing module, see section 7.2, “Trac-
ing”.

Example 7.1.
Usage of command line options

To start an EB GUIDE model with the specified configuration files model.json and platform.json,
enter the following:

GtfStartup.exe $MODEL_JSON_PATH $PLATFORM_JSON_PATH

EB GUIDE TF
Chapter 7. Core concepts

Page 47 of 269

Note the order: first you specify the path to model.json, second you specify the path to plat-
form.json.

7.7.2. Run EB GUIDE GTF in an existing process
Another approach is to run EB GUIDE GTF within an already existing process. To do so, call the
gtf::launcher::main(...) method. The related C++ header file gtf/launcher/main.h is part of the
EB GUIDE SDK.

The gtf::launcher::main(...) method blocks the calling thread for the run-time of the started EB GUIDE
GTF instance.

You can provide the following additions to the gtf::launcher::main(...) method:

► String parameters, processed like the command line parameters of the GtfStartup.exe executable file.
For more information, see section 7.7.1.1, “Command line options”.

► Optional gtf::dependencyresolver::DependencyContainer instance that is used as root. You
can provide extensions and applications to the EB GUIDE GTF instance using this root container.

► You can provide interfaces without using an EB GUIDE GTF plugin.

► You can provide interface instances, which are already available when calling the
gtf::launcher::main(...) method.

► Optional ROM file system (RomFS) containers in the process address space. The ROM file system con-
tainers may contain configuration files, EB GUIDE GTF plugins, or exported EB GUIDE models. They are
added before the EB GUIDE GTF start-up. Command line parameters provided in the string parameters
can refer to the files in these ROM file system containers. For more information, see section 7.8, “Read-
only memory file system support”.

7.8. Read-only memory file system support
A read-only memory file system (RomFS) is a read-only data structure representing a file system. The data
structure can be provided to EB GUIDE GTF as follows:

► In a container file of the underlying operating system (OS)

► In a container file of an already provided RomFS

► As an address in the process address space at the EB GUIDE GTF start-up

For more details, see section 7.7.1, “Run EB GUIDE GTF with GtfStartup.exe” and section 7.7.2, “Run EB
GUIDE GTF in an existing process”.

EB GUIDE TF
Chapter 7. Core concepts

Page 48 of 269

You can also use a RomFS to run EB GUIDE GTF on an embedded systems without the OS file system support.

The EB GUIDE GTF RomFS support is implemented in user space and does not depend on the underlying OS.

EB GUIDE provides a tool for creating RomFS containers, called RomFsCreate, which contains for example
the exported EB GUIDE Studio model. Find RomFsCreate in the $GUIDE_INSTALL_PATH/tools/RomFs-
Tools directory.

When you execute RomFsCreate.exe from the command line, the following options are available.

Table 7.7. Command line options

Option Description

--create-c-file BASE_NAME Creates a .c source file that contains the RomFS da-
ta and a .h header file. The files are named BASE_-
NAME.c and BASE_NAME.h.

--output-dir TARGET_DIRECTORY Defines the location were the .romfs file is be creat-
ed

--max-size N Specifies the maximum size of the container

-h or --help Displays the help

Use command line to perform the following RomFS-related tasks:

Create a RomFS container
RomFsCreate.exe romfs_root_directory creates the file romfs_root_directory.romfs. This
file contains romfs_root_directory.

Create a RomFS container and specify the name of the resulting file
RomFsCreate.exe romfs_root_directory image creates the file image.romfs. This file contains
romfs_root_directory.

Limit the size of the resulting container
Specify --max-size N on the command line. If the size limit you specify is exceeded, RomFsCreate
sends an error message and stops putting files into the container. The maximum size max-size is defined
in bytes.

Create a RomFS container and put it ready-to-use in a C-array
RomFsCreate.exe romfs_root_directory --create-c-file c_array creates the romfs_-
root_directory.romfs file. This file contains romfs_root_directory.

Content is put in the file c_array.c as const unsigned char romfs_root_directory[] =
"...";. "..." is the content of the container encoded in C hexadecimal literals.

Additionally the c_array.h header file is created. The header file has an extern const unsigned
char romfs_root_directory[N]; forward declaration which you can include and use in your code.

The --max-size N parameter is respected.

EB GUIDE TF
Chapter 7. Core concepts

Page 49 of 269

Create a RomFS container, specify the name of the resulting file and put it, ready to use, in a C-array
RomFsCreate.exe romfs_root_directory image --create-c-file c_array creates the file
image.romfs. This file contains romfs_root_directory. Content is put in file c_array.c as const
unsigned char romfs_root_directory[] = "...";.

"..." is the content of the container encoded in C heximal literals.

Additionally a c_array.h header file is created. This header file has an extern const unsigned
char romfs_root_directory[N]; forward declaration, which you can include and use in your code.

The --max-size N parameter is respected.

For instructions of how to run EB GUIDE GTF from a RomFS container, see section 9.4, “Running EB GUIDE
GTF with a read-only memory file system (RomFS) container”.

EB GUIDE TF
Chapter 8. Model concepts

Page 50 of 269

8. Model concepts

8.1. Configure EB GUIDE GTF with an exported EB
GUIDE model
EB GUIDE Studio provides input to EB GUIDE GTF in form of an EB GUIDE model that is generated during
export. EB GUIDE GTF runs the exported EB GUIDE model in the following use cases:

► During the simulation in EB GUIDE Studio

► On a dedicated target platform

The EB GUIDE model consists of the following parts:

► The binary model description files:

► eventMap.gtf is used to configure the event system.

► datapool.gtf is used to configure the datapool.

► model.bin is used to configure the state machines.

► types.bin is used to configure the type system.

► scenes.gtf is used to configure the scenes and views.

► resources.gtf is used to configure the resource system.

► The text-based configuration files:

► model.json contains configuration items for the EB GUIDE model.

► platform.json is an optional configuration file in the exported directory. If this file is not available
in the exported directory, the platform.json file in the $GUIDE_INSTALL_PATH directory is used.

► tracing.json is an optional configuration file and is not generated by EB GUIDE Studio. If you want
to use the tracing mechanism, you have to create this file manually. The possibility to overwrite the
default configuration of the tracing system exists. For more information, see table 7.1, “Trace macros”.

► monitor.cfg is a configuration file for EB GUIDE Monitor.

► The $GUIDE_INSTALL_PATH\platform\win64\include directory with C++ headers that contain the
define macros to address the datapool items, events, languages and skins defined in the EB GUIDE
Studio model.

► The resources directory is a copy of the resources directory of the EB GUIDE Studio project that is
also visible in the Assets component of EB GUIDE Studio.

EB GUIDE TF
Chapter 8. Model concepts

Page 51 of 269

EB GUIDE GTF

Exported EB GUIDE model configurationCustom framewrok configuration

Cusomer
plugin

EB GUIDE model

Data

Execution

UI

Core

Service
Event system Resource

systemDatapool Type system

Model
State

machine Scene

Tracing Launcher

tracing.json platform.json model.json eventMap.gtf datapool.gtf model.bin types.bin scenes.gtf resources.bin

Figure 8.1. Configuration files overview

8.2. Model life cycle stages
Like the life cycle of the core the stages of the model life cycle are defined in an order that is followed when
starting a model. For the core life cycle, see section 7.1, “Core life cycle stages”.

EB GUIDE TF
Chapter 8. Model concepts

Page 52 of 269

Run

Prepare

Model life cycle

Core life cycle

Running

Loaded

Initialized

Prepared

Run

Load

Initialize

Prepare

Figure 8.2. Overview of the EB GUIDE GTF life cycle stages

As depicted above, the model life starts during the run stage of the EB GUIDE GTF core. This means the model
life cycle is not a direct successor of the core life cycle as there is always one core but there can be many
models living on it in parallel.

Each EB GUIDE model has its own gtf::dependencyresolver::DependencyContainer instance,
which is provided to the model stage create functions. This instance is dedicated to one model only and also
differs from the instance provided to the core stages of the EB GUIDE core life cycle.

EB GUIDE TF
Chapter 8. Model concepts

Page 53 of 269

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model 1

…

DependencyContainer Model N

Figure 8.3. Integration of the model stages

EB GUIDE TF
Chapter 8. Model concepts

Page 54 of 269

Run

Initialize

Prepare

Running

Loaded

Initialized

Prepared

Model life cycle start

Load model plugins
Load model configuration

Register descriptor providers

Create first view for each scene
Start processing of model cores
Initialize rendering for each scene

Collect all descriptor providers to identify extension
possibilities

Load datapool description
Prepare aspects
Load resource information
Load information about the scenes and create scene root elements
Load state machine description
Prepare processing for each model core

Compiling of
shaders

Setting up render chain
Initializing display

Load

Figure 8.4. Overview of the EB GUIDE GTF model startup sequence

Each loaded EB GUIDE model has its own life cycle. As depicted in the picture above, the model life cycle
consists of eight successive predefined stages. It may contain custom stages. The stages Prepare, Initialize,
Load and Run are designated for the internal EB GUIDE GTF startup steps. The stages Prepared, Initialized,
Loaded and Running offer the possibility of reacting on the startup steps and extending the EB GUIDE GTF
startup sequence with additional steps:

► PreparedStage

Within this stage you add descriptors for your extensions.

► InitializedStage

All descriptors are published and available. Scene configuration is loaded.

► LoadedStage

Datapool and state machines are available and initialized. The view description is loaded. Previously an-
nounced EB GUIDE Script functions are registered. Core run-time framework is created. Everything is
ready to start.

► RunningStage

EB GUIDE TF
Chapter 8. Model concepts

Page 55 of 269

The renderer starts and the window is created, the state machines and threads are started. EB GUIDE
model runs.

You can customize the EB GUIDE model life cycle by modifying and adding stages. You can add custom stages
at any point before, after, or between the predefined stages. You can define several instances per stage.

To implement a predefined stage, derive it from a predefined stage class and register it at
gtf::dependencyresolver::DependencyCatalog. The following are the predefined stage classes:

► gtf::model::PrepareStage

► gtf::model::PreparedStage

► gtf::model::InitializeStage

► gtf::model::InitializedStage

► gtf::model::LoadStage

► gtf::model::LoadedStage

► gtf::model::RunStage

► gtf::model::RunningStage

To define a custom model stage, derive it from gtf::model::Stage. You have to create an own custom
StageProvider that returns the custom stage name in the gtf::model::StageProvider::stage func-
tion. CustomStageProvider is derived from gtf::model::StageProvider for custom model stages.
You need to register both in gtf::dependencyresolver::DependencyCatalog.

For more information on classes and interfaces, see EB GUIDE GTF API.

For an example on how to add a custom stage, see the EB GUIDE SDK example ModelStageExam-
ple. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

When a model shuts down, the EB GUIDE GTF stays active until no model is running inside of the core anymore.
When no models are running, the core initiates the shutdown sequence. Shutdown sequence is carried out in
the opposite order of the start sequence.

8.3. Model structure

8.3.1. Model MVC

../gtf_api/index.html
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 8. Model concepts

Page 56 of 269

Model–view–controller (MVC) is an architectural pattern used in the application development. MVC consists
of the following three parts:

► The model part represents the data.

► The view part is the visual representation of the model.

► The controller part links the user and the system.

MVC decouples the views and models by establishing a subscribe and notify protocol.

EB GUIDE GTF uses the MVC-pattern on different layers:

► The first layer is the model layer, see figure 8.5, “MVC model layer”.

► The second layer is the widget layer, which is described in section 8.5.1, “Widget MVC”.

Figure 8.5. MVC model layer

8.3.2. Model runtime structure
An EB GUIDE model consists of several connected pieces as shown in figure 8.6, “Model structure”. Depending
on the configuration a single EB GUIDE model can contain several so called CoreRuntimes.

A CoreRuntime is responsible for processing changes within all scenes connected to it as well as notifications
about changes from the outside, like datapool changes, events or user input.

In order to react on these changes, each CoreRuntime owns own instances of a Datapool, an EventSystem
and observers for scene changes.

For details on how this processing is done, see section 8.6, “Update processing in EB GUIDE GTF”.

For details about scene and property handling, see section 8.5, “Scenes and properties”.

EB GUIDE TF
Chapter 8. Model concepts

Page 57 of 269

Figure 8.6. Model structure

Each of these CoreRuntimes is represented in the model configuration by a name in the configuration item
"gtf.model.coreNames" and a configuration item describing the attributes of the CoreRuntime.

Such attributes are as follows:

► An identifier within the model for this CoreRuntime

► A flag determining if CoreRuntime uses an own thread for processing

"gtf": {

 "model": {

 "coreNames": [

 "HMI", // CoreRuntime 0

 // ...

 "Hud" // CoreRuntime N

],

 "cores": {

 "HMI": {

 "id": 0,

 "ownThread": false

 },

EB GUIDE TF
Chapter 8. Model concepts

Page 58 of 269

 "Hud": {

 "id": 1,

 "ownThread": true

 }

 },

Each CoreRuntime can have several scenes attached. The processing of each attached scene is done dur-
ing the update processing cycle of CoreRuntime. The model configuration contains two configuration items
defining which scenes EB GUIDE GTF shall load and what their distinct attributes are. As shown in the follow-
ing example, the configuration item "gtf.model.sceneNames" contains the names of all configured scenes
and for each scene a configuration item describing its attributes.

"sceneNames": [

 "Main", // Scene 0

 // ...

 "Hud-SM" // Scene M

],

 "scenes": {

 "Main": {

 "name": "Main", // connected to statemachine with the name "Main" (Scene 0)

 // ...

 "context": 0 // connected to CoreRuntime 0

 },

 "Hud-SM": {

 "name": "Hud-SM", // connected to statemachine with the name "Hud-SM" (Scene M)

 // ...

 "context": 1 // connected to CoreRuntime N (1 in this example)

 }

 },

The following attributes of the scene define the runtime structure:

► The "name" attribute defines that this scene will be connected to a state machine with this name.

► The "context" attribute defines that the scene will be part of CoreRuntime with the same identifier.

Each scene creates DialogManager for the state machine it is attached to and for all dynamic state machines,
that are part of dynamic state lists within the attached state machine. DialogManager takes care of dialogs,
foe example the current view or talk, and their dynamic change, for example view transition animations.

8.3.3. Scene structure
In an EB GUIDE model there can be several scenes, for example for different displays on a target platform,
cluster, and HU-displays.

EB GUIDE TF
Chapter 8. Model concepts

Page 59 of 269

As shown in figure 8.5, “MVC model layer”, each scene owns a Dialog manager for each active state
machine.

Dialog manager contains the following:

► The current dialog, which is for example the current shown view or talk of that state machine

► An upcoming dialog, which is the next view of that state machine during an animated view transition

Figure 8.7. Runtime structure

As described in figure 8.7, “Runtime structure”, the scene is an instance managing the structure of all di-
alogs contained in the state machines that are configured for it. >This means the scene is represented as
the root element of the scene element tree. Such a scene element tree is a rooted tree structured build from
properties::Container instances, shown in section 8.5, “Scenes and properties”.

The scene is observed for structural and property changes using Observer mechanisms, which are used by
input and focus management.

The renderer also makes use of these Observers in order to evaluate possible changes that need to be
reflected through a change of the visualization.

EB GUIDE TF
Chapter 8. Model concepts

Page 60 of 269

For every scene configured for a haptic state machine there is always one exclusive renderer instance. This in-
stance will evaluate the result of the scene update processing to provide a fitting visualization. The evaluation as
well as the process of rendering is executed on the thread, the scene is attached to through its CoreRuntime.

8.4. Extensions description
Some model element types that are available in EB GUIDE Studio are provided by EB GUIDE GTF and its
extensions. Besides this EB GUIDE GTF provides interfaces for adding own implementations of the following:

► Widgets

► Widget features

► EB GUIDE Script functions

The newly added model elements are represented as follows:

► As an abstract description that defines what will be available, for example which properties a widget might
have

► As an optional implementation that is registered at a later stage, for example registering a concrete imple-
mented C++ function for a EB GUIDE Script function

The description is introduced with a registration of an implementation of the DescriptorProvider interface,
at the latest during the Prepared stage of the EB GUIDE model start-up phase.

EB GUIDE TF
Chapter 8. Model concepts

Page 61 of 269

Figure 8.8. DescriptorProvider

As shown in figure 8.8, “DescriptorProvider”, such a DescriptorProvider interface retrieves the in-
formation about the following added model elements:

► Widgets, represented as WidgetDescriptor

► Widget features, represented as WidgetFeatureDescriptor

► EB GUIDE Script functions, represented as ActionDescriptor

These model elements use PropertyDescriptor for describing typed value information, like widget
properties or the parameter of an EB GUIDE Script function. In order to register an implementation,
the WidgetDescriptor and WidgetFeatureDescriptor interfaces can specify InterfaceName of a
scene::element::Controller implementation.

For more information on how the scene element tree construction utilizes this information of the WidgetDe-
scriptor and WidgetFeatureDescriptor instances, see section 8.5.2, “Construction and decomposition
of a scene element tree”.

EB GUIDE TF
Chapter 8. Model concepts

Page 62 of 269

To register an implementation of an EB GUIDE Script function, EB GUIDE GTF needs to know this EB GUIDE
Script function. This means that only the implementations can be attached to EB GUIDE Script functions that
were included in the exported EB GUIDE model and registered by DescriptorProvider.

Figure 8.9. DescriptorProvider

As shown in figure 8.9, “DescriptorProvider”, every EB GUIDE model contains ActionRegistry that
manages the registered EB GUIDE Script function descriptions and their implementations. At this instance an
EB GUIDE model specific identifier of an EB GUIDE Script function can be acquired for which an implementation
can be registered. When EB GUIDE Script is executing a script containing such a function identifier, the registry
will be asked and the respective function will be called. If the function is not available, then the script will
be stopped immediately and an error message is provided using the EB GUIDE GTF trace mechanisms, for
example logged in EB GUIDE Monitor.

8.5. Scenes and properties
The central parts for the scene handling inside EB GUIDE GTF are the Scene and Properties components.

EB GUIDE TF
Chapter 8. Model concepts

Page 63 of 269

Scene Properties Renderer

state machine

EB GUIDE
Script

Animation

Request scene elements

Assembles Accesses

DatapoolDescriptorProviders

Widget set
(instantiator, multistate ...)

Uses

Scenes.gtf

Input

LayoutFocus

Controller implementations

Scene management
(VTA, popups, etc.)

Accesses Accesses

Accesses

Elem 0:
Step 1,
Step 2,
Step3

Elem 1:
...

Figure 8.10. Scene and property handling

As shown in figure 8.10, “Scene and property handling”, the data about the exported scene elements
and the descriptor data are used to assemble the scene element tree. This is represented by a root
tree of properties::Container instances. The properties::Container instances contain all prop-
erties of the widgets modelled as part of the EB GUIDE model as well as the properties of all attached
widget features and user-defined properties. The properties::Container instances are accessed by
scene::element::Controller implementations, like the layout widget features or the instantiator widget.

As properties can also be scripted values or accessed by such, they can also be accessed and manipulated
by EB GUIDE Script.

The renderer also observes and accesses the properties in order to create a fitting visualization. This is also
reflected in the representation of a widget. For more information, see section 8.5.1, “Widget MVC”.

8.5.1. Widget MVC

Like the overall model structure, a widget can also be represented as an MVC-pattern.

EB GUIDE TF
Chapter 8. Model concepts

Page 64 of 269

Figure 8.11. MVC widget layer

The model compartment hereby is represented through the properties::Container that stores all prop-
erties and therefore the data of the widget.

The view compartment is represented through an implementation of the scdr::WidgetRenderer interface,
which evaluates the properties and tree structure of the scene element tree in order to draw it.

The controller compartment is represented by the scene::element::Controller implementations, which
evaluate and manipulate the properties or the tree structure of the scene element tree.

Figure 8.12. Subscribe and notify protocol

EB GUIDE TF
Chapter 8. Model concepts

Page 65 of 269

EB GUIDE GTF provides additional to the classic MVC the following observer mechanisms:

► Properties::PropertyObsever notifies when a property value changes.

► Properties::ContainerObserver notifies the structure of the scene element tree changes.

8.5.2. Construction and decomposition of a scene element tree

In order to construct a scene, or parts of the scene like a view or an instantiator child, scene::Factory is
using information that the exported EB GUIDE model and the metainfo::DescriptorProvider contain.

Figure 8.13. Creating a scene

Whenever a single scene element or even a fairly complex scene is created, scene::Factory runs through
the following phases:

1. Assembling the tree means that the instances of properties::Container are created and connected.

EB GUIDE TF
Chapter 8. Model concepts

Page 66 of 269

2. Creating properties means that the properties are created and their values are loaded from the scenes
description file.

3. Controller classes are connected means that the scene::element::Controller implementations are
created and connected to the properties::Container instances.

4. EB GUIDE Script functions are initialized means that the conditional scripts are initially executed.

After manipulating the scene element tree structure every observing entity, like for example renderers are
informed so that they can react on this.

The counter action to the creation of a scene is its decomposition. The decomposition is done in the following
phases:

1. Decoupling the root means the sub-tree that needs to be decomposed looses its connection to the parent.

2. Information about the upcoming destruction is forwarded to the observer of the structure.

3. Controller classes are disconnected.

4. Final deletion of all properties::Controller and their property handles takes place.

8.5.3. Renderer
Renderer modules are sets of classes that implement the rendering algorithms for a particular widget. The
IWidgetRenderer is the starting point for all renderer modules. It implements the actual drawing algorithm
for the particular type of widget that is being implemented. It is also responsible for drawing all widgets of that
particular type in the widget tree.

In order to be able to draw an instance of a widget, IWidgetRenderer requires data that is specific to an
instance of the corresponding widget. For that, IWidgetRenderer creates instances of the RenderObject
interface. An instance of a widget and RenderObject always have a one-to-one correspondence. Implement
this interface in order to store your widget specific data that you require for drawing, for example, the GPU
resources.

EB GUIDE GTF invokes IWidgetRenderer at multiple points in its execution sequence. The three most
important phases are as follows:

Traversal phase
During the traversal phase, IWidgetRenderer is responsible for loading parameters from the widget
tree that are specific for the type of widget being rendered. Further, IWidgetRenderer is responsible
for keeping track of the RenderObject instances being visited during the traversal phase so that it can
update all resources required in the following update phase. After the update phase the next phase is the
render phase. In this phase IWidgetRenderer executes the drawing algorithms.

Update phase
The update phase is designed to issue the GPU-relevant code, for example GPU resource updates or
draw calls using OpenGL ES.

EB GUIDE TF
Chapter 8. Model concepts

Page 67 of 269

Render phase
The render phase, as well as the update phase, is also designed to issue the GPU-relevant code, for
example GPU resource updates or draw calls using OpenGL ES.

This kind of GPU programming code must be executed in instances of the Command interface. To execute in-
stances of the Command interface, the renderer must enqueue Command in the relevant queues of Command-
Buffer that is provided during the update and render phases.

8.5.4. Animations and view transition animations

The animation system describes the change of properties over time and consists of animation containers and
curves. An animation container defines the processing of a sequence of curves. A curve defines the change of
a single property. Each animation curve is created as a scene element controller. The controller is triggered for
evaluating the property value changes that depend on the type of the curve, for example, linear interpolation
curve where the relation between the start and end property value has to be evaluated. The animation system
is based on property containers, scene element controllers, and the observer mechanism.

View transition animation consists of the following steps:

1. The state machine enters a new view state and triggers the building the new view.

2. The view transition animations are executed.

3. The old view is destructed.

EB GUIDE TF
Chapter 8. Model concepts

Page 68 of 269

8.5.5. Focus policy

root gtf::focus::Manager

gtf::focus::Policy

Demands
the current
focusable child

Child 0.0 Child 0.1

Child 0.1.0 Child 0.1.1 Child 0.1.2

Child 0.1.2.1Child 0.1.2.0

root Child 0.1 Child 0.1.2 Child 0.1.2.1

Focus path

Figure 8.14. Focus policy in EB GUIDE TF

Focus manager traverses the scene and searches for gtf::focus::policy. Each policy on the focus path
is asked for the next valid element of the path. If there is no further policy, the last leaf will be the current
focused element. Custom focus policies can be added with the gtf::focus::policy interface. For more
information, see EB GUIDE GTF API.

8.6. Update processing in EB GUIDE GTF
EB GUIDE GTF reacts and updates on several occurrences:

External occurrences, for example as follows:

► Operating system events

► Input devices

► Applications sending events or modifying datapool items

► External switching of languages and skins

../gtf_api/index.html

EB GUIDE TF
Chapter 8. Model concepts

Page 69 of 269

► Interaction with other local or remote connected EB GUIDE GTF instances

► Interaction with a connected EB GUIDE Monitor

Internal occurrences, for example as follows:

► Delayed events

► Animations

► Issues in the model, for example cyclic dependency and mutual modification of model elements

Extensions
Extensions may need to execute operation that is synchronized with the update processing of EB GUIDE
GTF. EB GUIDE GTF provides dedicated EB GUIDE SDK interface methods for this purpose.

Events Datapool
updates

Animations,
delayed

events, etc

Custom
extensions

Idle Processing Idle Processing Idle

Events Datapool
updates

Animations,
delayed

events, etc

Custom
extensions

Figure 8.15. Processing in EB GUIDE GTF

It is a general concept of EB GUIDE GTF to process all these external and internal occurrences in an asyn-
chronous manner. This is done by performing update processing cycles.

There are two kinds of update processing cycles. A major cycle takes care of the external occurrences and
includes a limited number of minor processing cycles. These minor cycles are responsible for processing of
the model internal occurrences. EB GUIDE GTF tries to reach stable states for its internal software units during
this phase, for example state machines, layout, or property values.

EB GUIDE TF
Chapter 8. Model concepts

Page 70 of 269

Major processing cycle

Minor processing cycle

Dispatch notifications

State machine
processing

Scene creation

Animations

Cleanup

PropertyObservers

ContainerObservers

Rendering

Commit
Update

Events

Datapool
updates

Animations,
delayed

events, etc

Custom
extensions

…

triggers

…

stabilize

Figure 8.16. Update processing performed by EB GUIDE GTF

When a stable state is reached or the maximum number of minor processing cycles is exceeded, the stabiliza-
tion phase is aborted. EB GUIDE GTF renders the scenes and provides the processing results, for example
commits datapool changes and sends events in the global event system.

The above mentioned update processing happens separately in each gtf::coreruntime::CoreRuntime
instance. One gtf::coreruntime::CoreRuntime instance is responsible for all parts of one EB GUIDE
model that run in one and the same communication context.

To achieve this functionality independent from other gtf::coreruntime::CoreRuntime instances running
in parallel, each gtf::coreruntime::CoreRuntime has own dedicated instances:

► gtf::dependencyresolver::DependencyContainer

► gtf::datapool::Datapool

► gtf::eventsystem::local::EventSystem

► gtf::eventsystem::local::EventQueue

EB GUIDE TF
Chapter 8. Model concepts

Page 71 of 269

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model

CoreRuntime 1
DependencyContainer CoreRuntime 1

local::
EventSystem

CoreRuntime N
…

local::
EventQueueDatapool

…

Figure 8.17. Integration of CoreRuntime

All these facilities are available for EB GUIDE GTF extension developers by using the
gtf::coreruntime::CoreRuntime EB GUIDE SDK interface. In addition gtf::datapool::Datapool
and gtf::eventsystem::local::EventSystem are also registered at the respective
gtf::dependencyresolver::DependencyContainer instance.

8.7. Event system
An event system provides an asynchronous communication mechanism based on events. Events are delivered
in exactly the same order they were sent. An event is added to all event queues subscribed to this event. Events
can transport values, for example integers, strings or resources.

An event queue is a facility used by a receiver to control, when to process the arrived events. An event queue
may limit the number of unprocessed events. New events are ignored by this queue until the number of un-
processed events does not exceed the limit anymore.

EB GUIDE TF
Chapter 8. Model concepts

Page 72 of 269

EB GUIDE GTF uses multiple event systems for different purposes. The most important one for application
developers is the global event system. It provides communication between applications and EB GUIDE models.
Another event system is used for local communication within each gtf::coreruntime::CoreRuntime of
an EB GUIDE model.

NOTE Limited event transition between global and local event systems
Only events of user-specific event groups are transferred between global event system and
local event systems and vice versa.

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model

CoreRuntime 1
DependencyContainer CoreRuntime 1

local::
EventSystem

CoreRuntime N
…

EventBridge

local::
EventQueue

global::
EventSystem

…

Figure 8.18. Integration of the event system in EB GUIDE GTF

In the global event system, string-based identifiers are used. They are created from the EB GUIDE model
during export and are unique for all models.

In the local event system, numeric identifiers are used. They are also created from the EB GUIDE model during
export, but are unique in one model only.

Both types of identifiers are exported to C++ header files and can be used by application developers to interact
with an EB GUIDE model.

EB GUIDE TF
Chapter 8. Model concepts

Page 73 of 269

8.7.1. Event publication

The following steps show the general procedure of event publication:

1. Create a new event at the event system or at an event queue and provide the identifiers for event and
group.

2. Optionally add parameter values.

3. Send the event to the event system or to the event queue.

To identify the sender, you can provide an optional send parameter. This may be useful if you want to
identify your own events.

After you send an event, the event is read-only. You cannot change parameter values anymore.

NOTE The event API is not thread-safe
Do not access one event from concurrent threads before it was sent, because the API is not
thread-safe. After you send an event, the event is read-only and can be used by different
threads.

8.7.2. Event receipt

The following steps show the general procedure of event receipt:

1. Create an event queue.

2. Register an invoking callback method at the event queue.

3. To subscribe to required events, provide a callback method for specific events, groups of events or all
events.

4. After a new event arrives, the invoking callback method is executed. This method should invoke the worker
task. To dispatch and process events which are currently in the event queue, use method dispatch()
within the task. After dispatching the event queue is empty.

EB GUIDE TF
Chapter 8. Model concepts

Page 74 of 269

NOTE Ensure asynchronous event processing
It is not allowed to dispatch and process events directly in the registered callback method.
Event dispatching and processing has to be done asynchronously, even if the whole system
runs in one and the same thread. The callback method must only invoke an asynchronous
worker task.

NOTE The event queue API is not thread-safe
Do not access one event queue instance from concurrent threads, because the API is not
thread-safe.

Only synchronization between event system and event queue provides thread-safety. Dif-
ferent threads must use different event queue instances.

8.8. External input events
External input events can be sent to a CoreRuntime of an EB GUIDE model. This can be done using the
ExternalInput interface, which is a helper interface based on the functionality of a local event system. Each
CoreRuntime uses a separate local event system. The following are the types of external input events that
can be created and sent to the local event system:

► Key

► Touch

► Rotary

For more information about events and EventSystem, see section 8.7, “Event system”.

The events are then processed by the input management during the processing round. For more information
on processing, see section 8.6, “Update processing in EB GUIDE GTF”.

During the input management it is decided whether a touch event belongs to a sequence resulting in, for
example, gestures. Besides that the input management decides to which of the focused widgets a key or a
rotary input event will be delivered. For more information on touch input, see EB GUIDE Studio user guide.
Events are delivered in exactly the same order they were sent.

In case of a touch input event the interaction is done with a widget at a certain location on the display so the input
is clear and the system knows to which widget the input event should be delivered. In case of a key or rotary
input event, it will be delivered to the currently active display widget. This is typically highlighted so the user
knows with which widget he will interact next. This highlighting feature can be modeled in EB GUIDE Studio
using the Focused widget feature so that the widget that is currently focused is marked with a colored border.

EB GUIDE TF
Chapter 8. Model concepts

Page 75 of 269

NOTE Process hierarchy
If a widget cannot handle a key, rotary, or touch input, the input is processed along the
modeled widget tree, towards the root widget. If one of the parents of the widget handles
the input, it is considered as processed.

For instructions on how to create external input events, see chapter 17, “Using external input events“.

For examples of external input events, see the EB GUIDE SDK examples ExternalKeyInputExample and
ExternalTouchInputExample. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK
examples from https://www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the
EB GUIDE SDK examples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Stu-
dio.pdf file enclosed in the .zip archive.

8.9. Datapool
The datapool provides an asynchronous communication mechanism based on datapool items. Datapool items
can be of scalar, list, or project specific resource types, for example string lists or image lists.

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 8. Model concepts

Page 76 of 269

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model

CoreRuntime 1

DependencyContainer CoreRuntime 1

datapool::
Datapool

CoreRuntime N
…

datapool::
Exchange

…

Figure 8.19. Integration of the datapool

At EB GUIDE GTF run-time each application and each gtf::runtime::CoreRuntime of an EB GUIDE
model is working on its own datapool instance. A datapool instance is empty by default. The owner of a datapool
can load items and their initial values from a description file. This datapool description file is part of the exported
EB GUIDE model.

EB GUIDE GTF synchronizes the values of all datapool items that are shared by different datapool instances.
Explicit calls to the API methods of the datapool control the synchronization.

NOTE The datapool API is not thread-safe
Do not access one datapool instance from concurrent threads, because the API is not
thread-safe. The synchronization between datapool instances provides thread safety. Dif-
ferent datapool instances can be used in different threads.

The common use case is that one datapool user modifies a datapool item and one or more users read the
changed values.

EB GUIDE TF
Chapter 8. Model concepts

Page 77 of 269

NOTE Possible race conditions on competing modifications in different datapool
instances
If one datapool item is modified in several datapool instances, race conditions may occur.

Datapool items can change as follows:

► Datapool items use the API of this datapool instance.

► The datapool items change during the synchronization of the changes done in other datapool instances.

NOTE No order of change notifications
The change notifications do not depend on the order of modifications.

8.9.1. Identifiers of datapool items

The datapool API supports two types of datapool item identifiers: a string-based identifier, and a numeric one.
During the export of the EB GUIDE model, datapool item identifiers are created and written to a C++ header
file. The string-based identifier is unique for all EB GUIDE models, the numeric identifier is unique in one EB
GUIDE model only.

8.9.2. Synchronization of datapool items

The following steps show the general procedure for synchronization of datapool items:

► Register an invoking callback method.

► The API method commit() provides all changed values of one datapool instance to all other datapool
instances.

► All datapool instances sharing a sub-set of the changed datapool items are invoked by calling the registered
invoking callback method.

► The API method update() applies the latest available values to the specific datapool instance only.

commit() and update() affect all changed datapool items at once.

EB GUIDE TF
Chapter 8. Model concepts

Page 78 of 269

NOTE Possible loss of intermediate values
The datapool provides access to the latest available value only.

NOTE Ensure asynchronous processing of changed datapool items
It is not allowed to process updates or notifications directly in the registered invoking callback
method. Updates and notifications must be processed asynchronously, even if the whole
system runs in the same thread.

The callback method must only invoke an asynchronous worker task.

8.9.3. Windowed lists

Windowed list is a data type that is available only in the datapool.

Windowed lists support two operating modes. The default operating mode is based on one data element per
list element. The second operating mode provides the concept of windowed list. Windowed lists are useful to
save system resources in case of very big list with thousand or millions of elements, or in cases where access
to the data source is very slow.

List access is possible only if list elements are covered by at least one window. If the window position or window
size is changed, the newly covered list elements are uninitialized until the application writes the list element
value for the first time. Read access fails for all uninitialized list elements. Some operations are not supported
for windowed lists and will fail, for example insert, append or remove.

An application can switch between both operation modes.

In a typical use case the EB GUIDE model tells the application about the needed parts of a list by using events
or datapool items. The application creates windows that cover these parts and provides the requested data for
these parts only. To avoid missing data in the EB GUIDE model, define a pre-loading strategy.

8.10. Aspect
You can define run-time related aspects, languages or skins, in an EB GUIDE model. Aspects modify the
appearance of the HMI.

The EB GUIDE SDK provides interfaces to provide, request and change aspects. Applications and EB GUIDE
GTF extensions can register as observers to get notified about new aspects or aspect changes.

EB GUIDE TF
Chapter 8. Model concepts

Page 79 of 269

NOTE Ensure asynchronous processing of changed aspects
It is not allowed to process changed aspects directly in the registered invoking callback
method. Updates must be processed asynchronously, even if the whole system runs in the
same thread.

The callback method must only invoke an asynchronous worker task.

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model

CoreRuntime 1

DependencyContainer CoreRuntime 1

aspect::
Aspect

CoreRuntime N
…

aspect::
Aspect

…

Figure 8.20. Integration of the aspect

Aspects on the model level try to get synchronized with the aspects on the core level and vice versa.

8.11. Resource management
Resources are content that is not created within EB GUIDE but can be used in your EB GUIDE projects.
Examples for resources are fonts, images, meshes for 3D graphics.

EB GUIDE TF
Chapter 8. Model concepts

Page 80 of 269

For more information about resource handling in EB GUIDE, see the EB GUIDE Studio documentation, chapter
"Resource management".

Each resource has a certain format, for example .jpeg or .png for images.

After the export of an EB GUIDE project, the following two items serve as input to configure and run the EB
GUIDE GTF resource management system:

► resources.gtf

The resources.gtf binary file is used to configure the resource management system.

► resources folder

This resources folder contains all resource files available in the EB GUIDE model, for example images
and fonts.

For more information about the exported EB GUIDE model, see section 8.1, “Configure EB GUIDE GTF with
an exported EB GUIDE model”.

The EB GUIDE GTF resource management consists of the following three modules:

► ResourceLoader module

Responsible for loading the resources within one EB GUIDE model and setting the initial format data

► Decoder module

Responsible for converting one format to another and also provides the possibility of adding own decoders

► ResourceSystem module

Responsible for managing the decoders and triggering them to retrieve the required format and the at-
tached format data

EB GUIDE TF
Chapter 8. Model concepts

Page 81 of 269

DependencyContainer Root

DependencyContainer Core

DependencyContainer Model

CoreRuntime 1

DependencyContainer CoreRuntime 1

Decoder

CoreRuntime N
…

Resource
System

…

Resource
Loader

Figure 8.21. Integration of the resource management system

Table 8.1. Default resource formats of EB GUIDE GTF

Name Accessor in EB
GUIDE SDK

Description

Font formats

gtf::decoder::FontDescriptor no EB GUIDE GTF internal intermediate for-
mat that is used to read information con-
tained in resources.bin

gtf::decoder::FontData yes Set of font information, i.e. pairs of font file
path and size

For more details, ee gtf/de-
coder/FontData.h.

IBL formats

gtf::decoder::IBLDescriptor no EB GUIDE GTF internal intermediate for-
mat that is used to decode information
contained in resources.bin

gtf::decoder::IBLPath yes Path of an IBL file

EB GUIDE TF
Chapter 8. Model concepts

Page 82 of 269

Name Accessor in EB
GUIDE SDK

Description

For more details, see gtf/de-
coder/IBLPath.h.

gtf::decoder::EncodedIBLData yes Path of the original file and a buffer provid-
ing the raw IBL data in memory

For more detials, see gtf/decoder/En-
codedIBLData.h.

Note: Decoders of this format may require
to set suitable file path with file ending to
decide if they support the format or not.
The path is also used to print error mes-
sages.

Image formats

gtf::decoder::ImageDescriptor no EB GUIDE GTF internal intermediate for-
mat that is used to read information con-
tained in resources.bin

gtf::decoder::ImagePath yes Path of an image file

For more details, see gtf/de-
coder/ImagePath.h.

gtf::decoder::EncodedMemImage yes Path of the original file and a buffer provid-
ing the raw image data in memory

For more details, see gtf/decoder/En-
codedMemImage.h.

Note: Decoders of this format may require
to set suitable file path with file ending to
decide if they support the format or not.
The path is also used to print error mes-
sages.

gtf::decoder::MemImage yes Path of the original file and the set of plain
image information

For more detials, see gtf/de-
coder/MemImage.h.

Note: Decoders of this format may require
to set suitable file path with file ending to

EB GUIDE TF
Chapter 8. Model concepts

Page 83 of 269

Name Accessor in EB
GUIDE SDK

Description

decide if they support the format or not.
The path is also used to print error mes-
sages.

gtf::scdr::decoder::Texture yes Renderer texture data

For more details, see gtf/scdr/re-
sources/TextureResource.h.

Mesh formats

gtf::decoder::MeshDescriptor no EB GUIDE GTF internal intermediate for-
mat that is used to read information con-
tained in resources.bin

gtf::decoder::MeshPath yes Path of a mesh file

For more details, see gtf/de-
coder/MeshPath.h.

gtf::decoder::EncodedMeshData yes Path of the original file and a buffer provid-
ing the raw mesh data in memory

For more details, see gtf/decoder/En-
codedMeshData.h.

Note: Decoders of this format may require
to set suitable file path with file ending to
decide if they support the format or not.
The path is also used to print error mes-
sages.

Table 8.2. Default decoder chains of EB GUIDE GTF

EB GUIDE Studio type Default decoder chain in EB GUIDE GTF

Font gtf::decoder::FontDescriptor →
gtf::decoder::FontData

IBL gtf::decoder::IBLDescriptor

→ gtf::decoder::IBLPath →
gtf::decoder::EncodedIBLData → EB GUIDE
GTF renderer internal formats

Image gtf::decoder::ImageDescriptor

→ gtf::decoder::ImagePath →
gtf::decoder::EncodedMemImage

→ gtf::decoder::MemImage → EB

EB GUIDE TF
Chapter 8. Model concepts

Page 84 of 269

EB GUIDE Studio type Default decoder chain in EB GUIDE GTF

GUIDE GTF renderer internal formats →
gtf::scdr::decoder::Texture

Mesh gtf::decoder::MeshDescriptor

→ gtf::decoder::MeshPath →
gtf::decoder::EncodedMeshData → EB
GUIDE GTF renderer internal formats

For more information on classes and interfaces, see EB GUIDE GTF API.

8.12. Inter-process communication
The GtfIpc plugin extends the EB GUIDE GTF with the inter-process communication (IPC) mechanism that
connects multiple EB GUIDE GTF instances and exchanges information, for example datapool items and
events.

EB GUIDE GTF

HMI model

Core

Extension

Operating system

UI

Data

Execution

Launcher

OSAL

Configuration CommandLine PluginLoader

Configuration
Importer

Dependency
Resolver Tracing

EB GUIDE GTF

HMI model

Core

Extension

Operating system

Communication

UI

Data

Execution

Launcher

OSAL

Configuration CommandLine PluginLoader

Configuration
Importer

Dependency
Resolver Tracing

IPC

Service

Communication

IPC

Service

Figure 8.22. Connecting EB GUIDE GTF instances with IPC

The IPC has a server-client architecture. The implementation supports several clients. Clients and server can
be restarted. If a server is restarted, it will be initialized with the default datapool item values and update the
clients with the same values.

The server instance is responsible for the following:

► Connecting clients

► Mastering datapool data

Once the IPC network is established, the server forwards the changes in the exchange information to the other
clients.

../gtf_api/index.html

EB GUIDE TF
Chapter 8. Model concepts

Page 85 of 269

Example 8.1.
IPC

An IPC network is created by connecting a server and several clients. All these connected nodes con-
tain the current time information in a datapool item. If a client updates the datapool item and therefore
the time, all the other nodes present in the IPC network will get updated with the new value.

By default, all datapool items and events contained in a nodes' model are shared. You can configure the items
which are shared as follows:

► Set the "gtf.datapool.descriptionfile" configuration item.

If the configuration item is set, the IPC initializes its datapool with the file set in this configuration item.

► Set the start-up parameter that refers to the model.json path.

Data exchange within the IPC has the default datapool and event system behavior. For more information, see
section 8.9, “Datapool” and section 8.7, “Event system”.

In case of datapool, if one node changes a datapool item e.g. five times, other nodes will only get the latest
updated value of the datapool item.

In case of events, if one node fires an event e.g. five times, other nodes will have the event triggered also
five times.

8.12.1. Connection modes
EB GUIDE GTF supports three types of connection modes:

► Broadcast

► Multicast

► Direct

NOTE Structure of configuration items
Basic structure of an item is as follows: <configuration_item> : <value>

String values must be enclosed with " ".

For more information on platform.json, see section 19.8, “platform.json configuration file”.

8.12.1.1. Broadcast

The following tables show the examples for the configuration of the broadcast connection mode.

EB GUIDE TF
Chapter 8. Model concepts

Page 86 of 269

Values in the tables below are just example values. Adapt the values according to your project's needs.

Table 8.3. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "broadcast" The connection mode

"gtf.ipc.discovery.network": "255.255.-

255.255"

The broadcast network address

"gtf.ipc.discovery.port": 4712 The broadcast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

Table 8.4. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

"gtf.ipc.discovery.mode": "broadcast" The connection mode

"gtf.ipc.discovery.network": "255.255.-

255.255"

The broadcast network address

"gtf.ipc.discovery.port": 4712 The broadcast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

8.12.1.2. Multicast

The following tables show the examples for the configuration of the multicast connection mode.

Values in the tables below are just example values. Adapt the values according to your project's needs.

Table 8.5. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "multicast" The connection mode

"gtf.ipc.discovery.network": "230.0.0.-

1"

The multicast network address

"gtf.ipc.discovery.port": 4712 The multicast port

EB GUIDE TF
Chapter 8. Model concepts

Page 87 of 269

Configuration item and value Description

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

Table 8.6. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

"gtf.ipc.discovery.mode": "multicast" The connection mode

"gtf.ipc.discovery.network": "230.0.0.-

1"

The multicast network address

"gtf.ipc.discovery.port": 4712 The multicast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

8.12.1.3. Direct

The following tables show the examples for the configuration of the direct connection mode.

Values in the tables below are just example values. Adapt the values according to your project's needs.

Table 8.7. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "direct" The connection mode

"gtf.ipc.discovery.network": "127.0.0.-

1"

Localhost

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

"gtf.servicemapper.port": 60001 If the configuration is generated, the port might al-
ready be set. You need to set the value only if it does
not yet exist.

Table 8.8. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

EB GUIDE TF
Chapter 8. Model concepts

Page 88 of 269

Configuration item and value Description

"gtf.ipc.discovery.mode": "direct" The connection mode

"gtf.ipc.discovery.network": "x.x.x.x" The network address of the server

"gtf.ipc.discovery.port": 60001 The port should match the "gtf.servicemap-
per.port" value of the server

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of the IPC communication

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

EB GUIDE TF
Chapter 9. Running EB GUIDE GTF

Page 89 of 269

9. Running EB GUIDE GTF

9.1. Configuring an EB GUIDE model for running
on a target platform
EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model. In profiles you set
up a configuration for a specific target platform, for example Windows, Linux or QNX. During export the two
EB GUIDE GTF start-up configuration files platform.json and model.json are generated from profiles.

Use profiles to do the following:

► Add custom configuration items

► Configure internal and user-defined EB GUIDE GTF plugins to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

For more information, see section 7.7, “Run modes of EB GUIDE GTF”.

For details on how to configure profiles, see Configuring profiles in the EB GUIDE Studio user guide.

9.2. Exporting an EB GUIDE model
For details on how to export an EB GUIDE model, see Exporting an EB GUIDE model in the EB GUIDE Studio
user guide.

9.3. Configuring and starting EB GUIDE GTF

Configuring the system start

Prerequisite:

■ Profiles are configured according to the project requirements.

EB GUIDE TF
Chapter 9. Running EB GUIDE GTF

Page 90 of 269

■ An EB GUIDE model is exported.

Step 1
Copy the platform specific binaries and all project-specific EB GUIDE GTF plugins that are required by your
model.json and platform.json configuration to your target platform.

Step 2
Copy the exported EB GUIDE model. Make sure the relative paths in model.json refer to the exported EB
GUIDE model path.

Step 3
Start EB GUIDE GTF on the target device.

For details on how to start EB GUIDE GTF from the command line, see section 7.7.1.1, “Command line op-
tions”.

You have configured and started EB GUIDE GTF for your target platform.

9.4. Running EB GUIDE GTF with a read-only
memory file system (RomFS) container

Running EB GUIDE GTF with a read-only memory file system (RomFS) container

The directory you create serves as root directory in the RomFS. It is referred to as "/" on the POSIX plat-
forms and as "C:/" on the Microsoft Windows platforms.

Prerequisite:

■ An EB GUIDE model is created and exported.

Step 1
Navigate to $GUIDE_INSTALL_PATH/tools/RomFsTools and open a command line tool.

Step 2
To create the RomFS container for the exported model, in the command line tool enter:

RomFsCreate.exe EXPORTED_MODEL_FOLDER ROMFS_FILE

Step 3
Navigate to $GUIDE_INSTALL_PATH/platform/win64/bin and open the command line tool.

Step 4
To start EB GUIDE GTF using the created RomFS container, in the command line tool enter:

GtfStartup.exe --romfs ROMFS_FILE_PATH ROMFS_ROOT_FOLDER

EB GUIDE TF
Chapter 10. Using the EB GUIDE GTF plugin mechanism

Page 91 of 269

10. Using the EB GUIDE GTF plugin
mechanism

10.1. Creating an EB GUIDE GTF plugin
Two types of EB GUIDE GTF plugins exist: extensions and applications. The following instructions are valid
for both types.

Creating an EB GUIDE GTF plugin

The following section explains the general workflow for integrating EB GUIDE GTF into your build system on
Windows platforms. Find the instructions for each step in the sections below.

Step 1
Write an EB GUIDE GTF plugin. For details, see section 10.2, “Writing an EB GUIDE GTF plugin”.

Step 2
Copy the resulting .dll file. For details, see section 10.3, “Copying the resulting .dll file”.

Step 3
Adjust the model.json to load the EB GUIDE GTF plugin. For details, see section 10.4, “Adding an EB
GUIDE GTF plugin”.

Step 4
Start the simulation with GtfStartup.exe. For details, see section 10.5, “Starting the simulation with Gt-
fStartup.exe ”.

10.2. Writing an EB GUIDE GTF plugin

Writing an EB GUIDE GTF plugin

In order to access an example, visit our website https://www.elektrobit.com/ebguide/learn/resources/. Down-
load the EB_GUIDE_Examples file and open the BasicExample example.

Prerequisite:

■ An EB GUIDE model is exported.

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 10. Using the EB GUIDE GTF plugin mechanism

Page 92 of 269

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

Step 1
Navigate to the directory you prepared for the plugin, for example C:/plugin/myplugin.

Step 2
Create a file named myplugin.cpp.

Step 3
Open the myplugin.cpp file and write an EB GUIDE GTF plugin.

Find a description of all relevant classes and methods in the EB GUIDE GTF API.

Step 4
Compile myplugin.cpp.

The result is a .dll file myplugin.dll.

10.3. Copying the resulting .dll file

Copying the resulting .dll file

Prerequisite:

■ An EB GUIDE model is exported.

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

■ A compiled EB GUIDE GTF plugin is created.

Step 1
Navigate to the directory where you saved the myplugin.dll file, for example C:/plugin/myplugin.

Step 2
Copy C:/plugin/myplugin to the directory where you exported the EB GUIDE model, for example C:/
projects/example_project.

10.4. Adding an EB GUIDE GTF plugin
To add an EB GUIDE GTF plugin, you can do either of the following:

► Add the EB GUIDE GTF plugin to an EB GUIDE model in EB GUIDE Studio.

../gtf_api/index.html

EB GUIDE TF
Chapter 10. Using the EB GUIDE GTF plugin mechanism

Page 93 of 269

► Modify the model.json file of an exported EB GUIDE model.

Adding an EB GUIDE GTF plugin to an EB GUIDE model

In order to use a newly written EB GUIDE GTF plugin such as a widget or a widget feature in an EB GUIDE
model, it is necessary to add the EB GUIDE GTF plugin to the EB GUIDE model.

Prerequisite:

■ An EB GUIDE GTF plugin exists.

Step 1
Compile the EB GUIDE GTF plugin.

Step 2
Copy the resulting file to the $GUIDE_PROJECT_PATH/resources directory.

Step 3
Start EB GUIDE Studio and open an EB GUIDE Studio project.

Step 4
Go to the project center and click Configure > Profiles.

Step 5
Select the required profile.

Step 6
Open the Model tab.

Step 7
To load your EB GUIDE GTF plugin, integrate the following code into the model.json:

{

 "gtf": {

 "model": {

 "pluginstoload": [

 "resources/myplugin"

]

 }

 }

}

myplugin is the name of the example EB GUIDE GTF plugin.

Step 8
Save the project and close EB GUIDE Studio.

Step 9
Open the project again.

You have added an EB GUIDE GTF plugin to an EB GUIDE model.

EB GUIDE TF
Chapter 10. Using the EB GUIDE GTF plugin mechanism

Page 94 of 269

Step 10
Export the EB GUIDE model.

Adding an EB GUIDE GTF plugin without EB GUIDE Studio

The following instruction shows you how to modify the model.json file directly so that it loads an EB
GUIDE GTF plugin.

Prerequisite:

■ An EB GUIDE model is exported.

Step 1
Navigate to the exported EB GUIDE model.

Step 2
Open the model.json file with a text editor.

Step 3
To load your EB GUIDE GTF plugin, include the following code:

{

 "gtf": {

 "model": {

 "pluginstoload": [

 "myplugin"

]

 }

 }

}

myplugin is the name of the example EB GUIDE GTF plugin.

Step 4
Save the model.json file.

10.5. Starting the simulation with GtfStart-
up.exe

Starting the simulation with GtfStartup.exe

On Windows platforms you can start the simulation directly using GtfStartup.exe.

EB GUIDE TF
Chapter 10. Using the EB GUIDE GTF plugin mechanism

Page 95 of 269

Prerequisite:

■ An EB GUIDE model is exported.

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

■ A compiled EB GUIDE GTF plugin is created.

■ The resulting .dll file is available in the directory of the exported EB GUIDE model.

Step 1
Navigate to $GUIDE_INSTALL_PATH/platform/win64/bin.

Step 2
Execute GtfStartup.exe with the complete path to model.json as the first argument. Enter the following
command line:

GtfStartup.exe C:/projects/example_project

The framework opens a window which displays the start view.

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 96 of 269

11. Resolving interface dependencies
When you use the dependency resolving mechanism, note the following:

► All interfaces that have to be registered in the container must inherit from the public interface
dependencyresolver::Interface.

► The macro GTF_DEFINE_INTERFACE_NAME(InterfaceName) must be added in the class header file.

For example:

class UserInterface : public dependencyresolver::Interface

public:

 virtual void fooBar() = 0;

};

typedef gtf::smartptr::RefCountedPtr<UserInterface> UserInterfaceHandle;

GTF_DEFINE_INTERFACE_NAME(UserInterface);

For more information, see API documentation module DependencyResolver.

For background information, see section 7.4, “Interface dependencies”.

For an example on interface dependencies, see the EB GUIDE SDK example DependencyResolverEx-
ample. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

11.1. Retrieving an item from DependencyCon-
tainer

Retrieving an item from DependecyContainer

Prerequisite:

■ A handle to an item is registered to the container.

Step 1
Declare a handle variable.

Example: UserInterfaceHandle value;

dce://gtf_api/DependencyResolver
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 97 of 269

Step 2
The call to the get method returns a handle. Store this handle in the variable.

Example: value = container->get<UserInterface>();

If the item does not exist in the container, get returns NULL.

NOTE Lookup scope
If the lookup scopes are not specified, EB GUIDE GTF is going to search for an instance of
the requested interface in the hierarchy of the dependency containers.

If EB GUIDE GTF does not find an instance, EB GUIDE GTF is going to search for a create
function in the hierarchy of the dependency containers. If the create function is available,
EB GUIDE GTF if going to call this function to create a new instance.

The method's parameters control the lookup scope for instances and functions separately.

11.2. Retrieving all instances registered to an in-
terface

Retrieving all instances registered to an interface

Step 1
Declare an array of handles.

Example: gtf::container::Array<UserInterfaceHandle> instances;

Step 2
To store the specified instances from the container, use the getAll method.

Example: container->getAll(instances);

Step 3
To navigate through the array, use an iterator .

Example:

for (gtf::container::Array<UserInterfacelHandle>::Iterator it = instances.begin();

 it != instances.end(); ++it)

{

//process data here...

}

If no items are found, getAll returns FALSE and the array is empty.

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 98 of 269

NOTE Lookup scope
If the lookup scopes are not specified, EB GUIDE GTF is going to search for an instance of
the requested interface in the hierarchy of the dependency containers.

If EB GUIDE GTF does not find an instance, EB GUIDE GTF is going to search for a create
function in the hierarchy of the dependency containers. If the create function is available,
EB GUIDE GTF is going to call this function to create a new instance.

The method's parameters control the lookup scope for instances and functions separately.

11.3. Registering an instance to the container

Registering an instance to the container

Prerequisite:

■ A valid handle to an item exists.

Step 1
To register an instance of an interface, add the new instance to the container.

Example: container->registerInstance<UserInterfaceHandle>(instance);

Step 2
To register the same instance for multiple interfaces, add the same instance for each interface to the contain-
er.

Example:

class InterfaceA : public Interface

{

};

class InterfaceB : public InterfaceA

{

};

typedef gtf::smartptr::RefCountedPtr<InterfaceB> InterfaceBHandle;

InterfaceBHandle interfaceB= new InterfaceB();

container->registerInstance<InterfaceA>(interfaceB);

container->registerInstance<InterfaceB>(interfaceB);

If the item cannot be registered, registerInstance returns FALSE.

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 99 of 269

NOTE Registring an instance
It is not possible to register the same instance with the same interface twice.

Registering a create function

Step 1
Create a function that returns a handle to the instance that you want to register.

Example:

static dependencyresolver::UserInterfaceHandle createInstance

(const dependencyresolver::DependencyContainerHandle & container)

{

 if (!container.valid())

 {

 return dependencyresolver::InterfaceHandle();

 }

 UserInterfaceHandle instance = new UserInterfaceImplementation();

 return instance;

}

Step 2
Create a catalog instance.

Example: gtf::dependecyresolver::DependencyCatalog catalog;

Step 3
Extend the catalog with the previous function.
Dependencyresolver::extendCatalog<UserInterface>(catalog, createInstance);

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 100 of 269

NOTE DependencyObjects
A catalog is an array of DependencyObjects.

For more information, see API documentation module DependencyResolver.

11.4. Unregistering an instance

Unregistering an instance

Prerequisite:

■ A handle to an item was registered to the container.

Step 1
Unregister the instance from the container.

Example: container->unregisterInstance<UserInterface>(instance);

If the item cannot be unregistered, unregisterInstance returns FALSE.

11.5. Registering a catalog
The following instruction shows you how to add the content of a catalog to a container.

Registering a catalog

Step 1
Declare a catalog.

Example: Example: gtf::dependecyresolver::DependencyCatalog catalog;.

Step 2
Register the catalog in the container.

Example: container->registerCatalog(catalog);

If the call to registerCatalog fails, it returns FALSE.

dce://gtf_api/DependencyResolver

EB GUIDE TF
Chapter 11. Resolving interface dependencies

Page 101 of 269

11.6. Unregistering a catalog

Unregistering a catalog

Step 1
Unregister the catalog from the container.

Example: container->unregisterCatalog(catalog);

If the call to unregisterCatalog fails, it returns FALSE.

11.7. Creating a container

Creating a container

Prerequisite:

■ A handle to an item was registered to the container.

Step 1
Create a container.

Example: DependencyContainerHandle childContainer = container->createContainer();

get and getAll use retrieve and retrieveAll internally.

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 102 of 269

12. Configuring EB GUIDE GTF
NOTE Retrieving a handle

To retrieve a Settings instance from the DependencyContainer interface, use get.

Example: gtf::configuration::SettingsHandle settings = contain-

er->get<gtf::configuration::Settings>();

Make sure that the retrieved settings handle is valid. For more information about Depen-
dencyContainer, see section 7.4, “Interface dependencies”.

12.1. Adding a scalar item to Configuration
NOTE Item types

The following instructions describe the steps for adding an item of type StringScalar. The
same approach can be used for BooleanScalar, IntegerScalar, or FloatScalar
types.

Adding a scalar item to Configuration

Step 1
To retrieve a scalar builder from the Settings interface, use getBuilder.

Example: gtf::configuration::StringScalarBuilderHandle scalarBuilder = set-
tings->getBuilder<gtf::configuration::StringScalarBuilder>();

Step 2
To set the value of the scalar item that you want to add, use scalarBuilder.

Example: scalarBuilder->set("some_string");

Step 3
To create an item that you want to add, use scalarBuilder. This item has the value that was specified in
Step 2.

Example: gtf::configuration::StringScalarHandle item = scalarBuilder->build();

Step 4
Create a key for your item.

Example: const char* key = "some_key";

Step 5
To add the scalar item into the configuration of EB GUIDE GTF, use addItem.

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 103 of 269

Example: settings->addItem(item, key);

If the key already exists or the handle (item) is null, addItem returns false.

12.2. Adding a list item to Configuration

NOTE Item types
The following instructions describe the steps for adding a list item of type FloatList.
The same approach can be used for BooleanList, IntegerList, StringList, or Ob-
jectList types.

Adding a list item to Configuration

Step 1
To retrieve a list builder from the Settings interface, use getBuilder.

Example: gtf::configuration::FloatListBuilderHandle listBuilder = set-
tings->getBuilder<gtf::configuration::FloatListBuilder>();

Step 2
To add values to the list, use add.

Example: listBuilder->add(1.0f); listBuilder->add(2.0f); listBuilder->add(3.0f);

Step 3
To create a list item that you want to add, use the listBuilder . The elements of this list have the values
that were added in Step 2.

Example: gtf::configuration::FloatListHandle listItem = listBuilder->build();

Step 4
Create a key for your list item.

Example: const char* key = "some_key";

Step 5
To add the list item into the configuration of the EB GUIDE GTF, use addItem.

Example: settings->addItem(listItem, key);

If the key already exists or the handle (listItem) is null, addItem returns false.

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 104 of 269

12.3. Adding an object item in Configuration

Adding an object item in Configuration

Step 1
To retrieve an objectBuilder from the Settings interface, use getBuilder.

Example: gtf::configuration::ObjectBuilderHandle objectBuilder = set-
tings->getBuilder<gtf::configuration::ObjectBuilder>();

Step 2
Build the items that you want to add to the object item. For a list of all configuration item types, see sec-
tion 7.5, “Configuration of EB GUIDE GTF”.

For example:

gtf::configuration::StringScalarBuilder stringScalarBuilder =

 settings->getBuilder<gtf::configuration::StringScalarBuilder>();

stringScalarBuilder->set("some_string_scalar");

gtf::configuration::StringScalarHandle stringScalar = stringScalarBuilder->build();

gtf::configuration::IntegerScalarBuilder integerScalarBuilder =

 settings->getBuilder<gtf::configuration::IntegerScalarBuilder>();

integerScalarBuilder->set(22);

gtf::configuration::IntegerScalarHandle integerScalar = integerScalarBuilder->build();

Step 3
To add the values, use add.

Example: objectBuilder->add(stringScalar, "string.scalar.key"); object-
Builder->add(integerScalar, "integer.scalar.key");

Step 4
To create an object item that you want to add, use objectBuilder.

Example: gtf::configuration::ObjectValueHandle objectItem = object-
Builder->build();

Step 5
To add the object item into the configuration of EB GUIDE GTF, use addItem.

Example: settings->addItem(objectItem, "object_key");

If the key already exists or the handle (objectItem) is null, addItem returns false.

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 105 of 269

12.4. Retrieving an item from Configuration

NOTE Item types
The following instructions describe the steps for retrieving an item of StringScalar type.
Use the same approach for all configuration item types. For a list of all configuration item
types, see section 7.5, “Configuration of EB GUIDE GTF”.

Retrieving an item from Configuration

Prerequisite:

■ You know the data type of the configuration item that you want to retrieve, for example StringScalar.

Step 1
Declare a handle for storing the retrieved value.

Example: gtf::configuration::StringScalarHandle retrievedValue;

Step 2
To retrieve the value, use getItem.

Example: retrievedValue = set-
tings->getItem<gtf::configuration::StringScalar>(key);

The template parameter must be of the same type as the handle where you save the result (retrieved-
Value).

The key argument represents the key of the configuration item.

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 106 of 269

NOTE Configuration items
If the item does not exist in the current settings, EB GUIDE GTF searches for it recursive-
ly in all ancestors of the current settings. If the item can not be found in any of the ances-
tors, getItem returns null. For more information, see section 7.5, “Configuration of EB
GUIDE GTF”.

12.5. Creating a path value using Configuration

Creating a path value using Configuration

Prerequisite:

■ A StringScalar item is added in Configuration. For more information, see section 12.1, “Adding a
scalar item to Configuration”.

Step 1
Declare a handle to the PathValue variable.

Example: configuration::PathValueHandle pathHandle;

Step 2
Retrieve the previously added StringScalar as PathValue.

Example: pathHandle = set-
tings->getItem<configuration::PathValue>("stringItemName");

Step 3
Specify the base value for the path as const char*.

Example: pathHandle->setBasePath("basePath");

Step 4
Retrieve the resulting value.

Example: const char* stringPath = pathHandle->get();

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 107 of 269

12.6. Using a custom .json file to define configu-
ration items.

Using a custom .json file to define configuration items.

Prerequisite:

■ To retrieve a ConfigurationImporter instance from the DependencyContainer interface, use get.

■ Example: gtf::configurationimporter::ConfigurationImporterHandle configura-
tionImporter = contain-

er->get<gtf::configurationimporter::ConfigurationImporter>();

■ Make sure that the retrieved configurationImporter handle is valid.

Step 1
To add the elements of the .json file into the Configuration, use parse.

Example: bool result = configurationImporter->parse($JSON_PATH);

If the file is missing or invalid, parse returns false.

Example 12.1.
example.json

{

 "platform":

 {

 "users":

 [{

 "name": "Michael",

 "age": 22,

 "joined":

 {

 "month": "March",

 "year": 2017

 }

 }

],

 "version": 3.0

 }

}

Parsing of example.json adds the following items into Configuration:

EB GUIDE TF
Chapter 12. Configuring EB GUIDE GTF

Page 108 of 269

Type Key Value

ObjectValueHandle "platform" Platform object

ObjectListHandle "platform.users" List of users

FloatScalarHandle "platform.version" 3.0

for an example on how to define configuration items, see the EB GUIDE SDK example ConfigurationIm-
porter.

12.7. Creating new Settings

Creating new Settings

Step 1
Declare a handle to a Settings variable.

Example: gtf::configuration::SettingsHandle childSettings;

Step 2
Store the result of the createSettings method.

Example: childSettings = settings->createSettings();

NOTE The createSettings method sets settings as a parent for childSettings. This is
useful for lookup when it retrieves a configuration item. For instructions, see section 12.4,
“Retrieving an item from Configuration”.

EB GUIDE TF
Chapter 13. Tracing logging messages

Page 109 of 269

13. Tracing logging messages

Tracing logging messages

For more information on traces, see section 7.2, “Tracing” and section 19.11, “tracing.json configuration
file”.

Prerequisite:

■ An EB GUIDE GTF extension or application is available.

■ tracing.json is configured and available in one of the following directories:

► The exported EB GUIDE model directory

► The EB GUIDE project directory

► The binaries directory

Step 1
Add the Tracing.h file to the source directory of your extension or application.

Step 2
In the Tracing.h file, include the Logging.h and define all the channels which are used inside the appli-
cation:

#include <gtf/tracing/Logging.h>

#define GTF_MyChannel

Step 3
In your source file, include Tracing.h and add the required log macros, for example as follows:

GTF_WARNING(GTF_MyChannel, “My warning message”)

As a result the log.txt file is added and the defined traces are included.

EB GUIDE TF
Chapter 13. Tracing logging messages

Page 110 of 269

NOTE log.txt log file
Note that the log.txt file is always added next to tracing.json:

► If tracing.json is in the EB GUIDE project directory, the created log.txt con-
tains only traces from the edit mode.

► If tracing.json is in the binaries directory, the created log.txt contains traces
both from the edit mode and the simulation mode.

► If tracing.json is in both the EB GUIDE project directory and the binaries directo-
ry, the created log.txt in the EB GUIDE project directory contains traces from the
edit mode, and the created log.txt in the binaries directory contains traces from
the simulation mode.

For an example on how to add a custom trace output, see the EB GUIDE SDK example TraceOutputEx-
ample. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 14. Extending EB GUIDE Script with foreign functions

Page 111 of 269

14. Extending EB GUIDE Script with
foreign functions
For an example on how to implement an EB GUIDE Script function that returns the sum of two integers, see
the EB GUIDE SDK example ScriptFunction. Download the EB_GUIDE_Examples.zip archive with all
EB GUIDE SDK examples from https://www.elektrobit.com/ebguide/learn/resources/. For instructions on how
to work with the EB GUIDE SDK examples, see the EB GUIDE Studio Howto Using examples in EB
GUIDE Studio.pdf file enclosed in the .zip archive.

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 15. Using the Properties module

Page 112 of 269

15. Using the Properties module
For background information on the Properties module, see section 8.5, “Scenes and properties”.

15.1. Using Container interface

Obtaining a Container instance

To obtain an already created Container instance, use the DependencyResolver module. For instruc-
tions, see chapter 11, “Resolving interface dependencies“.

To create a new Container instance, use the Factory interface.

Step 1
To create an instance, use the createContainer method of the Factory interface.

Example:

using gtf::properties;

ContainerHandle container = factory->createContainer(type);

Accessing children of Container

Step 1
To access children of Container, use the getChildren method.

Example:

using gtf::properties;

Children& children = container->getChildren();

Accessing properties of Container

Step 1
To access properties of Container, use the getProperties method.

Example:

using gtf::properties;

Properties& properties = container->getProperties();

EB GUIDE TF
Chapter 15. Using the Properties module

Page 113 of 269

Accessing features of Container

Step 1
To access features of Container, use the getFeatures method.

Example:

using gtf::properties;

Features& features = container->getFeatures();

Accessing parent of Container

Step 1
To access the parent of Container, use the getParent method.

Example:

using gtf::properties;

ContainerHandle parent = container->getParent();

Setting parent of Container

Step 1
To set the parent of Container, use the setParent method.

Example:

using gtf::properties;

container->setParent(parentContainer);

Setting type of Container

Step 1
To set the type of Container, use the setType method.

Example:

using gtf::properties;

container->setType(type);

Getting type of Container

Step 1
To get the type of Container, use the getType method.

Example:

EB GUIDE TF
Chapter 15. Using the Properties module

Page 114 of 269

using gtf::properties;

Type containerType = container->getType();

15.2. Using Children interface

Accessing a Children container

Step 1
Access the Children container.

Example:

using gtf::properties;

Children& children = container->getChildren();

Retrieving a child from a specific index

Step 1
To retrieve a child, use the get method.

Example:

using gtf::properties;

ContainerHandle child = children.get(0); // Get the child at index 0

Inserting a child at a specified index

Step 1
To insert a child, use the get method.

Example:

using gtf::properties;

children.insert(0, containerHandle1); // Insert the child at index 0

Removing a child from a specified index

Step 1
To remove a child, use the remove method.

Example:

using gtf::properties;

EB GUIDE TF
Chapter 15. Using the Properties module

Page 115 of 269

children.remove(0); // Remove the child from index 0

Getting the number of children from a container

Step 1
To get the number of children, use the count method.

Example:

using gtf::properties;

uint321_t numberOfChildren = children.count();

15.3. Using Property interface

Accessing Property of a Container instance

Step 1
Get Property of the Container instance.

Example:

using gtf::properties;

Properties& properties = container->getProperties();

uint32_t index = 0;

Getting the number of elements in a list

Step 1
To get the number of elements, use the count method.

Example:

using gtf::properties;

uint32_t count = properties.count();

Getting a property from a specified index

Prerequisite:

■ You know the type of the property that you want to retrieve.

■ The property is stored in a handle of the variable type.

EB GUIDE TF
Chapter 15. Using the Properties module

Page 116 of 269

■ The property index is provided by the TypeResolver in the Scene module.

Step 1
To retrieve a property, use the get method.

Example:

using gtf::properties;

IntegerScalarHandle intProp = properties.get<IntegerValue>(index);

Getting a property from a feature

Prerequisite:

■ You have a feature identifier Features::Feature that is provided by TypeResolver from the Scene
module.

Step 1
To retrieve a property from a feature, use the get method.

Example:

using gtf::properties;

Features::Feature feature;

IntegerScalarHandle intProp = preperties.get<IntegerValue>(feature, index);

Getting a property value

Step 1
To retrieve a scalar value, use the get method.

Example:

using gtf::properties;

IntegerScalarHandle intProp = properties.get<IntegerValue>(index);

int value = intProp->get();

int value1;

intProp->get(value1);

Step 2
To retrieve a list element value, use the getElement method.

Example:

using gtf::properties;

IntegerListHandle intProp = properties.get<IntegerList>(index);

int value = intProp->getElement(index);

EB GUIDE TF
Chapter 15. Using the Properties module

Page 117 of 269

int value1;

intProp->getElement(index, value1);

Editing a property

Prerequisite:

■ To edit a property, you must first receive it from the Properties interface.

Step 1
To edit a scalar property, use the set method.

Example:

using gtf::properties;

IntegerScalarHandle intProp = properties.get<IntegerValue>(index);

intProp->set(7);

Step 2
To edit a list property, use the setElement method.

Example:

using gtf::properties;

IntegerListHandle intListProp = properties.get<IntegerList>(index);

intListProp->setElement(index, value);

Step 3
To insert an element before an index, use the insert method.

Example:

intListProp->insert(index, value);

Step 4
To append an element to a list, use the append method.

Example:

intListProp->append(value);

Observing structural changes of a widget

Step 1
To observe structural changes of a widget, like adding or removing elements, use the subscribe method
from ContainerObserver.

Example:

EB GUIDE TF
Chapter 15. Using the Properties module

Page 118 of 269

using gtf::properties;

Listener listener; ❶

ContainerObserverHandle containerObserver = resolver->get<ContainerObserver>();

containerObserver->subscribe(container, listener,

 ContainerObserver::Callback::create<Listener,

 &Listener::processStructureChanged>(listener),

 ContainerObserver::Recursive::None); ❷ ❸

❶ The Listener class is a user-defined class in this example. The Listener class must contain a method
that is called after the container structure has been changed. The method must have the following sig-
nature:

void processStructureChanged(const ContainerHandle& container_,

 container::Array<SubscriberNotificationData>& data_);

❷ If ContainerObserver::Recursive::None is used, only the notifications for the current container
changes are received.

❸ If ContainerObserver::Recursive::All is used, the notifications for the current container changes
as well as the notifications for its children are received.

Example 15.1.
ContainerObserver

A view contains an instantiator.

If you subscribe using ContainerObserver::Recursive::None, you will only be notified for the
changes affecting the view itself.

If you subscribe using ContainerObserver::Recursive::All, you will also be notified for the
changes affecting the view and its' children recursively. If an instantiator element is removed, you will be
notified about it. If the instantiator widget is removed, you will be notified only of this removal and not of
the removal of its children, because they are part of the instantiator.

Step 2
To stop receiving notifications from a container, use the unsubscribe method.

Example:

using gtf::properties;

containerObserver->unsubscribe(container, listener);

Observing properties of a Property container

Step 1
To observe properties of a Property container, use the subscribe method from PropertyObserver.

Example:

EB GUIDE TF
Chapter 15. Using the Properties module

Page 119 of 269

using gtf::properties;

Listener listener; ❶

PropertyKey key(container, 3); // "3" represents the property index

PropertyObserverHandle propertyObserver = resolver->get<PropertyObserver>();

propertyObserver->subscribe(key, listener, PropertyObserver::Callback::create<Listener,

 &Listener::processPropertyChanged>(listener));

❶ The Listener class is a user-defined class in this example. The Listener class must contain a method
that is called after the value of a property has been changed. The method must have the following sig-
nature:

void processPropertyChanged(const ContainerHandle& container_,

 container::Array<SubscriberNotificationData>& data_);

Step 2
To stop receiving notifications from a container's properties, use the unsubscribe method.

Example:

using gtf::properties;

propertyObserver->unsubscribe(key, listener);

NOTE Unsubscribing
Always make sure to unsubscribe from all items that you subscribed to. For example, in
case of a widget controller, unsubscribe at the latest when you disconnect.

EB GUIDE TF
Chapter 16. Adding widgets and widget features

Page 120 of 269

16. Adding widgets and widget features
This section provides information about EB GUIDE GTF extension examples such as widgets and widget
features.

For an example on how to add a widget, see the EB GUIDE SDK example ExtendedContainerWid-
get. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

This example implements a container widget that controls the visibility of its child widgets. The displayStatus
property defines which child widgets are displayed: all, none, or only the first.

For an example on how to add a widget feature, see the EB GUIDE SDK example FocusedWidgetFea-
ture. Download the EB_GUIDE_Examples.zip archive with all EB GUIDE SDK examples from https://
www.elektrobit.com/ebguide/learn/resources/. For instructions on how to work with the EB GUIDE SDK exam-
ples, see the EB GUIDE Studio Howto Using examples in EB GUIDE Studio.pdf file enclosed
in the .zip archive.

This example adds a widget feature to a rectangle widget. The example widget feature is called focusRect-
Color and has a property focusedColor. The purpose of the widget feature is to change the background
color of a rectangle to the value of the focusedColor property when the rectangle is focused. To enable the
focus widget feature, add the widget feature State focused.

For background information on the Properties module, see section 8.5, “Scenes and properties”.

For instructions on how to use the Properties module, see chapter 15, “Using the Properties module“.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 17. Using external input events

Page 121 of 269

17. Using external input events

17.1. Getting the ExternalInput interface

Getting the ExternalInput interface

Key, touch or rotary events can be created, sent and read using the ExternalInput interface. The Exter-
nalInput is a help interface based on the functionality of a local event system.

For more information about local event system, see section 8.7, “Event system”.

For more information about DependencyContainer, see section 7.4, “Interface dependencies”.

Find the description of all relevant classes and methods in the EB GUIDE GTF API.

Step 1
To retrieve an ExternalInput interface from the DependencyContainer, use the get method.

Example:

gtf::inputmapper::ExternalInputHandle externalInput;

gtf::container::Array<gtf::coreruntime::CoreRuntimeHandle> runtimes;

modelContainer->getAll<gtf::coreruntime::CoreRuntime>(runtimes);

for (uint32_t i = 0, e = runtimes.size(); i != e; ++i)

{

 if (runtimes[i]->getContextId() == EXPECTED_RUNTIME_ID)

 {

 externalInput = runtimes[i]->getDependencyContainer()

 ->get<gtf::inputmapper::ExternalInput>();

 break;

 }

}

if (externalInput.valid()) ❶

{

 //...

}

❶ Make sure that the retrieved interface instance is valid before you use it.

../gtf_api/index.html

EB GUIDE TF
Chapter 17. Using external input events

Page 122 of 269

NOTE Scope of ExternalInput
One EB GUIDE GTF instance may run multiple models. And each model may run multiple
CoreRuntime instances. Each CoreRuntime uses a separate local event system. Exter-
nal input events that are send in one local event system are not available in other local event
systems of other CoreRuntime instances.

To retrieve the ExternalInput interface, use the DependencyContainer of the respec-
tive CoreRuntime instance with which you want to interact.

NOTE Identifiers of EB GUIDE model, CoreRuntime and scene
Each exported EB GUIDE model, as well as each CoreRuntime instance of a model, as
well as each scene of one CoreRuntime instance can be identified. The identifiers are part
of EB GUIDE model and exported to model.json. To retrieve this information, use the
gtf::configuration::Settings interface.

► CoreRuntime is identified by the id of the gtf.model.cores objects in mod-
el.json

► A scene is identified by the sceneId of the gtf.model.scenes objects in mod-
el.json

17.2. Creating and sending a key event

Creating and sending a key event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

Step 1
Set the ID of the scene that should receive the key input event.

Example: uint32_t sceneId = 0;

NOTE A scene is identified by the sceneId of the gtf.model.scenes objects in model.json

Step 2
Set the event ID of the key.

EB GUIDE TF
Chapter 17. Using external input events

Page 123 of 269

Example: uint32_t keyEventId = 5;

Step 3
Set the key status that caused the key event.

Example: gtf::inputmapper::ExternalInput::KeyStatus::Value status =
gtf::inputmapper::ExternalInput::KeyStatus::KeyPress;

Find the description of the relevant values in the EB GUIDE GTF API.

Step 4
To create the key event, use the createKeyEvent method of the ExternalInput interface.

Example: gtf::eventsystem::local::EventHandle keyInputEvent = externalIn-
put->createKeyEvent(sceneId, keyEventId, status);

Step 5
To send the newly created key event to the model and invoke processing, use the send method.

Example: externalInput->send(keyInputEvent);

17.3. Creating and sending a touch event

Creating and sending a touch event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

Step 1
Set the ID of the scene that should receive the touch input event.

Example: uint32_t sceneId = 1;

NOTE A scene is identified by the sceneId of the gtf.model.scenes objects in model.json

Step 2
Set the event ID of the touch screen.

Example: uint32_t touchEventId = 0;

Step 3
Set the touch status.

../gtf_api/index.html

EB GUIDE TF
Chapter 17. Using external input events

Page 124 of 269

Example: gtf::inputmapper::ExternalInput::TouchStatus::Value status =
gtf::inputmapper::ExternalInput::TouchStatus::TouchPress;

Find the description of the relevant values in the EB GUIDE GTF API.

Step 4
Set the coordinates of the touch event.

Example: uint32_t x = 100; uint32_t y = 50;

Step 5
Set the finger ID.

Example: uint32_t fingerId = 0;

NOTE fingerId is used to track multiple parallel touch positions for multi-touch support.

Step 6
To create the touch event, use the createTouchEvent method of the ExternalInput interface.

Example: gtf::eventsystem::local::EventHandle touchInputEvent = externalIn-
put->createTouchEvent(sceneId, touchEventId, status, x, y, fingerId);

Step 7
To send the newly created touch event to the model and invoke processing, use the send method.

Example: externalInput->send(touchInputEvent);

17.4. Creating and sending a rotary event

Creating and sending a rotary event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

Step 1
Set the ID of the scene that should receive the rotary input event.

Example: uint32_t sceneId = 1;

../gtf_api/index.html

EB GUIDE TF
Chapter 17. Using external input events

Page 125 of 269

NOTE A scene is identified by the sceneId of the gtf.model.scenes objects in model.json

Step 2
Set the event ID of the rotary knob.

Example: uint32_t rotaryEventId = 2;

Step 3
Set the rotary increment or decrement value.

Example: int32_t rotaryIncrement = 1;

NOTE A positive value means rotation to the right while a negative value means a rotation to the
left.

Step 4
To create the rotary event, use the createRotaryEvent method of the ExternalInput interface.

Example: gtf::eventsystem::local::EventHandle rotaryInputEvent = externalIn-
put->createRotaryEvent(sceneId, rotaryEventId, rotaryIncrement);

Step 5
To send the newly created rotary event to the model and invoke processing, use the send method .

Example: externalInput->send(rotaryInputEvent);

17.5. Reading a key event

Reading a key event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

■ You received an external input event.

Step 1
To read the key event, use the readKeyEvent method of the ExternalInput interface.

EB GUIDE TF
Chapter 17. Using external input events

Page 126 of 269

Example: externalInput->readKeyEvent(keyInputEvent, outputSceneId, outputKeyEven-
tId, outputKeyStatus);

The keyInputEvent is read and it's parameter values are stored in the output variables.

17.6. Reading a touch event

Reading a touch event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

■ You received an external input event.

Step 1
To read the touch event, use the readTouchEvent method of the ExternalInput interface.

Example: externalInput->readTouchEvent(touchInputEvent, outputSceneId, output-
TouchEventId, outputTouchStatus, outputX, outputY, outputFingerId);

The touchInputEvent is read and it's parameters are placed in the output variables.

17.7. Reading a rotary event

Reading a rotary event

Prerequisite:

■ You retrieved an ExternalInput interface from DependencyContainer.

■ You received an external input event.

Step 1
Use the readRotaryEvent method of the ExternalInput interface to read the rotary event.

Example: externalInput->readRotaryEvent(rotaryInputEvent, outputSceneId, outpu-
tRotaryEventId, outputRotaryIncrement);

The rotaryInputEvent are read and it's parameters are placed in the output variables.

EB GUIDE TF
Chapter 18. Monitoring memory usage

Page 127 of 269

18. Monitoring memory usage
Monitoring memory usage helps you to debug the system and the EB GUIDE model. During the run-time, EB
GUIDE GTF can continuously print out memory information that it dynamically manages.

The memory report is printed to the standard output streams. On the Microsoft Windows operating systems,
outputs to console are deactivated. To see the stream outputs, pipe the streams into files. EB GUIDE Monitor
also shows the memory report in the Logger component. On other operating systems that are POSIX compat-
ible, for example Linux, the report is shown on console.

Configuring a memory report

You configure a memory report by adding a configuration message to the model.json configuration file.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, select Configure > Profiles.

Step 2
Select the Simulation profile.

Step 3
Select the Platform tab.

Step 4
Enter the following code:

{

 "gtf": {

 "diagnostic": {

 "memory": {

 "interval":5000

 }

 }

 }

}

You configured the memory report to be printed with an interval of 5 seconds.

EB GUIDE TF
Chapter 19. References

Page 128 of 269

19. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

19.1. Android events
Android events belong to the SystemNotifications event group and have event group ID 13.

Table 19.1. Android events

Event ID Name Description

1 RendererEnabled Is sent by the application when Android
life cycle management stops or starts the
renderer

Parameters:

► enabled: If true, the renderer is en-
abled. If false, the renderer is set to
sleep mode.

2 setKeyboardVisibility Is sent by the EB GUIDE model if a virtual
keyboard is intended to be shown

Parameters:

► visibility: If true, a virtual key-
board is made visible. If false, it is in-
visible.

3 onKeyboardVisibilityChanged Is sent by the application if a virtual key-
board is shown

Parameters:

► visibility: If true, a virtual key-
board is visible. If false, it is invisible.

4 onLayoutChanged Is sent by the application when the visible
area of the screen changes

Parameters (in pixels):

► x: The x-coordinate of the top left cor-
ner of the visible screen area

EB GUIDE TF
Chapter 19. References

Page 129 of 269

Event ID Name Description

► y: The y-coordinate of the top left cor-
ner of the visible screen area

► width: The width of the visible
screen area

► height: The height of the visible
screen area

19.2. Datapool items

Table 19.2. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

19.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

19.3.1. Boolean

Boolean properties can have the values true and false.

Available operations are as follows:

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

EB GUIDE TF
Chapter 19. References

Page 130 of 269

It is possible to store boolean properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.2. Color

Colors are stored in the RGBA8888 format.

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

It is possible to store color properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.3. Conditional script

Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections:

► In the Trigger section, you can add an event, datapool item, or widget property that triggers the execution
of the On trigger script.

► In the On trigger section, you can add an EB GUIDE Script that is called on initialization, an event trigger,
or after a value update of a datapool item or a widget property.

The parameter of the On trigger EB GUIDE Script indicates the cause for the execution of the script.

The arg0 refers to the fact whether the EB GUIDE Script is executed during initialization or by a trigger.
Consider the following:

► If the EB GUIDE Script is executed during initialization, arg0 is true.

► If the EB GUIDE Script is executed by a trigger, arg0 is false.

The return value of the On trigger EB GUIDE Script controls change notifications for the property.

The return value of the On trigger EB GUIDE Script regulates whether the EB GUIDE Script must produce
a notification or not. Consider the following:

► If the return value is true, a notification is generated.

EB GUIDE TF
Chapter 19. References

Page 131 of 269

► If the return value is false, a notification is not generated.

To be able to execute the On trigger script, the conditions are to be fulfilled during the following:

► On initialization, for example, in case of datapool items during EB GUIDE model startup, or in case of
widget properties during the view creation.

► On processing an event from the trigger script. The EB GUIDE Script is executed once for each matching
event.

► On processing the datapool notifications of one or more items from the trigger script. Multiple notifications
may be processed at once.

► On processing the notifications of one or more widget properties from the trigger script. Multiple notifica-
tions may be processed at once.

19.3.4. Float

Float-point number data type represents a single-precision 32-bit IEEE 754 value.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.5. Font

EB GUIDE TF
Chapter 19. References

Page 132 of 269

To add a font to an EB GUIDE project, copy the font file to the following directory: $GUIDE_PROJECT_PATH/
<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.6. Function () : bool

By means of Function () : bool you can create an own function.

The available operation for this data type is a read/run operation for all properties.

19.3.7. Ibl

Ibl is a data format that stores lighting information generated by the IBLGenerator.

To add an ibl to an EB GUIDE project, copy the .ebibl file to the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store ibl properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.8. Image

To add an image to an EB GUIDE project, copy the image file to the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 19.3.12, “List”.

EB GUIDE TF
Chapter 19. References

Page 133 of 269

19.3.9. Integer

EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.10. Mesh

Mesh defines the shape of the 3D object.

To add a mesh to an EB GUIDE project, copy the .ebmesh file to the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store mesh properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.11. String

EB GUIDE supports character strings, for example Hello world.

EB GUIDE TF
Chapter 19. References

Page 134 of 269

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=Aa=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 19.3.12, “List”.

19.3.12. List

EB GUIDE supports a list of values with the same data type.

The following list types are available:

► Boolean list

► Color list

► Float list

► Font list

► Ibl list

► Image list

► Integer list

► Mesh list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

EB GUIDE TF
Chapter 19. References

Page 135 of 269

► length: (length)

► element accessor: ([])

19.4. EB GUIDE Script

19.4.1. EB GUIDE Script keywords

The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Keyword Description

cancel_fire Cancels an event that is fired with fire_delayed.

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

l: A language follows. Is used on f:language.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

fire_delayed Fires an event after a specified time. The time is specified in milliseconds.

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

function Declares a function

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

EB GUIDE TF
Chapter 19. References

Page 136 of 269

Keyword Description

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

s: A skin follows. Is used on f:skin.

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows

while Repeats a statement as long as the condition is true

19.4.2. EB GUIDE Script operator precedence

The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 19.3. EB GUIDE Script operator precedence

Operator Associativity

(()), ({}) none

([]) none

(->) left

(.) none

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

EB GUIDE TF
Chapter 19. References

Page 137 of 269

Operator Associativity

(;) left

19.4.3. EB GUIDE Script standard library

The following chapter provides a description of all EB GUIDE Script functions.

19.4.3.1. EB GUIDE Script functions A - B

19.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 19.4. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

19.4.3.1.2. absf

The function returns the absolute value of the float number x.

Table 19.5. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

19.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

EB GUIDE TF
Chapter 19. References

Page 138 of 269

Table 19.6. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

19.4.3.1.4. animation_before

The function checks if a running animation has passed a given point in time.

Table 19.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has not yet passed the point in time.

19.4.3.1.5. animation_beyond

The function checks if a running animation has passed a given point in time.

Table 19.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

19.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

Table 19.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

EB GUIDE TF
Chapter 19. References

Page 139 of 269

19.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 19.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

19.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 19.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

19.4.3.1.9. animation_pause

The function pauses an animation.

Table 19.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

19.4.3.1.10. animation_play

The function starts or continues an animation.

Table 19.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

EB GUIDE TF
Chapter 19. References

Page 140 of 269

Parameter Type Description

<return> boolean If true, the animation is not running yet.

19.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 19.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

19.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 19.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

19.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

Table 19.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

19.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

EB GUIDE TF
Chapter 19. References

Page 141 of 269

Table 19.17. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

19.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 19.18. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

19.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 19.19. Parameters of atan2i

Parameter Type Description

y integer Argument y

x integer Argument x

<return> float The return value

19.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 19.20. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

EB GUIDE TF
Chapter 19. References

Page 142 of 269

Parameter Type Description

<return> float The return value

19.4.3.1.18. bool2string

The function converts a boolean variable to either the string true or false.

Table 19.21. Parameters of bool2string

Parameter Type Description

x bool The value to convert to a string

<return> string true in case x was true, and false otherwise

19.4.3.2. EB GUIDE Script functions C - H

19.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 19.22. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

19.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 19.23. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE TF
Chapter 19. References

Page 143 of 269

19.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 19.24. Parameters of character2unicode

Parameter Type Description

str string The input string

<return> integer The character as Unicode value

0 in case of errors

19.4.3.2.4. clampf

The function clamps a floating-point value to a defined range [xmin, xmax], this means the function computes
max (xmin, min (xmax, x)).

Table 19.25. Parameters of clampf

Parameter Type Description

x float The value to clamp

xmin float The minimum range

xmax float The maximum range

<return> float The x value clamped to the [xmin, xmax] range

19.4.3.2.5. clampi

The function clamps an integer value to a defined range [xmin, xmax], this means the function computes
max (xmin, min (xmax, x)).

Table 19.26. Parameters of clampi

Parameter Type Description

x int The value to clamp

xmin int The minimum range

xmax int The maximum range

<return> int The x value clamped to the [xmin, xmax] range

19.4.3.2.6. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

EB GUIDE TF
Chapter 19. References

Page 144 of 269

Table 19.27. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

19.4.3.2.7. color2string

The function converts a color to eight hexadecimal values.

Table 19.28. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color channels
red, green, blue and alpha.

For example, opaque pure red is converted to #ff0000ff, semi-transparent pure green
is converted to #00ff007f.

19.4.3.2.8. cosf

The function returns the cosine of x, where x is given in radians.

Table 19.29. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

19.4.3.2.9. deg2rad

The function converts an angle from degrees to radians.

Table 19.30. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

EB GUIDE TF
Chapter 19. References

Page 145 of 269

Parameter Type Description

<return> float The return value

19.4.3.2.10. expf

The function returns the value of e, the base of natural logarithms, raised to the power of x.

Table 19.31. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

19.4.3.2.11. float2string

The function converts simple float to string.

Table 19.32. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

19.4.3.2.12. floor

The function returns the largest integral value not greater than the parameter value.

Table 19.33. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

19.4.3.2.13. fmod

The function computes the remainder of the floating-point division x/y.

EB GUIDE TF
Chapter 19. References

Page 146 of 269

Table 19.34. Parameters of fmod

Parameter Type Description

x float The floating point numerator

y float The floating point denominator

<return> float The remainder of the division x/y

19.4.3.2.14. focusMoveTo

The function forces the focus manager to forward the focus to a dedicated focusable element.

Table 19.35. Parameters of focusMoveTo

Parameter Type Description

widget widget The widget on which the focus is moved.

<return> void

19.4.3.2.15. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 19.36. Parameters of focusNext

Parameter Type Description

<return> void

19.4.3.2.16. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 19.37. Parameters of focusPrevious

Parameter Type Description

<return> void

19.4.3.2.17. format_float

The function formats a float value.

EB GUIDE TF
Chapter 19. References

Page 147 of 269

Table 19.38. Parameters of format_float

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the num-
ber of significant digits or the number of digits after the dec-
imal-point character .

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

useDotAsDelim-

iter

boolean Defines the delimiter sign.

Possible values:

► true: Use a dot as delimiter.

► false: Use a comma as delimiter.

value float The number to format

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_float are f, a, g and e, and not more than one
type character is allowed.

19.4.3.2.18. format_int

The function formats an integer value.

Table 19.39. Parameters of format_int

Parameter Type Description

format string A string of the following structure:

EB GUIDE TF
Chapter 19. References

Page 148 of 269

Parameter Type Description

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the mini-
mum number of digits that are printed.

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

value int The number to format

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_int are d, i, o, x and u, and not more than one
type character is allowed.

19.4.3.2.19. frac

The function computes the fractional part of a floating-point value. The return value lies in the interval [0, 1].
For example, the function returns 0.5 for the parameter value x=1.5 or x=-1.5.

Table 19.40. Parameters of frac

Parameter Type Description

x float The floating point value

<return> float The fractional part of the floating-point value.

19.4.3.2.20. getConfigItem

The function fills a datapool item with a configuration item value.

Table 19.41. Parameters of getConfigItem

Parameter Type Description

itemId dp_id The datapool ID where the configuration item is to be stored

EB GUIDE TF
Chapter 19. References

Page 149 of 269

Parameter Type Description

name string The configuration item name

<return> boolean True if datapool item is successfully filled with a configuration
item value

19.4.3.2.21. getFontAscender

The function returns the ascender of the font passed as parameter.

Table 19.42. Parameters of getFontAscender

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The ascender of the font

19.4.3.2.22. getFontDescender

The function returns the descender of the font passed as parameter.

Table 19.43. Parameters of getFontDescender

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The descender of the font

19.4.3.2.23. getFontLineGap

The function returns the line gap of the font passed as parameter.

Table 19.44. Parameters of getFontLineGap

Parameter Type Description

x font The font to be evaluated

EB GUIDE TF
Chapter 19. References

Page 150 of 269

Parameter Type Description

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The line gap of the font

19.4.3.2.24. getImageHeight

The function returns the height in pixels of an image passed as parameter.

Table 19.45. Parameters of getImageHeight

Parameter Type Description

x image widget The widget to evaluate

<return> integer The height in pixels of an image

19.4.3.2.25. getImageWidth

The function returns the width in pixels of an image passed as parameter.

Table 19.46. Parameters of getImageWidth

Parameter Type Description

x image widget The widget to be evaluated

<return> integer The width in pixels of an image

19.4.3.2.26. getLabelTextHeight

The function returns the total height in pixels of a label's text. The total height is calculated using the formula:

total_height = line_height * line_count + line_gap * (line_count - 1)

The line_gap is calculated as the sum of the font line gap and the lineGap property of the Multiple lines
widget feature. Both font line gap and the lineGap property can be negative.

Table 19.47. Parameters of getLabelTextHeight

Parameter Type Description

widget label widget The widget to be evaluated

EB GUIDE TF
Chapter 19. References

Page 151 of 269

Parameter Type Description

<return> integer The height in pixels of the text

19.4.3.2.27. getLabelTextWidth

The function returns the width of the longest line of a label's text.

Table 19.48. Parameters of getLabelTextWidth

Parameter Type Description

widget label widget The widget to evaluate

<return> integer The width in pixels of the longest line of the text

19.4.3.2.28. getLineCount

The function returns the number of lines of a label's text.

Table 19.49. Parameters of getLineCount

Parameter Type Description

widget label widget The widget to be evaluated

<return> integer The number of lines of the text

19.4.3.2.29. getLineHeight

The function returns the height of a line written with the font passed as parameter.

Table 19.50. Parameters of getLineHeight

Parameter Type Description

x font The font to be evaluated

Note that if you have the multifont support added, only the de-
fault font is evaluated.

<return> integer The height of a line written with the specified font

19.4.3.2.30. getProductString

The function returns a string with the product name of EB GUIDE GTF.

EB GUIDE TF
Chapter 19. References

Page 152 of 269

Table 19.51. Parameters of getProductString

Parameter Type Description

<return> string The product name

19.4.3.2.31. getTextHeight

The function returns the height of a text with regard to its font resource. The height represents the sum of the
font ascender and descender.

Table 19.52. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

If the size of the font is 0 or negative, the function returns 0.

NOTE getTextHeight
The function always calculates the height value assuming that the text has a single line.

19.4.3.2.32. getTextLength

The function returns the number of characters in a text.

Table 19.53. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

NOTE Escape sequences
EB GUIDE Script does not resolve escape sequences like \n and counts every character.
For example, for the text Label\n the getTextLength function returns 7.

19.4.3.2.33. getTextWidth

The function returns the width of a text with regard to its font resource.

EB GUIDE TF
Chapter 19. References

Page 153 of 269

Table 19.54. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

If the size of the font is 0 or negative, the function returns 0.

NOTE The function always calculates the width value assuming that the text has a single line.

19.4.3.2.34. getVersionString

The function returns a string with the version number of EB GUIDE GTF.

Table 19.55. Parameters of getVersionString

Parameter Type Description

<return> string The version string

19.4.3.2.35. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 19.56. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

19.4.3.2.36. hsba2color

The function converts an HSB/HSV color to an EB GUIDE GTF color.

EB GUIDE TF
Chapter 19. References

Page 154 of 269

Table 19.57. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting EB GUIDE GTF color with the alpha value applied

19.4.3.3. EB GUIDE Script functions I - R

19.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 19.58. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

19.4.3.3.2. int2string

The function converts a simple integer to string.

Table 19.59. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

19.4.3.3.3. isDynamicStateMachineActive

The function checks if the state with the dynamic state machine list is active.

EB GUIDE TF
Chapter 19. References

Page 155 of 269

Table 19.60. Parameters of isDynamicStateMachineActive

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

19.4.3.3.4. isWidgetOnActiveStatemachine

The function checks if the widget belongs to an active state machine.

Table 19.61. Parameters of isWidgetOnActiveStatemachine

Parameter Type Description

widget widget The widget to be evaluated

<return> boolean True if the widget belongs to an active state machine

19.4.3.3.5. language

The function switches the language of all datapool items. This operation is performed asynchronously.

Table 19.62. Parameters of language

Parameter Type Description

language languageType The language to switch to, for example
f:language(l:German)

<return> void

19.4.3.3.6. lerp

The function calculates the linear interpolation of two values x and y using the formula (1-s) * x + s * y

Table 19.63. Parameters of lerp

Parameter Type Description

x float The first value

y float The second value

s float A value that linearly interpolates between the x and y values

<return> float Returns the linear interpolation (1-s) * x + s * y

EB GUIDE TF
Chapter 19. References

Page 156 of 269

19.4.3.3.7. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 19.64. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

19.4.3.3.8. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 19.65. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

19.4.3.3.9. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 19.66. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

19.4.3.3.10. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 19.67. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

EB GUIDE TF
Chapter 19. References

Page 157 of 269

Parameter Type Description

<return> integer The extracted month

19.4.3.3.11. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 19.68. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

19.4.3.3.12. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 19.69. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

19.4.3.3.13. localtime_year

The function extracts the year from the local time of a system time value.

Table 19.70. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

19.4.3.3.14. log10f

The function returns the base 10 logarithm of x.

EB GUIDE TF
Chapter 19. References

Page 158 of 269

Table 19.71. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

19.4.3.3.15. logf

The function returns the natural logarithm of x.

Table 19.72. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

19.4.3.3.16. maxf

The function computes the maximum of two floating-point values.

Table 19.73. Parameters of maxf

Parameter Type Description

x float The first value

y float The second value

<return> float The maximum of x and y

19.4.3.3.17. maxi

The function computes the maximum of two integer values.

Table 19.74. Parameters of maxi

Parameter Type Description

x int The first value

y int The second value

EB GUIDE TF
Chapter 19. References

Page 159 of 269

Parameter Type Description

<return> int The maximum of x and y

19.4.3.3.18. minf

The function computes the minimum of two floating-point values.

Table 19.75. Parameters of minf

Parameter Type Description

x float The first value

y float The second value

<return> float The minimum of x and y

19.4.3.3.19. mini

The function computes the minimum of two integer values.

Table 19.76. Parameters of mini

Parameter Type Description

x int The first value

y int The second value

<return> int The minimum of x and y

19.4.3.3.20. nearbyint

The function rounds to nearest integer.

Table 19.77. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

19.4.3.3.21. popDynamicStateMachine

The function removes the specified dynamic state machine from the priority queue.

EB GUIDE TF
Chapter 19. References

Page 160 of 269

Table 19.78. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm string The dynamic state machine

19.4.3.3.22. powf

The function returns the value of x raised to the power of y.

Table 19.79. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

19.4.3.3.23. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 19.80. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm string The dynamic state machine

priority integer The priority of the dynamic state machine in the list. Note that 0
is handled with a higher priority than 1.

19.4.3.3.24. rad2deg

The function converts an angle form radians to degree.

Table 19.81. Parameters of rad2deg

Parameter Type Description

x float The argument

EB GUIDE TF
Chapter 19. References

Page 161 of 269

Parameter Type Description

<return> float The return value

19.4.3.3.25. rand

The function gets a random value between 0 and 231-1.

Table 19.82. Parameters of rand

Parameter Type Description

<return> integer A random number between 0 and 231-1

19.4.3.3.26. rgba2color

The function converts from RGB color space to EB GUIDE GTF color.

Table 19.83. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to EB GUIDE GTF
color, with the alpha value applied

19.4.3.3.27. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 19.84. Parameters of round

Parameter Type Description

value float The value to round

<return> integer The rounded value

EB GUIDE TF
Chapter 19. References

Page 162 of 269

19.4.3.4. EB GUIDE Script functions S - W

19.4.3.4.1. saturate

The function clamps a floating-point value to [0, 1] range, i.e. the function computes max (0, min (1, x))
and acts as a shorthand notation for clampf(0, 1, x)

Table 19.85. Parameters of saturate

Parameter Type Description

x float The value to clamp

<return> float The x value clamped to the [0, 1] range

19.4.3.4.2. seed_rand

The function sets the seed of the random number generator.

Table 19.86. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

19.4.3.4.3. shutdown

The function requests the framework to shutdown the program.

19.4.3.4.4. sinf

The function returns the sine of x, where x is given in radians.

Table 19.87. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

EB GUIDE TF
Chapter 19. References

Page 163 of 269

19.4.3.4.5. skin

The function switches the skin of all datapool items. This operation is performed asynchronously.

Table 19.88. Parameters of skin

Parameter Type Description

skin skinType The skin to switch to, for example f:skin(s:Standard)

<return> void

19.4.3.4.6. smoothstep

The function computes the smooth hermite interpolation 3z² - 2z³ with z = (x – xmin) / (xmax –
xmin) in case it is in range [xmin, xmax] and 0 otherwise. The function returns a value in the interval [0,1].

Table 19.89. Parameters of smoothstep

Parameter Type Description

xmin float The xmin value

xmax float The xmax value

x float The value to be interpolated

<return> float Returns the hermite interpolation 3z² - 2z³ with z = (x-
xmin) / (xmax-xmin)

19.4.3.4.7. sqrtf

The function returns the non-negative square root of x.

Table 19.90. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

19.4.3.4.8. string2float

The function converts the initial part of a string to float.

EB GUIDE TF
Chapter 19. References

Page 164 of 269

The expected form of the initial part of the string is as follows:

1. Optional leading white space

2. Optional plus ('+') or minus ('-') sign

3. One of the following:

► Decimal number

► Hexadecimal number

► Infinity

► NAN (not-a-number)

Table 19.91. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

19.4.3.4.9. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 19.92. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

19.4.3.4.10. string2string

The function is used to truncate a string to a given number of characters.

Table 19.93. Parameters of string2string

Parameter Type Description

str string The string to truncate

len integer The maximum length of the string

<return> string The truncated string

EB GUIDE TF
Chapter 19. References

Page 165 of 269

19.4.3.4.11. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns abc.

► substring("abc", 0, -2) returns ab.

► substring ("abcd", 1, 3) returns bc.

Table 19.94. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

endIndex integer The first character index that is not part of the result

<return> string The language string

19.4.3.4.12. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 19.95. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

19.4.3.4.13. system_time_ms

The function gets the current system time in milliseconds.

Table 19.96. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

19.4.3.4.14. tanf

The function returns the tangent of x, where x is given in radians.

EB GUIDE TF
Chapter 19. References

Page 166 of 269

Table 19.97. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

19.4.3.4.15. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 19.98. Parameters of trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

19.4.3.4.16. trace_string

The function writes a string to the trace log and the connection log.

Table 19.99. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

19.4.3.4.17. transformToScreenX

The function takes a widget and a local coordinate and returns x-position in the screen-relative world coordinate
system.

Table 19.100. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

EB GUIDE TF
Chapter 19. References

Page 167 of 269

Parameter Type Description

<return> integer The x-position of the screen coordinate

19.4.3.4.18. transformToScreenY

The function takes a widget and a local coordinate and returns y-position of a position in the screen-relative
world coordinate system.

Table 19.101. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The y-position of the screen coordinate

19.4.3.4.19. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x-position
in the widget-relative local coordinate system.

Table 19.102. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The x-position of the local coordinate

19.4.3.4.20. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y-position
in the widget-relative local coordinate system.

Table 19.103. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

EB GUIDE TF
Chapter 19. References

Page 168 of 269

Parameter Type Description

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The y-position of the local coordinate

19.4.3.4.21. trunc

The function rounds to the nearest integer value, always towards zero.

Table 19.104. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

19.4.3.4.22. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 19.105. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

<return> integer The number of child widgets

19.5. Events
Table 19.106. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

EB GUIDE TF
Chapter 19. References

Page 169 of 269

19.5.1. Decimal codes for key events
Table 19.107. Decimal codes of numpad keys

Numpad key Decimal code

0 5

1 6

2 7

3 8

4 9

5 10

6 11

7 12

8 13

9 14

Table 19.108. Decimal codes of function keys

Function key Decimal code

F1 18

F2 19

F3 20

F4 21

F5 22

F6 23

F7 24

F8 25

F9 26

F10 27

F11 28

F12 29

Table 19.109. Decimal codes of ASCII keys

ASCII key Decimal code

Space 32

a 97

b 98

EB GUIDE TF
Chapter 19. References

Page 170 of 269

ASCII key Decimal code

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

p 112

q 113

r 114

s 115

t 116

u 117

v 118

w 119

x 120

y 121

z 122

19.6. model.json configuration file
The model.json is an EB GUIDE TF configuration file that contains configuration items which are relevant
for a single EB GUIDE model.

The model.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

EB GUIDE TF
Chapter 19. References

Page 171 of 269

NOTE JSON object notation
If you configure model.json in EB GUIDE Studio, use the JSON object notation.

For an example, see section 19.6.1, “Example model.json in EB GUIDE Studio”.

For more information about the JSON format, see http://www.json.org.

Table 19.110. Common

Configuration item Type Description Default value

gtf.eventsystem.maxQueue integer Maximum size of the
event queues

0

gtf.model.traces boolean Enables the tracing of
the f:trace_string
script function

true

gtf.model.identifier string Unique identifier of
the EB GUIDE mod-
el (equal to the EB
GUIDE Studio project
UUID)

empty

gtf.model.identifier.short integer Short identifier of the
EB GUIDE model

0xdeadbeaf

gtf.model.initialLanguage.id string Unique identifier of the
language that is ac-
tivated after the EB
GUIDE model start-
up (equal to UUID
of the language in
the EB GUIDE Stu-
dio project). Find the
UUID identifiers of the
languages as part of
the EB GUIDE Stu-
dio project export
in include\ex-
port\aspects\lan-

guages.h.

undefined

gtf.model.initialLanguage.force boolean If true, the value of
gtf.model.ini-

tialLanguage.id

is preferred over the
active language of the

false

http://www.json.org

EB GUIDE TF
Chapter 19. References

Page 172 of 269

Configuration item Type Description Default value

already running EB
GUIDE model. Other-
wise, the active lan-
guage of the already
running EB GUIDE
model has the higher
priority.

gtf.model.initialSkin.id string Unique identifier of the
skin that is activated
after the EB GUIDE
model start-up (equal
to UUID of the skin in
the EB GUIDE Stu-
dio project). Find the
UUID identifiers of
the skins as part of
the EB GUIDE Studio
project export in in-
clude\export\as-

pects\skins.h.

undefined

gtf.model.initialSkin.force boolean If true, the value of
gtf.model.ini-

tialSkin.id is pre-
ferred over the active
skin of the already run-
ning EB GUIDE model.
Otherwise, the active
skin of the already run-
ning EB GUIDE model
has the higher priority.

false

Table 19.111. Files and paths

Configuration item Type Description Default value

gtf.model.path string Path to the EB GUIDE
model

None

gtf.model.config string Full path to the EB
GUIDE model configu-
ration

<gtf.model.path>/

model.json

gtf.datapool.descriptionFile string Name of the datapool
description file

datapool.gtf

EB GUIDE TF
Chapter 19. References

Page 173 of 269

Configuration item Type Description Default value

gtf.model.files.sm string Name of the state ma-
chine description file

model.bin

gtf.model.files.rm string Name of the resources
description file

resources.bin

gtf.model.files.views string Name of the view de-
scription file

views.bin

gtf.model.files.types string Name of the type de-
scription file

types.bin

gtf.model.pluginstoload string list Names of EB GUIDE
model plugins to load

empty string list

gtf.eventsystem.mapFile string Name of the event
system mapping file

eventMap.gtf

The option gtf.model.coreNames is a string list that contains the names of all configured cores. The fol-
lowing table contains configuration items for every core.

Table 19.112. Cores

Configuration item Type Description Default value

gtf.model.cores.<corename>.own-

Thread

boolean Specifies if the core
uses an own thread to
run

false

gtf.model.cores.<corename>.id integer Specifies the core con-
text identifier

0

The option gtf.model.sceneNames is a string list that contains the names of all configured scenes. For
every scene, the configuration items in the following table are found.

Table 19.113. Scenes

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.visi-

ble

boolean Determines the visibili-
ty of the scene

true

gtf.model.scenes.<scenename>.width integer Width of the scene 800

gtf.model.scenes.<scenename>.-

height

integer Height of the scene 480

gtf.model.scenes.<scenename>.x integer Coordinates of the
scene's starting point

0

gtf.model.scenes.<scenename>.y integer Coordinates of the
scene's starting point

0

EB GUIDE TF
Chapter 19. References

Page 174 of 269

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.pro-

jectName

string Name of the working
project

gtf.model.scenes.<scenename>.win-

dowCaption

string Displayed window
name text

gtf.model.scenes.<scenename>.-

sceneId

integer Identifier for the scene 0

gtf.model.scenes.<scenename>.maxF-

PS

integer The redraw rate (FPS
= Frames per second).
Set to 0 for an unlimit-
ed redraw rate.

60

gtf.model.scenes.<scenename>.-

hwLayerId

integer Specifies the core con-
text identifier

0

gtf.model.scenes.<scenename>.col-

orMode

integer Specifies the color
mode:

► 1: 32-bit (RG-
BA8888)

► 2: 16-bit
(RGB565)

► 3: 24-bit
(RGB888)

► 4: 32-bit sRGB

► 5: 32-bit sRGB
(Emulated)

1

gtf.model.scenes.<scenename>.mul-

tisampling

integer Specifies the multi-
sampling of the scene

► 0: no multisam-
pling

► 1: 2x multisam-
pling

► 2: 4x multisam-
pling

0

gtf.model.scenes.<scenename>.en-

ableRemoteFramebuffer

boolean If true, the transfer of
the off-screen buffer to
the simulation window
is enabled

false

EB GUIDE TF
Chapter 19. References

Page 175 of 269

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.-

showWindowFrame

boolean Determines if the ren-
derer window frame
should be displayed

true

gtf.model.scenes.<scenename>.-

showWindow

boolean If true, an additional
window for simulation
is opened on Windows
based systems

true

gtf.model.scenes.<scenename>.dis-

ableVsync

boolean If true, the vertical
synchronization for the
renderer is disabled.

false

gtf.model.scenes.<scenename>.-

showFPS

integer Possible values:

► 0: Do not show
FPS

► 1: Show FPS on
the screen

► 2: Show FPS on
the console

► 3: Show FPS on
the screen and on
the console

► 4: Show FPS on
the console in an
enlarged text

► 5: Show FPS on
the screen and on
the console in an
enlarged text

0

gtf.model.scenes.<scenename>.ren-

derer

string Name of the ren-
derer to use:
OpenGLRenderer or
OpenGL3Renderer

Table 19.114. Rendering common

Configuration item Type Description Default value

gtf.model.fontCache.width integer Width of the font cache
atlas texture

512

EB GUIDE TF
Chapter 19. References

Page 176 of 269

Configuration item Type Description Default value

gtf.model.fontCache.height integer Height of the font
cache atlas texture

512

gtf.model.fontCache.age integer Maximum allowed
age before the refresh
operation of the font
cache has to be done

100

gtf.model.traversalStackSize integer The renderers traver-
sal stack size in bytes

32768

The configuration items in the following table belong together. This means that the renderer expects that the
same number of items is in all three lists. The entry with an index in one list belongs to the entries with the
same index in other lists.

Table 19.115. Renderer display extensions

Configuration item Type Description Default value

gtf.model.displayId integer list Identifiers of the
scenes

gtf.model.maxCacheSize integer list Maximum texture
caches for the scenes

gtf.model.driverName string list OS specific driver
names for the scenes,
e.g. /dev/fb0

The configuration items in the following table are used to configure the TextEngine component. TextEngine
is based on the FreeType third-party library. The following parameters are passed to the FreeType imple-
mentation. For more information about FreeType, see https://www.freetype.org/freetype2/docs/reference/ft2-
cache_subsystem.html.

Due to the way EB GUIDE TF handles font sizes, ft_size objects are not cached separately from ft_face
objects. Consider that the values for max_sizes can be limited by the hardware of your target platform.

Table 19.116. TextEngine configuration items

Configuration item Type Description Default value

gtf.model.textengine.replacementG-

lyph

integer Unicode character
that should be used
in case the dedicated
font character is not
found in the current
font

0xfffd

gtf.model.textengine.maxFaces integer Maximum number of
cached font faces

0

https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html
https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html

EB GUIDE TF
Chapter 19. References

Page 177 of 269

Configuration item Type Description Default value

gtf.model.textengine.maxSizes integer Maximum number of
cached font sizes

0

gtf.model.textengine.maxBytes integer Maximum number
of memory in bytes
that can be used for
caches

0

gtf.model.textengine.fontCa-

cheThreshold

integer Preferred number of
cached fonts

2

gtf.model.textengine.enablePlain-

FileStream

boolean Determines the font
access configuration.
If true, the plain file
I/O access is used.
If false, the ROM-
mapped file access is
used.

false

NOTE Configuration items for bitmap fonts
For .fnt bitmap fonts you can use only the replacementGlyph configuration item. You
cannot use other configuration items in table 19.116, “TextEngine configuration items” for
bitmap fonts.

NOTE ROM-mapped file approach vs. plain file I/O approach
The ROM-mapped file approach in general provides higher performance. But on some sys-
tems, for example QNX, it consumes more memory than the plain file I/O approach. Plain
file I/O approach in general consumes less memory than the ROM-mapped file approach.
But it can lead to lower performance.

The option gtf.model.touchDevicesNames is a string list containing the names of all configured touch
devices. For every touch device the configuration items listed in the following table are available.

Table 19.117. Touch devices

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.-

touchscreenType

integer Defines the touch de-
vice type:

► 0: Galaxy

► 1: imx WVGA

► 2: Mouse

► 3: General

3

EB GUIDE TF
Chapter 19. References

Page 178 of 269

Configuration item Type Description Default value

► 4: Lil-
liput_889GL

► 5: GeneralMul-
titouch

► 6: Lilliput
with automat-

ic calibra-

tion

► 7: Generic-
TouchConfigu-

ration

gtf.mod-

el.touchDevices.<deviceName>.dis-

playManagerId

integer Specifies the scene ID
for which the device is
valid

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchId

integer Specifies the ID of the
device

0

gtf.mod-

el.touchDevices.<deviceName>.min-

imalDistanceToMove

integer Threshold for react-
ing on touch position
changes

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchMoveRepeatTimeout

integer Delay between touch
position change notifi-
cations

0

gtf.mod-

el.touchDevices.<deviceName>.width

integer Width of the touchable
device area

0

gtf.mod-

el.touchDevices.<deviceName>.-

height

integer Height of the touch-
able device area

0

gtf.mod-

el.touchDevices.<deviceName>.x_-

high

integer Maximum horizontal
resolution extend of
the touchable device
area

0

gtf.mod-

el.touchDevices.<deviceName>.y_-

high

integer Maximum vertical res-
olution extend of the
touchable device area

0

EB GUIDE TF
Chapter 19. References

Page 179 of 269

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.x_low

integer Minimal horizontal res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.y_low

integer Minimal vertical res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.devi-

cePath

string Name of the driver
used for touch, e.g. /
dev/input0

The configuration items in the following table are used to configure the binary shader cache in the renderer..

Table 19.118. Shaders

Configuration item Type Description Default value

gtf.model.binShadersLocation string Name of the folder un-
der the GTF binaries
directory in which the
binary shaders should
be located. Can also
be an absolute path.

gtf.model.readBinShaders boolean Determines if binary
shaders written at a
previous run should be
read from disk.

false

gtf.model.writeBinShaders boolean Determines if bina-
ry shaders should be
written to disk to be
reused at a later run.

false

19.6.1. Example model.json in EB GUIDE Studio

Example 19.1.
model.json in EB GUIDE Studio

{

 "gtf": {

 "model": {

 "coreNames": [

 "HMI"

EB GUIDE TF
Chapter 19. References

Page 180 of 269

],

 "cores": {

 "HMI": {

 "id": 0,

 "ownThread": false

 }

 },

 "sceneNames": [

 "Main"

],

 "scenes": {

 "Main": {

 "name": "Main",

 "visible": true,

 "width": 800,

 "height": 480,

 "x": 0,

 "y": 0,

 "projectName": "project",

 "windowCaption": "EB GUIDE 6 model",

 "sceneId": 0,

 "maxFPS": 60,

 "hwLayerId": 0,

 "colorMode": 1,

 "multisampling": 0,

 "enableRemoteFramebuffer": false,

 "showWindowFrame": true,

 "showWindow": true,

 "disableVSync": false,

 "showFPS": 0,

 "renderer": "OpenGL3Renderer",

 "context": 0

 }

 },

 "identifier": "29691ce7-cb4c-4337-8852-93c90c62e624",

 "pluginstoload": [

 "GtfGui",

 "GtfGuiOpenGLES3"

]

 }

 }

}

EB GUIDE TF
Chapter 19. References

Page 181 of 269

19.7. OpenGL ES extensions
OpenGL and OpenGL3 renderers use several OpenGL ES extensions that are listed below.

In case that the extensions are not available, there are limitations in rendering.

NOTE Multiple extensions in table below
Multiple extensions listed with OR: The limitations apply if one of the listed extensions is
not available.

Multiple extensions listed with AND: The limitations apply if all of the listed extensions are
not available.

Table 19.119. OpenGL extensions

OpenGL extension Limitation if not available on the
OpenGL renderer

Limitation if not available on the
OpenGL3 renderer

GL_OES_get_program_binary Binary shaders cache not support-
ed

None

GL_EXT_texture_compres-

sion_s3tc

AND

GL_EXT_texture_compres-

sion_dxt1

DXT1 texture compression not
supported

DXT1 texture compression not
supported

GL_EXT_texture_compres-

sion_s3tc

DXT3 and DXT5 texture compres-
sion not supported

DXT3 and DXT5 texture compres-
sion not supported

GL_IMG_texture_compres-

sion_pvrtc

PVRTC texture compression not
supported

PVRTC texture compression not
supported

GL_IMG_texture_compres-

sion_pvrtc2

PVRTC2 texture compression not
supported

PVRTC2 texture compression not
supported

GL_KHR_texture_compres-

sion_astc_ldr

ASTC texture compression not
supported

ASTC texture compression not
supported

GL_OES_depth32

AND

GL_OES_depth24

► Scene graphs rendered with
less depth precision

► Number of widgets limited to
65534 instead of 16 millions

► At the EB GUIDE SDK inter-
face framebuffers cannot be

None

EB GUIDE TF
Chapter 19. References

Page 182 of 269

OpenGL extension Limitation if not available on the
OpenGL renderer

Limitation if not available on the
OpenGL3 renderer

created with more than 16-bit
depth precision

GL_EXT_shader_texture_lod

OR

GL_EXT_texture_rg

OR

GL_OES_texture_float

OR

GL_OES_texture_half_float

Image-based lighting not support-
ed

None

GL_EXT_multisampled_ren-

der_to_texture

AND

GL_IMG_multisampled_ren-

der_to_texture

AND

(GL_NV_framebuffer_blit OR
GL_NV_framebuffer_multi-

sample)

AND

(GL_ANGLE_framebuffer_blit
OR GL_ANGLE_frame-
buffer_multisample)

Multisampling not supported for
scene graphs and EB GUIDE SDK
offscreen framebuffers

None

GL_OES_texture_float Tone mapping for scene graphs
not supported

None

GL_EXT_texture_bor-

der_clamp

AND

GL_OES_texture_bor-

der_clamp

Visual glitches in area outside of
alpha mask widget possible

Visual glitches at area outside of
alpha mask widget possible

EB GUIDE TF
Chapter 19. References

Page 183 of 269

OpenGL extension Limitation if not available on the
OpenGL renderer

Limitation if not available on the
OpenGL3 renderer

AND

GL_NV_texture_border_clamp

GL_OES_element_index_uint No functional limitation, but de-
creased performance possible

None

GL_OES_packed_depth_sten-

cil

No functional limitation, but de-
creased performance possible

None

GL_OES_vertex_half_float No functional limitation, but de-
creased performance and in-
creased graphics memory con-
sumption possible

None

GL_OES_vertex_type_10_10_-

10_2

No functional limitation, but de-
creased performance and in-
creased graphics memory con-
sumption possible

None

GL_EXT_sRGB No functional limitation, but de-
creased performance possible for
scene graphs in sRGB color mode
or for sRGB textures

None

19.8. platform.json configuration file
The platform.json is an EB GUIDE TF configuration file which contains common and platform dependent
items.

The platform.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

EB GUIDE TF
Chapter 19. References

Page 184 of 269

NOTE JSON object notation
If you configure platform.json within EB GUIDE Studio, use the JSON object notation.

For an example, see section 19.8.1, “Example platform.json in EB GUIDE Studio”.

For more information about the JSON format, see http://www.json.org.

Table 19.120. Platform configuration

Configuration item Type Description Default value

gtf.servicemapper.port integer Connection port for
the services (e.g. EB
GUIDE Monitor)

60000

gtf.core.pluginstoload string list List of core plugins
that should be loaded
(relative to binary fold-
er or absolute path)

None

gtf.launcher.editmode boolean Defines if EB GUIDE
TF is running in EB
GUIDE Studio. This is
a read-only item.

false

gtf.platform.config string Full path to the plat-
form.json file. This
is a read-only item.

<model_fold-

er>/platform.json

gtf.framework.path string Path to the GtfS-
tartup executable.
This is a read-only
item.

<binary_folder>

gtf.diagnostic.memory.interval integer Specifies the time in-
terval for the memory
diagnostic. If value is 0
the diagnostic is deac-
tivated.

0

gtf.ipc.role string The role of the IPC
node. Possible val-
ues are server or
client

server

gtf.ipc.discovery.network string The IPv4 network ad-
dress which will be
used for the serv-
er-client discovery

255.255.255.255

http://www.json.org

EB GUIDE TF
Chapter 19. References

Page 185 of 269

Configuration item Type Description Default value

mechanism. In case of
direct connection, this
represents the servers'
network address.

gtf.ipc.discovery.port integer The network port
which will be used for
the server-client dis-
covery mechanism.
In case of direct con-
nection, this has to
be equal to the item
gtf.servicemap-

per.port from the
server configuration.

4711

gtf.ipc.datapool.config string The configuration
file containing the
datapool items that
should be part of IPC
communication

ipc_datapool.gtf

gtf.ipc.discovery.mode string The discovery mode
used for connecting
the server and the
clients. Possible op-
tions are: "broad-
cast", "multicast"
and "direct".

broadcast

gtf.ipc.client.timeout integer Retry period of the
client connection to the
server, expressed in
milliseconds.

5000

gtf.osal.threading.pool.thread-

Count

integer The number of threads
created and used by
threadpool. The valid
range is between 1
and 32. All other val-
ues will be clamped.

1

gtf.resourcesytem.residentformats string list The resource system
formats that once at-
tached to a resource

For the default val-
ue, see "resident-
formats" in sec-

EB GUIDE TF
Chapter 19. References

Page 186 of 269

Configuration item Type Description Default value

cannot be removed
from it. You can only
replace the previous
resident format by at-
taching a new resident
format to this resource.

tion 19.8.1, “Example
platform.json in
EB GUIDE Studio”.

gtf.resourcesytem.defaultdecoding object list Pairs of input and out-
put formats used by
the resource system
to decode in advance,
before the actual de-
code request.

For the default val-
ue, see "default-
decoding" in sec-
tion 19.8.1, “Example
platform.json in
EB GUIDE Studio” .

gtf.resourcesystem.cache.softlimit integer Specifies the limit in
MB of the resource
system cache. If the
limit is exceeded, the
cleanup action will be
enqueued.

-1

gtf.resourcesystem.cache.hardlimit integer Specifies the limit in
MB of the resource
system cache. If the
limit is exceeded, the
cleanup action will be
performed. Unlike the
softlimit case, the
cleanup action will be
performed immediate-
ly.

-1

19.8.1. Example platform.json in EB GUIDE Studio

Example 19.2.
platform.json in EB GUIDE Studio

{

 "gtf": {

 "core": {

 "pluginstoload": [

 "GtfService",

EB GUIDE TF
Chapter 19. References

Page 187 of 269

 "GtfRuntime"

]

 },

 "servicemapper": {

 "port": 60000

 },

 "resourcesystem": {

 "defaultdecoding": [

 {

 "inputformat": "gtf::decoder::ImagePath",

 "outputformat": "gtf::decoder::EncodedMemImage"

 },

 {

 "inputformat": "gtf::decoder::MeshPath",

 "outputformat": "gtf::decoder::EncodedMeshData"

 },

 {

 "inputformat": "gtf::decoder::IBLPath",

 "outputformat": "gtf::decoder::EncodedIBLData"

 },

 {

 "inputformat": "gtf::decoder::EncodedMemImage",

 "outputformat": "gtf::decoder::MemImage"

 },

 {

 "inputformat": "gtf::decoder::DescriptorResource::font",

 "outputformat": "gtf::decoder::FontData"

 },

 {

 "inputformat": "gtf::decoder::DescriptorResource::image",

 "outputformat": "gtf::decoder::ImagePath"

 },

 {

 "inputformat": "gtf::decoder::DescriptorResource::ibl",

 "outputformat": "gtf::decoder::IBLPath"

 },

 {

 "inputformat": "gtf::decoder::DescriptorResource::mesh",

 "outputformat": "gtf::decoder::MeshPath"

 },

 {

 "inputformat": "gtf::decoder::MemImage",

 "outputformat": "gtf::scdr::decoder::NinePatchImage"

 },

 {

 "inputformat": "gtf::scdr::decoder::NinePatchImage",

 "outputformat": "gtf::scdr::decoder::DefaultMemImage"

EB GUIDE TF
Chapter 19. References

Page 188 of 269

 }

],

 "residentformats": [

 "gtf::decoder::FontData",

 "gtf::decoder::IBLPath",

 "gtf::decoder::ImagePath",

 "gtf::decoder::MeshPath"

]

 }

 }

}

19.9. Scenes
Table 19.121. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x-offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y-offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 32-bit (=1): RGBA8888

► 16-bit (=2): RGB565

EB GUIDE TF
Chapter 19. References

Page 189 of 269

Property name Description

► 24-bit (=3): RGB888

► 32-bit sRGB (=4):

This value uses GPU hardware support.

Use this value, if you want to have sRGB support for an image wid-
get or for the Diffuse texture widget feature.

► 32-bit sRGB (Emulated) (=5):

Use this value only if 32-bit sRGB does not yield correct results.

multisampling Possible values:

► Off (= 0): no multisampling

► 2x (=1): 2x multisampling

► 4x (=2): 4x multisampling

Also see “Settings for multisampling”.

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► Off (=0): Do not show FPS

► On screen (=1): Show FPS on the screen

► Console (=2): Show FPS on the console

► Console & on screen (=3): Show FPS on the screen and on
the console

► On screen (large text) (=4)

► Console & on screen (large text) (=5)

Renderer Defines a renderer for the scene.

Possible values:

► OpenGLRenderer

EB GUIDE TF
Chapter 19. References

Page 190 of 269

Property name Description

► OpenGL3Renderer

TIP Settings for multisampling
The higher the resolution for multisampling is the better the quality of the rendering result.
However, be aware that multisampling decreases the rendering performance, especially on
a target device. At small displays with high resolution the multisampling has almost no effect.

Start with no multisampling and, if the performance is good, try the settings 2x or 4x multi-
sampling. If there is no big difference with higher multisampling, use a lower setting.

TIP Settings for multisampling are hardware-dependent
If the required multisampling settings are not possible from hardware side, information about
it is available in the logfile.

NOTE Using sceneID in the scene configuration
When using the same sceneID in the scene configuration, multiple state machines react
to input handling at the same time.

To avoid that and to achieve that only one state machine reacts to input handling, assign
different sceneID values to each state machine in the scene configuration.

19.10. Touch screen types supported by EB GUIDE
GTF
The supported types depend on the target device.

Table 19.122. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

EB GUIDE TF
Chapter 19. References

Page 191 of 269

Value Description Platform

5 General platform-dependent multitouch
touch-screen interface

Linux

19.11. tracing.json configuration file
The tracing.json is an EB GUIDE TF configuration file which contains Tracing dependent items.

The tracing.json file is not part of the exported EB GUIDE model or of the standard delivery. Therefore,
you need to create the tracing.json file on your PC.

NOTE JSON object notation
For an example, see section 19.11.2, “Example tracing.json”.

For more information about the JSON format, see http://www.json.org.

In the following table you find all default configuration parameters.

Table 19.123. Tracing configuration items

Item Type Description Default value

gtf.tracing.Plugins string list Tracing output plugins Empty list, integrated
output plugins are used
such as StdErr/St-
dErr/StdOut for all plat-
forms besides Android
and LogCat for Android.

gtf.tracing.Chan-

nelSeverities

string list Custom severities set for
specified channels

gtf.tracing.De-

faultSeverity

string Default tracing severity

For more information on
the severity levels, see
section 19.11.1, “Severity
levels”.

Notice

gtf.tracing.out-

put.path

boolean The location to which the
tracing output file log.-
txt is exported

The same directory where
tracing.json is stored

gtf.tracing.out-

put.enabled

boolean Enables exporting tracing
output files

true

http://www.json.org

EB GUIDE TF
Chapter 19. References

Page 192 of 269

Item Type Description Default value

gtf.tracing.con-

fig.path

string Path to the trac-
ing.json file

gtf.tracing.gtf-

fileoutput.severity

string Severity for the Gtf-
FileOutput plugin

gtf.tracing.gt-

fkerneleventout-

put.severity

string Severity for the GtfKer-
nelEventOutput plugin

gtf.tracing.gtfvs-

debugoutput.severi-

ty

string Severity for the GtfVs-
DebugOutput plugin

gtf.tracing.stdout-

put.severity

string Severity for StdErrOut-
put

gtf.tracing.log-

catoutput.severity

string Severity for LogCatOut-
put

gtf.tracing.out-

put.printChannel-

name

boolean Enables printing the
channel name inside the
trace message. output
from the configuration
item name should be re-
placed with the tracing
output name, e.g. gtf-
fileoutput, gtfker-
neleventoutput, std-
output, gtfvsdebu-
goutput.

true

gtf.tracing.out-

put.printTimestamp

boolean Enables printing the
time stamp inside the
trace message. output
from the configuration
item name should be re-
placed with the tracing
output name, e.g. gtf-
fileoutput, gtfker-
neleventoutput, std-
output, gtfvsdebu-
goutput.

true

gtf.tracing.out-

put.printSeverity

boolean Enables printing the
severity inside the trace

true

EB GUIDE TF
Chapter 19. References

Page 193 of 269

Item Type Description Default value

message. output from
the configuration item
name should be re-
placed with the tracing
output name, e.g. gtf-
fileoutput, gtfker-
neleventoutput, std-
output, gtfvsdebu-
goutput.

gtf.tracing.Period-

icOutputFlush

integer Value in milliseconds for
periodic output flush.

Value 0 means that flush
is enforced after each
trace. A value lower than
0 means that no flush is
enforced at all.

-1

19.11.1. Severity levels

The following table lists the trace severity levels that you can use.

Table 19.124. Severity levels

Severity level Description

None The level indicates that the traces are disabled and are not created at all.

Fatal The level indicates severe errors that may lead to the application abort.

Error The level indicates the error events that might still allow the application to
continue running.

Warning The level indicates potentially harmful situations, or that some interfaces are
not used as expected.

Notice The level indicates information messages that describe the progress of an
application at a high level.

Info The level indicates information messages that roughly describe the progress
of an application.

Debug The level indicates information messages that describe the progress of an
application in detail. This level is useful for debugging an application.

EB GUIDE TF
Chapter 19. References

Page 194 of 269

NOTE Included levels
The levels that are listed in table 19.124, “Severity levels” automatically include information
from the levels above, except for the None level. This means that if you use the Error
severity level, the Fatal severities are also contained. And if you select the Debug severity
level, all above mentioned severities, except for None, will be included.

19.11.2. Example tracing.json

Example 19.3.
tracing.json

{

 "gtf":

 {

 "tracing":

 {

 "Plugins": ["GtfFileoutput"],

 "ChannelSeverities":

 ["GTF_Launcher", "Warning",

 "GTF_PluginLoader", "Notice"],

 "DefaultSeverity": "Info"

 }

 }

}

For another example on using traces, see the EB GUIDE SDK examples. Download the EB_GUIDE_Ex-
amples.zip archive with all EB GUIDE SDK examples from https://www.elektrobit.com/ebguide/learn/re-
sources/. For instructions on how to work with the EB GUIDE SDK examples, see the EB GUIDE Studio
Howto Using examples in EB GUIDE Studio.pdf file enclosed in the .zip archive.

19.12. Widgets

19.12.1. View
Table 19.125. Properties of a view

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 19. References

Page 195 of 269

Property name Description

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget

y The y-coordinate of the widget

View states and view templates have additional properties for view transition animations. View transition an-
imations apply for entry animations, exit animations, change animations, pop up on animations and pop up
off animations.

Table 19.126. Properties of a view transition animation

Property name Description

enabled Defines whether the animation is executed.

repeat The number of repetitions, 0 for infinite number.

alternating If true, the animation is executed repeatedly back and forth, i.e. bidirectional.

If false, the animation is executed repeatedly only in one direction, i.e. unidirec-
tional.

The number of repetitions is defined in the repeat property.

scale The factor by which the animation time is multiplied.

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards).

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_cancel_
end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

19.12.2. Basic widgets

EB GUIDE TF
Chapter 19. References

Page 196 of 269

There are eight basic widgets.

► Alpha mask

► Animation

► Container

► Ellipse

► Image

► Instantiator

► Label

► Rectangle

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

19.12.2.1. Alpha mask

An alpha mask is a container widget that controls the alpha channel, i.e. the opacity, of its child widgets with
an image.

Table 19.127. Properties of the alpha mask

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

enabled If true, the alpha mask is applied to the child widgets

image The image that controls the alpha channel, i.e. the opacity of the child widgets

EB GUIDE TF
Chapter 19. References

Page 197 of 269

Property name Description

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

scaleMode The scale mode of the image. Possible values:

► original size (0)

► fit to size (1)

► keep aspect ratio (2)

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. The renderers
for OpenGL ES 2.0 or higher support .png files and .jpg files. RGB images are converted
to grayscale images before being used as alpha masks. Grayscale images are used as is.
The alpha channel in the image is ignored.

Alpha mask functionality is not applied to 9-patch images. 9-patch images are handled the
same way the PNG and JPEG file formats are.

19.12.2.2. Animation

An animation defines the movement of a widget along a view. To define the appearance of an animation, add
curves in the Animation editor.

Table 19.128. Properties of the animation

Property name Description

enabled Defines if the animation is executed

repeat The number of repetitions, 0 for infinite number

alternating If true, the animation is executed repeatedly back and forth / bidirectional.

If false, the animation is executed repeatedly only in one direction / unidirection-
al.

The number of repetitions is defined in the repeat property.

scale The factor by which the animation time is multiplied

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards)

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

EB GUIDE TF
Chapter 19. References

Page 198 of 269

Property name Description

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

19.12.2.2.1. Constant curve

A constant curve sets a target value after a defined delay. Constant curves are available for integer, boolean,
float, and color types.

Table 19.129. Properties of the constant curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

value The resulting constant value

target The target property the resulting value is assigned to

19.12.2.2.2. Fast start curve

A fast start curve periodically sets a value that increases fast in the beginning but loses speed constantly until
the end. Fast start curves are available for integer, float, and color types.

Table 19.130. Properties of the fast start curve

Property name Description

enabled Defines if the animation is executed

EB GUIDE TF
Chapter 19. References

Page 199 of 269

Property name Description

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

start The initial value

end The final value

target The target property the resulting value is assigned to

19.12.2.2.3. Slow start curve

A slow start curve periodically sets a value that increases slowly in the beginning but rises constantly until the
end. Slow start curves are available for integer, float, and color types.

Table 19.131. Properties of the slow start curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

start The initial value

end The final value

target The target property the resulting value is assigned to

19.12.2.2.4. Quadratic curve

A quadratic curve periodically sets a value using a quadratic function curve. Quadratic curves are available
for integer, float, and color types.

Table 19.132. Properties of the quadratic curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

EB GUIDE TF
Chapter 19. References

Page 200 of 269

Property name Description

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

acceleration The acceleration of the curve

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

19.12.2.2.5. Sinus curve

A sinus curve periodically sets a value using a sinus function curve. Sinus curves are available for integer,
float, and color types.

Table 19.133. Properties of the sinus curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

frequency The frequency of the curve in hertz

phase The angular phase translation in radians

target The target property the resulting value is assigned to

19.12.2.2.6. Script curve

The script curve is a curve that you can define yourself through EB GUIDE Script. Use the script curve in cases
where you want to have an animation that is not possible with the other curves or that is your own, custom
animation. This curve is especially useful if you want to have a customized trajectory for the movement of a
widget. Script curves are available for integer, boolean, float, and color types.

EB GUIDE TF
Chapter 19. References

Page 201 of 269

Table 19.134. Properties of the script curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines whether update values are applied on the initial value

curve Defines your curve function in EB GUIDE Script. Provides two parameters:

► diff: The time in ms since the last execution. At the start of the animation
diff is 0.

► t_anim: The time in ms since the start of the animation.

target The target property the resulting value is assigned to

19.12.2.2.7. Linear curve

A linear curve periodically sets a value using a linear progression curve. Linear curves are available for integer,
float, and color types.

Table 19.135. Properties of the linear curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

19.12.2.2.8. Linear interpolation curve

A linear interpolation curve widget periodically sets a value using a linear interpolation curve. Linear interpola-
tion curves are available for integer, float, and color types.

EB GUIDE TF
Chapter 19. References

Page 202 of 269

NOTE Linear key value interpolation curve
During import of a 3D graphic file, if the imported 3D scene has animations, linear key value
interpolation integer curve and linear key value interpolation float curve are created. The
underlying key-value pairs of these curves cannot be modified in EB GUIDE Studio.

Table 19.136. Properties of the linear interpolation curve

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

target The target property the resulting value is assigned to

19.12.2.3. Container

A container holds several widgets as child widgets and thus groups the widgets.

Table 19.137. Properties of the container

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

19.12.2.4. Ellipse

An ellipse draws a colored ellipse with the dimensions and coordinates of the widget into a view. The widget
can also be used to draw a sector or an arc.

Table 19.138. Properties of the ellipse

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

EB GUIDE TF
Chapter 19. References

Page 203 of 269

Property name Description

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the ellipse

arcWidth The width of the arc of the ellipse

centralAngle The angle in degrees which defines a sector of the ellipse

sectorRotation The angle in degrees which describes the rotation of the ellipse's sector

19.12.2.5. Image

An image places a picture into a view.

Table 19.139. Properties of the image

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

image The image the widget displays

sRGB If this property is enabled, the image that is selected in image, is rendered using
sRGB color space.

Note that to use sRGB functionality, in the project center under Configure >
Profiles for the colorMode property select 32-bit sRGB (=4) or 32-bit
sRGB (Emulated) (=5).

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. The renderers
for OpenGL ES 2.0 or higher support .png files and .jpg files.

19.12.2.6. Instantiator

EB GUIDE TF
Chapter 19. References

Page 204 of 269

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables
with dynamic or static content. The child widgets of an instantiator serve as line templates for the list or table
which is created during run-time. By default the instantiator only instantiates the first line template.

Table 19.140. Properties of the instantiator

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

numItems The number of instantiated child widgets. If numItems is 0, no child widgets are
created.

lineMapping Defines which child widget is the line template for which line, i.e. defines the or-
der of instantiation

19.12.2.7. Label

A label places text into a view.

Table 19.141. Properties of the label

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

text The text the label displays. If the text does not fit into the widget area it is trun-
cated at the end by default.

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

19.12.2.8. Rectangle

EB GUIDE TF
Chapter 19. References

Page 205 of 269

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 19.142. Properties of the rectangle

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

19.12.3. 3D widgets

19.12.3.1. Ambient light

An ambient light is a light that uniformly illuminates the scene. An ambient light affects the ambient color
property of material, PBR GGX material, and PBR Phong material.

Table 19.143. Properties of the ambient light

Property name Description

enabled If true, the widget is enabled

color The color of the light

intensity The intensity of the light, with the lower limit value 0.0 as no ambient light

19.12.3.2. Camera

A camera defines the view of the scene from a particular point of view. Use several cameras to show the scene
from different points of view.

Table 19.144. Properties of the camera

Property name Description

enabled If true, the widget is enabled

nearPlane The nearest distance from the camera in view direction at which the scene be-
comes visible. The measurement unit is defined when you create a 3D model in
third-party 3D modeling software.

EB GUIDE TF
Chapter 19. References

Page 206 of 269

Property name Description

farPlane The farthest distance from the camera in view direction up to which the scene is
visible. The measurement unit is defined when you create a 3D model in third-
party 3D modeling software.

fieldOfView The camera's vertical viewing angle in degrees, with the maximum value of 180

projectionType Defines the projection type of the camera. The objects are rendered either with
perspective (=0) or orthographic (=1) projection.

If the projection type is orthographic, the viewing volume is calculated by using
the fieldOfView angle.

19.12.3.3. Directional light

A directional light illuminates the scene from one direction.

Table 19.145. Properties of the directional light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no directional light

19.12.3.4. Image-based light

An image-based light is a light that illuminates the scene by lighting information of the real world that was stored
in a .pfm or .hdr file. The .pfm or .hdr files serve as input data for the IBLGenerator to create an .ebibl file.

Table 19.146. Properties of the image-based light

Property name Description

enabled If true, the widget is enabled

ibl The IBL file .ebibl created manually.

intensity The intensity of the light, with 0.0 as no image-based light

19.12.3.5. Material

A material defines the visual appearance of the mesh surface using the Phong reflection model.

EB GUIDE TF
Chapter 19. References

Page 207 of 269

Table 19.147. Properties of the material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If no am-
bient light is added to the parent scene graph, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Diffuse texture widget feature is added, this property has
no effect.

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

shininess The shininess factor

Note that only values between 0.0 and 1.0, as for example 0.3, are valid.

When the Shininess texture widget feature is used, the shininess property is
ignored.

specular The color that an object with a shiny surface reflects. If the Specular texture
widget feature is added or the shininess property is set to 0.0, the specular
property has no effect.

opacity The opacity value

Note that only values between 0.0 and 1.0, as for example 0.3, are valid.

19.12.3.6. Mesh

A mesh defines the shape of the 3D object.

Table 19.148. Properties of the mesh

Property name Description

visible If true, the widget and its child widgets are visible

mesh The automatically created mesh file *.ebmesh

culling Defines whether no triangles (0), only front-facing triangles (1), or only back-fac-
ing triangles (2) are culled from the mesh

19.12.3.7. PBR GGX material

A PBR GGX material defines the visual appearance of the mesh surface using the physically correct Cook-
Torrance model.

EB GUIDE TF
Chapter 19. References

Page 208 of 269

Table 19.149. Properties of the PBR GGX material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If the
Ambient texture widget feature is added, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Diffuse texture widget feature is added, this property has
no effect.

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

specular The color that an object with a shiny surface reflects. If the Specular texture
widget feature is added or the shininess property is set to 0.0, the specular
property has no effect.

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

roughness The value for the surface quality of being rough

This value controls the surface’s microstructure.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid, as for example 0.3.

EB GUIDE TF
Chapter 19. References

Page 209 of 269

Figure 19.1. Example for a physically-based material

19.12.3.8. PBR Phong material

A PBR Phong material defines the visual appearance of the surface of the mesh using the physically correct
Phong reflection model.

Table 19.150. Properties of the PBR Phong material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If the
Ambient texture widget feature is added, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light. If the Diffuse texture widget feature is added, this property has
no effect.

emissive The self-illumination color of the object. If the Emissive texture widget feature is
added, this property has no effect.

shininess The shininess factor

specular The color that an object with a shiny surface reflects. If the Specular texture
widget feature is added or the shininess property is set to 0.0, the specular
property has no effect.

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

EB GUIDE TF
Chapter 19. References

Page 210 of 269

Property name Description

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid , as for example 0.3.

Figure 19.2. Example for a non-normalized material (left) and a normalized material (right)

19.12.3.9. Point light

A point light adds a light to the scene that emits light in all directions like a light bulb.

Table 19.151. Properties of the point light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no point light and the
upper limit value depending on attenuation factors

attenuationConstant The constant factor by which the light intensity weakens with increasing dis-
tance. The 0.0 value means that the factor is not used.

attenuationLinear The linear factor by which the light intensity weakens with increasing distance.
The 0.0 value means that the factor is not used.

attenuationQuadrat-

ic

The quadratic factor by which the light intensity weakens with increasing dis-
tance. The 0.0 value means that the factor is not used.

19.12.3.10. Scene graph

EB GUIDE TF
Chapter 19. References

Page 211 of 269

A scene graph places a 3D object into a view.

Table 19.152. Properties of the scene graph

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

gamma Corrects the luminance output of the scene graph. The default value is set to 2.-
2.

19.12.3.11. Scene graph node

A scene graph node is a child node and is added to the scene graph or to another scene graph node. You
use scene graph nodes to place 3D widgets in the 3D scene with transformation properties. You can add the
following 3D widgets to the scene graph node:

► Camera

► Directional light

► Image-based light

► Mesh

► Point light

► Spot light

Table 19.153. Properties of the scene graph node

Property name Description

visible If true, the widget and its child widgets are visible

rotationX The rotation around the x-axis

rotationY The rotation around the y-axis

rotationZ The rotation around the z-axis

scalingX The scaling along the x-axis

scalingY The scaling along the y-axis

scalingZ The scaling along the z-axis

translationX The translation along the x-axis

translationY The translation along the y-axis

EB GUIDE TF
Chapter 19. References

Page 212 of 269

Property name Description

translationZ The translation along the z-axis

19.12.3.12. Spot light

A spot light adds a light which restricts illumination to a cone of influence.

Table 19.154. Properties of the spot light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with the lower limit value 0.0 as no spot light and the
upper limit value depending on attenuation factors

attenuationConstant The constant factor by which the light intensity weakens with increasing distance

attenuationLinear The linear factor by which the light intensity weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light intensity weakens with increasing dis-
tance

coneAngleInner The light's inner cone angle in degrees, with the maximum value of 180

coneAngleOuter The light's outer cone angle in degrees, with the maximum value of 180

19.13. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

19.13.1. Common

19.13.1.1. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. You can define a single
widget to be visible or you can define groups of child widgets to be visible at the same time. To define groups,
map the index of child widgets to the same group value.

EB GUIDE TF
Chapter 19. References

Page 213 of 269

Table 19.155. Properties of the Child visibility selection widget feature

Property name Description

containerIndex Controls the visibility of child widgets.

If containerMapping is not filled, containerIndex makes a single child
widget visible. The child widget that is visible is identified by its order in the wid-
get tree. The topmost child has containerIndex 0, next containerIndex 1
etc.

If containerMapping is filled, containerIndex refers to a group of child
widgets. Define the group in containerMapping.

containerMapping Use this property to create groups of child widgets. The Index column identifies
the child widget. The Value column defines the group.

The number of rows must match the number of child widgets. Otherwise the
mapping is not used.

19.13.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 19.156. Properties of the Enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

19.13.1.3. Focused

The Focused widget feature enables a widget to have input focus.

Table 19.157. Properties of the Focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► not focusable (=0)

► only by touch (=1)

► only by key (=2)

► focusable (=3)

EB GUIDE TF
Chapter 19. References

Page 214 of 269

Property name Description

focused If true, the widget has focus

19.13.1.4. Multiple lines

The Multiple lines widget feature enables line breaks.

Restrictions:

► The Multiple lines widget feature is only available for the label widget.

Table 19.158. Properties of the Multiple lines widget feature

Property name Description

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

When the line gap is too small (high negative value), it has no effect anymore
and the text is rendered in one line. This occurs for example, when the font style
is set to PT_Sans_Narrow, size is set to 30 and the line gap is defined as
-50.

maxLineCount The maximum number of visible lines. 0 = no limitation

TIP Number of lines used
With the script function getLineCount, you can obtain the number of lines of the text.

For more information on this, see section 19.4.3.2.28, “getLineCount”.

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

19.13.1.5. Pressed

The Pressed widget feature defines that a widget can be pressed.

Restrictions:

► Adding the Pressed widget feature automatically adds the Focused widget feature.

EB GUIDE TF
Chapter 19. References

Page 215 of 269

Table 19.159. Properties of the Pressed widget feature

Property name Description

pressed If true, a key is pressed while the widget is focused

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

19.13.1.6. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 19.160. Properties of the Selected widget feature

Property name Description

selected If true, the widget is selected

19.13.1.7. Selection group

The Selection group widget feature is used to model a list of radio buttons. In the list, every radio button has
the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an application that sets the but-
tonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding a con-
dition that sets the button value.

Restrictions:

► Adding the Selection group widget feature automatically adds the Selected widget feature.

Table 19.161. Properties of the Selection group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is se-
lected.

EB GUIDE TF
Chapter 19. References

Page 216 of 269

19.13.1.8. Spinning

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 19.162. Properties of the Spinning widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction The reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the current-
Value property

valueWrapAround Possible values:

► true: The currentValue property continues at the inverse border, if min-
Value or maxValue is exceeded.

► false: The currentValue property does not decrease/increase, if min-
Value or maxValue is exceeded.

19.13.1.9. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area. The widget feature enables a different truncation than the default setting trailing.

Restrictions:

► The Text truncation widget feature is only available for the label widget.

Table 19.163. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, the truncationPolicy property defines the position of
the truncation. Possible values:

► leading (=0): Text is replaced at the beginning of the text

► trailing (=1): Text is replaced at the end of the text

EB GUIDE TF
Chapter 19. References

Page 217 of 269

Property name Description

For multi-line texts, the truncationPolicy property defines where text is re-
placed. Possible values:

► leading (=0): Lines at the beginning are replaced and text of the first vis-
ible line is truncated at the beginning of the text.

► trailing (=1) Lines at the end are replaced and text of the last visible
line is truncated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

19.13.1.10. Touched

The Touched widget feature enables a widget to react to touch input.

Table 19.164. Properties of the Touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react (=0): Press first, then the widget reacts. Notifica-
tions of moving and releasing are only active within the widget area.

► Press and grab (=1): Press to grab the contact. The contact remains
grabbed even if it moves away from the widget area.

► Press then react on contact (=2): Even if the contact enters the
pressed state outside the widget boundaries, the subsequent move and re-
lease events are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

► Whole area (=0): To identify the touched widget, the renderer evaluates
the widget's clipping rectangle.

► Visible pixels (=1): To identify the touched widget, the renderer eval-
uates the widget the touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Note that the Visible pixels value has no effect on labels.

EB GUIDE TF
Chapter 19. References

Page 218 of 269

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation
If performance is an important issue in your project, set the touchBehavior property to
Whole area (=0). EB GUIDE GTF evaluates Whole area (=0) faster than Visible
pixels (=1).

19.13.2. Effect

19.13.2.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Restrictions:

► The widget feature is available for rectangles.

Table 19.165. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

19.13.2.2. Coloration

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 19.4.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

EB GUIDE TF
Chapter 19. References

Page 219 of 269

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

Table 19.166. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The color used for the coloration

19.13.2.3. Stroke

The Stroke widget feature activates a configurable text outline, i.e. a label border.

Restrictions:

► The widget feature is available for labels.

Table 19.167. Properties of the Stroke widget feature

Property name Description

strokeEnabled If true, stroke is used

strokeThickness The thickness of the outline in pixels

strokeColor The color that is used to render the outline

19.13.3. Focus

The Focus widget feature category provides the widget features relating to focus management.

19.13.3.1. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. The Auto
focus widget feature checks the widget subtree for child widgets with the focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Restrictions:

► The widget feature Auto focus automatically adds the Focused widget feature.

EB GUIDE TF
Chapter 19. References

Page 220 of 269

Table 19.168. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrev The condition on which the focus index is decremented

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

19.13.3.2. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Restrictions:

► The widget feature User-defined focus automatically adds the Focused widget feature.

Table 19.169. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder The focusOrder property makes it possible to skip child widgets when assign-
ing focus. The ID of a child widget corresponds to its position in the subtree.
Child widgets that are not focusable are skipped by default. Order in which the
child widgets are focused:

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, otherwise widgets are
ignored for focus management. Example: focusOrder=1|0|2 means the second
widget receives focus first, then the first widget receives focus, and finally the
third widget.

focusPrev The trigger that assigns the focus to the previous child

EB GUIDE TF
Chapter 19. References

Page 221 of 269

Property name Description

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy level (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

19.13.4. Gestures

19.13.4.1. Flick gesture

A quick brush of a contact over a surface

Restrictions:

► Adding the Flick gesture widget feature automatically adds the Gestures and Touched widget features.

Table 19.170. Properties of the Flick gesture widget feature

Property name Description

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: x-part of the direction vector of the gesture

► directionY: y-part of the direction vector of the gesture

flickMaxTime The maximal time in milliseconds the contact may stay in place for the gesture to
be recognized as a flick gesture

flickMinLength The minimal distance in pixels a contact has to move on the surface to be recog-
nized as a flick gesture

19.13.4.2. Hold gesture

EB GUIDE TF
Chapter 19. References

Page 222 of 269

A hold gesture without movement

Restrictions:

► Adding the Hold gesture widget feature automatically adds the Gestures and Touched widget features.

► The Hold gesture widget feature does not trigger the Touch lost widget feature.

Table 19.171. Properties of the Hold gesture widget feature

Property name Description

onGestureHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when holdDuration is expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

holdDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a hold gesture

19.13.4.3. Long hold gesture

A long hold gesture without movement

Restrictions:

► Adding the Long hold gesture widget feature automatically adds the Gestures and Touched widget
features.

► The Long hold gesture widget feature does not trigger the Touch lost widget feature.

Table 19.172. Properties of the Long hold gesture widget feature

Property name Description

onGestureLongHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when longHoldDuration has expired and the
contact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

longHoldDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a long hold gesture

EB GUIDE TF
Chapter 19. References

Page 223 of 269

19.13.4.4. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

Restrictions:

► Adding the Path gesture widget feature automatically adds the Gestures and Touched widget features.

Table 19.173. Properties of the Path gesture widget feature

Property name Description

onPath The reaction that is triggered when the entered shape matches. The reaction is
only triggered if onPathStart has been triggered already. Reaction argument:

► gestureId: ID of the path that was matched

onPathStart The reaction that is triggered once a contact moves beyond the minimal box
(pathMinXBox, pathMinYBox.)

onPathNotRecognized The reaction that triggered when the entered shape does not match. The reac-
tion is only triggered if onPathStart has been triggered already.

pathMinXBox The x-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

pathMinYBox The y-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

19.13.4.4.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 19.174. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

EB GUIDE TF
Chapter 19. References

Page 224 of 269

ID Shape Description

2 Horizontal line left to right

3 Horizontal line right to left

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

19.13.4.5. Pinch gesture

Two contacts that move closer together or further apart

Restrictions:

► Adding the Pinch gesture widget feature automatically adds the Gestures and Touched widget features.

Table 19.175. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart The reaction that is triggered once the start of the gesture is recog-
nized. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

EB GUIDE TF
Chapter 19. References

Page 225 of 269

Property name Description

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

onGesturePinchUpdate The reaction that is triggered when the pinch ratio or center point
change. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

onGesturePinchEnd The reaction that is triggered once the gesture is finished. Reaction ar-
guments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

pinchThreshold The minimal distance in pixels each contact has to move from its initial
position for the gesture to be recognized

19.13.4.6. Rotate gesture

Two contacts that move along a circle

Restrictions:

► Adding the Rotate gesture widget feature automatically adds the Gestures and Touched widget features.

Table 19.176. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart The reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate The reaction that is triggered when the recognized angle or center point
changes

onGestureRotateEnd The reaction that is triggered once the gesture is finished

EB GUIDE TF
Chapter 19. References

Page 226 of 269

Property name Description

rotateThreshold The minimal distance in pixels each contact has to move from its initial
position for the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUp-
date:

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: x-coordinate of the current center point between the two contacts

► centerY: y-coordinate of the current center point between the two contacts

19.13.5. Input handling

19.13.5.1. Gestures

The Gestures widget feature enables the widget to react on touch gestures.

Restrictions:

► Adding the Gestures widget feature automatically adds the Touched widget feature.

► The Gestures widget feature has no additional properties.

19.13.5.2. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Restrictions:

► Adding the Key pressed widget feature automatically adds the Pressed and Focused widget features.

Table 19.177. Properties of the Key pressed widget feature

Property name Description

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: The ID of the key that is processed

EB GUIDE TF
Chapter 19. References

Page 227 of 269

19.13.5.3. Key released

The Key released widget feature enables a widget to react on a key being released.

Restrictions:

► Adding the Key released widget feature automatically adds the Pressed and Focused widget features.

Table 19.178. Properties of the Key released widget feature

Property name Description

keyShortReleased The widget's reaction on a key being released

Reaction argument:

► keyId: The ID of the key that is processed

19.13.5.4. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Restrictions:

► Adding the Key status changed widget feature automatically adds the Pressed and Focused widget
features.

Table 19.179. Properties of the Key status changed widget feature

Property name Description

keyStatusChanged The widget's reaction on a key being pressed or released

Reaction arguments:

► keyId: The ID of the key that is processed

► status: The numeric ID of the status change

19.13.5.5. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Restrictions:

► Adding the Key unicode widget feature automatically adds the Pressed and Focused widget features.

EB GUIDE TF
Chapter 19. References

Page 228 of 269

Table 19.180. Properties of the Key unicode widget feature

Property name Description

keyUnicode The widget's reaction on a Unicode key input

Reaction argument:

► keyId: The ID of the key that is processed

19.13.5.6. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Restrictions:

► Adding the Move in widget feature automatically adds the Touched widget feature.

Table 19.181. Properties of the Move in widget feature

Property name Description

moveIn The widget's reaction on a movement into its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

19.13.5.7. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Restrictions:

► Adding the Move out widget feature automatically adds the Touched widget feature.

Table 19.182. Properties of the Move out widget feature

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

EB GUIDE TF
Chapter 19. References

Page 229 of 269

Property name Description

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

19.13.5.8. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Restrictions:

► Adding the Move over widget feature automatically adds the Touched widget feature.

Table 19.183. Properties of the Move over widget feature

Property name Description

moveOver The widget's reaction on a movement within its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

19.13.5.9. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Restrictions:

► Adding the Moveable widget feature automatically adds the Touched and Touch moved widget features.

Table 19.184. Properties of the Moveable widget feature

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► horizontal (=0)

► vertical (=1)

► free (=2)

EB GUIDE TF
Chapter 19. References

Page 230 of 269

19.13.5.10. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Restrictions:

► Adding the Rotary widget feature automatically adds the Focused widget feature.

Table 19.185. Properties of the Rotary widget feature

Property name Description

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts on an incoming
rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming
event is sent

19.13.5.11. Touch lost

The Touch lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Restrictions:

► Adding the Touch lost widget feature automatically adds the Touched widget feature.

► If you add Touch lost, in the touchPolicy drop-down box of the Touched widget feature, select Press
and grab.

Touch lost does not work with the other touch policies.

Table 19.186. Properties of the Touch lost widget feature

Property name Description

onTouchGrabLost The widget's reaction on a lost touch contact

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

EB GUIDE TF
Chapter 19. References

Page 231 of 269

Property name Description

► fingerId: The ID of the contact that moves across the widget

19.13.5.12. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Restrictions:

► Adding the Touch move widget feature automatically adds the Touched widget feature.

Table 19.187. Properties of the Touch move widget feature

Property name Description

touchMoved The widget's reaction on being touched and moved

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

19.13.5.13. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

Restrictions:

► Adding the Touch pressed widget feature automatically adds the Touched widget feature.

Table 19.188. Properties of the Touch pressed widget feature

Property name Description

touchPressed The widget's reaction on being pressed

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

EB GUIDE TF
Chapter 19. References

Page 232 of 269

19.13.5.14. Touch released

The Touch released widget feature enables a widget to react on being released.

Restrictions:

► Adding the Touch released widget feature automatically adds the Touched widget feature.

Table 19.189. Properties of the Touch released widget feature

Property name Description

touchShortReleased The widget's reaction on being released

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

19.13.5.15. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Restrictions:

► Adding the Touch status changed widget feature automatically adds the Touched widget feature.

Table 19.190. Properties of the Touch status changed widget feature

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► touchStatus: The ID of the type of touch

Possible values:

► 0: new contact

► 1: touch press

► 2: touch move

EB GUIDE TF
Chapter 19. References

Page 233 of 269

Property name Description

► 3: touch released

► 4: movement without touch

► 5: touch gone

► fingerId: The ID of the contact that moves across the widget

19.13.6. Layout

19.13.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Restrictions:

► The Absolute layout widget feature excludes the following widget features:

► Box layout

► Flow layout

► Grid layout

► List layout

Table 19.191. Properties of the Absolute layout widget feature

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for the child widgets.
Each list element is mapped to a child widget.

itemTopOffset An integer list that stores the offset from the top border for the child widgets.
Each list element is mapped to a child widget.

itemRightOffset An integer list that stores the offset from the right border for the child widgets.
Each list element is mapped to a child widget.

itemBottomOffset An integer list that stores the offset from the bottom border for the child widgets.
Each list element is mapped to a child widget.

19.13.6.2. Box layout

The Box layout widget feature defines position and size of each child widget.

EB GUIDE TF
Chapter 19. References

Page 234 of 269

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Box layout widget feature excludes the following widget features:

► Absolute layout

► Flow layout

► Grid layout

► List layout

Table 19.192. Properties of the Box layout widget feature

Property name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

19.13.6.3. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Flow layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Grid layout

► List layout

Table 19.193. Properties of the Flow layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

EB GUIDE TF
Chapter 19. References

Page 235 of 269

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are posi-
tioned. Possible values:

► horizontal (=0)

► vertical (=1)

horizontalChildAlign The horizontal alignment of child widgets. Possible values:

► leading (=0): The child widget is placed on the left side.

► center (=1): The child widget is placed in the center.

► trailing (=2): The child widget is placed on the right side.

verticalChildAlign The vertical alignment of child widgets. Possible values:

► center (=0): The child widget is placed in the center.

► top (=1): The child widget is placed at the top

► bottom (=2): The child widget is placed at the bottom.

19.13.6.4. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Grid layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► List layout

Table 19.194. Properties of the Grid layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

numRows Defines the number of rows

numColumns Defines the number of columns

EB GUIDE TF
Chapter 19. References

Page 236 of 269

19.13.6.5. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout, Ab-
solute layout, Box layout, or Grid layout widget feature.

Table 19.195. Properties of the Layout margins widget feature

Property name Description

leftMargin The margin of the left border

topMargin The margin of the top border

rightMargin The margin of the right border

bottomMargin The margin of the bottom border

19.13.6.6. List layout

The List layout widget feature defines position and size of each child widget in pixels.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, see section 19.13.7.2, “List index”.

Restrictions:

► The List layout widget feature is intended to be used with instantiator.

► The List layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► Grid layout

Table 19.196. Properties of the List layout widget feature

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

scrollOffset The number of pixels to scroll the list

EB GUIDE TF
Chapter 19. References

Page 237 of 269

Property name Description

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is
translated to scrollIndex. The remaining offset is written to the scrollOff-
set property.

firstListIndex The list index of the first visible list element, defined by the widget feature

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at
the list elements given in the scrollIndex property.

scrollValue The current scroll value in pixels

scrollValueMax The maximum scroll value in pixels, which is mapped to the end of the list

scrollValueMin The minimum scroll value in pixels, which is mapped to the beginning of the list

bounceValue The bounceValue property is zero as long as the scrollOffset property re-
sults in a position inside the valid scroll range. It has a positive value if the scroll
position exceeds the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to scrollOffset,
the scroll position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll
range. scrollOffset is truncated if the user tries to scroll further.

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

listLength The number of list elements

wrapAround Possible values:

► true: The scrollValue property continues at the inverse border, if scrol-
lValueMin or scrollValueMax is exceeded.

► false: The scrollValue property does not decrease/increase, if scroll-
ValueMin or scrollValueMax is exceeded.

19.13.6.7. Scale mode

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

Restrictions:

► The Scale mode widget feature is only available for the widget image.

Table 19.197. Properties of the Scale mode widget feature

Property name Description

scaleMode The scale mode of the image. Possible values:

EB GUIDE TF
Chapter 19. References

Page 238 of 269

Property name Description

► 0 = original size

► 1 = fit to size

► 2 = keep aspect ratio

19.13.7. List management

19.13.7.1. Line index

The Line index widget feature defines the unique position for each line of your list or table.

Restrictions:

► The Line index widget feature is intended to be used in combination with instantiators.

Table 19.198. Properties of the Line index widget feature

Property name Description

lineIndex The index of the current line in a table

19.13.7.2. List index

The List index widget feature defines the unique position of a widget in a list.

Restrictions:

► The List index widget feature is intended to be used in combination with the List layout widget feature.

Table 19.199. Properties of the List index widget feature

Property name Description

listIndex The index of the current widget in a list

19.13.7.3. Template index

The Template index widget feature defines the unique position of the used line template.

Restrictions:

► The Template index widget feature is intended to be used in combination with instantiators.

EB GUIDE TF
Chapter 19. References

Page 239 of 269

Table 19.200. Properties of the Template index widget feature

Property name Description

lineTemplateIndex The index of the used line template

19.13.7.4. Viewport

The Viewport widget feature clips oversized elements at the widget borders.

Restrictions:

► The Viewport widget feature is intended to be used in combination with containers or lists.

► The Viewport widget feature takes effect on the following model elements:

► Child widgets of the widget you added Viewport to are clipped inside the dimensions of the widget.

► The widget you added Viewport is clipped inside the dimensions of its parent view.

Table 19.201. Properties of the Viewport widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

19.13.8. 3D
Widget features in the 3D category are only available for 3D widgets.

19.13.8.1. Camera viewport

The Camera viewport widget feature defines the camera's drawing region within the scene graph.

Restrictions:

► The Camera viewport widget feature is available for camera.

Table 19.202. Properties of the Camera viewport widget feature

Property name Description

viewportX The x-origin of the viewport within the scene graph

viewportY The y-origin of the viewport within the scene graph

viewportWidth The viewport's width in pixels

viewportHeight The viewport's height in pixels

EB GUIDE TF
Chapter 19. References

Page 240 of 269

19.13.8.2. Ambient texture

The Ambient texture widget feature adds extended configuration values to a material.

Restrictions:

► The Ambient texture widget feature is available for material, PBR Phong material, and PBR GGX material.

► When the Ambient texture is added, the ambient property is ignored.

Table 19.203. Properties of the Ambient texture widget feature

Property name Description

ambientTexture The file name of the texture

ambientTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in ambientTex-
ture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go to Con-
figure > Profiles and for the colorMode property select 32-bit
sRGB (=4) or 32-bit sRGB (Emulated) (=5).

19.13.8.3. Diffuse texture

EB GUIDE TF
Chapter 19. References

Page 241 of 269

The Diffuse texture widget feature adds extended configuration values to a material.

Restrictions:

► The Diffuse texture widget feature is available for material, PBR Phong material, and PBR GGX material.

► When the Diffuse texture is added, the diffuse property is ignored.

Table 19.204. Properties of the Diffuse texture widget feature

Property name Description

diffuseTexture The file name of the texture

diffuseTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in diffuseTex-
ture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go to Con-
figure > Profiles and for the colorMode property select 32-bit
sRGB (=4) or 32-bit sRGB (Emulated) (=5).

19.13.8.4. Emissive texture

The Emissive texture widget feature adds extended configuration values to a material.

EB GUIDE TF
Chapter 19. References

Page 242 of 269

Restrictions:

► The Emissive texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

► When the Emissive texture is added, the emissive property is ignored.

Table 19.205. Properties of the Emissive texture widget feature

Property name Description

emissiveTexture The file name of the texture

emissiveTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in emis-
siveTexture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go to Con-
figure > Profiles and for the colorMode property select 32-bit
sRGB (=4) or 32-bit sRGB (Emulated) (=5).

19.13.8.5. Light map texture

The Light map texture widget feature adds extended configuration values to a material.

EB GUIDE TF
Chapter 19. References

Page 243 of 269

Restrictions:

► The Light map texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 19.206. Properties of the Light map texture widget feature

Property name Description

lightMapTexture The file name of the texture

lightMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.6. Metallic texture

The Metallic widget feature adds extended configuration values to a material. The texture controls the metallic
parameter of the PBR GGX material and PBR Phong material widgets.

Restrictions:

► The Metallic texture widget feature is available for the PBR GGX material and PBR Phong material.

► The Metallic texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Metallic texture is added, the metallic property is ignored.

EB GUIDE TF
Chapter 19. References

Page 244 of 269

Table 19.207. Properties of the Metallic texture widget feature

Property name Description

metallicTexture The file name of the texture

metallicMinFactor The minimal metallic parameter as a float to interpolate the texture val-
ues

metallicMaxFactor The maximal metallic parameter as a float to interpolate the texture val-
ues

metallicTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

metallicTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

metallicFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.7. Normal map texture

The Normal map widget feature adds extended configuration values to a material.

Restrictions:

► The Normal map texture widget feature is available for material, PBR Phong material, and PBR GGX
material.

Table 19.208. Properties of the Normal map widget feature

Property name Description

normalMapTexture The file name of the texture

EB GUIDE TF
Chapter 19. References

Page 245 of 269

Property name Description

normalMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapTextureAddress-

ModeV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.8. Opaque texture

The Opaque texture widget feature adds extended configuration values to a material.

Restrictions:

► The Opaque texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 19.209. Properties of the Opaque texture widget feature

Property name Description

opaqueTexture The file name of the texture

opaqueTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

EB GUIDE TF
Chapter 19. References

Page 246 of 269

Property name Description

opaqueTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

opaqueFilterMode The filter mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.9. Reflection texture

The Reflection texture widget feature adds extended configuration values to a material.

Restrictions:

► The Reflection texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 19.210. Properties of the Reflection texture widget feature

Property name Description

reflectionTopTexture The file name of the texture

reflectionBottomTexture The file name of the texture

reflectionLeftTexture The file name of the texture

reflectionRightTexture The file name of the texture

reflectionFrontTexture The file name of the texture

reflectionBackTexture The file name of the texture

reflectionFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

EB GUIDE TF
Chapter 19. References

Page 247 of 269

Property name Description

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

NOTE Reflection texture widget feature
EB GUIDE Studio displays the Reflection texture widget feature, only when an image file
is selected for all of the following properties:

► reflectionTopTexture

► reflectionBottomTexture

► reflectionLeftTexture

► reflectionRightTexture

► reflectionFrontTexture

► reflectionBackTexture

The image files must have the same size and rectangular shape.

19.13.8.10. Roughness texture

The Roughness texture widget feature adds extended configuration values to a material. The texture controls
the roughness parameter of the PBR GGX material widget.

Restrictions:

► The Roughness texture widget feature is available for the PBR GGX material.

► The Roughness texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Roughness texture is active, the roughness property is ignored.

Table 19.211. Properties of the Roughness texture widget feature

Property name Description

roughnessTexture The file name of the texture

roughnessMinFactor The minimal roughness parameter as a float to interpolate the texture
values

roughnessMaxFactor The maximal roughness parameter as a float to interpolate the texture
values

roughnessTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE TF
Chapter 19. References

Page 248 of 269

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

roughnessTextureAddress-

ModeV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

roughnessFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.11. Shininess texture

The Shininess texture widget feature adds extended configuration values to a material. The texture modulates
the shininess strength by multiplying the texture value with the scalar shininess property.

Restrictions:

► The Shininess texture widget feature is available for the material and PBR Phong material.

► The Shininess texture is a grayscale image. For RGB color images, only the red channel is used.

► When the Shininess texture widget feature is used, the shininess property is ignored.

Table 19.212. Properties of the Shininess texture widget feature

Property name Description

shininessTexture The file name of the texture

shininessMinFactor The minimal shininess parameter as a float to interpolate the texture
values

shininessMaxFactor The maximal shininess parameter as a float to interpolate the texture
values

shininessTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE TF
Chapter 19. References

Page 249 of 269

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

shininessTextureAddress-

ModeV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

shininessFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

19.13.8.12. Specular texture

The Specular texture widget feature adds extended configuration values to a material.

Restrictions:

► The Specular texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

► When the Specular texture is added, the specular property is ignored.

Table 19.213. Properties of the Specular texture widget feature

Property name Description

specularTexture The file name of the texture

specularTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

EB GUIDE TF
Chapter 19. References

Page 250 of 269

Property name Description

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in specular-
Texture, is rendered using sRGB color space.

Note that to use sRGB functionality, open the project center, go to Con-
figure > Profiles and for the colorMode property select 32-bit
sRGB (=4) or 32-bit sRGB (Emulated) (=5).

19.13.8.13. Texture coordinate transformation

The Texture coordinate transformation widget feature makes it possible to modify the coordinates of the
material texture. This feature is available for material, PBR Phong material, and PBR GGX material.

Table 19.214. Properties of the Texture coordinate transformation widget feature

Property name Description

uOffset Defines the offset of the texture coordinates in u-direction

vOffset Defines the offset of the texture coordinates in v-direction

uScale Defines the scaling of the texture coordinates in u-direction

vScale Defines the scaling of the texture coordinates in v-direction

Example 19.5.
Example for Texture coordinate transformation

uOffset: 1.0
vOffset: 1.0
uScale: 1.0

0.5
1.0
1.0

1.0
0.5
1.0

1.0
1.0
0.5

1.0
1.0
3.0

EB GUIDE TF
Chapter 19. References

Page 251 of 269

vScale: 1.0 1.0 1.0 0.5 3.0

19.13.8.14. Tone mapping

The Tone mapping widget feature enables tone mapping, i.e. the technique to map a luminance value to a
limited range, for the scene graph.

Restrictions:

► The Tone mapping widget feature is available for the scene graph.

Note that the Tone mapping widget feature implements the global tone mapping operator described by Erik
Reinhard et al. 1

Table 19.215. Properties of the Tone mapping widget feature

Property name Description

pureWhiteLuminance The smallest luminance value that is mapped to pure white. Note that
only values bigger or equal to 0 are valid.

Figure 19.3. Example for image without tone mapping (left) and with tone mapping (right)

1Photographic tone reproduction for digital images Reinhard, Erik et al. in "Proceedings of the 29th annual conference on Computer
graphics and interactive techniques" 2002, Pages 267-276

EB GUIDE TF
Chapter 19. References

Page 252 of 269

19.13.9. Transformation

The widget features of the category Transformation modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

6. Rotation around x-axis

19.13.9.1. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

Restrictions:

► Adding the Pivot widget feature automatically adds the Rotation, Scaling and Shearing widget features.

Table 19.216. Properties of the Pivot widget feature

Property name Description

pivotX The pivot point on the x-axis relative to parent widget

pivotY The pivot point on the y-axis relative to parent widget

pivotZ The pivot point on the z-axis relative to parent widget if widget is a scene graph

19.13.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 19.217. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX The rotation angle on the x-axis. This property only affects scene graph.

EB GUIDE TF
Chapter 19. References

Page 253 of 269

Property name Description

rotationAngleY The rotation angle on the y-axis. This property only affects scene graph.

rotationAngleZ The rotation angle on the z-axis

19.13.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 19.218. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX The scaling on the x-axis in percent

scalingY The scaling on the y-axis in percent

scalingZ The scaling on the z-axis in percent if widget is a scene graph

19.13.9.4. Shearing

The Shearing widget feature is used to distort the widget and its subtree.

Table 19.219. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY The shearing of x-axis by y-axis

shearingXbyZ The shearing of x-axis by z-axis if widget is a scene graph

shearingYbyX The shearing of y-axis by x-axis

shearingYbyZ The shearing of y-axis by z-axis if widget is a scene graph

shearingZbyX The shearing of z-axis by x-axis if widget is a scene graph

shearingZbyY The shearing of z-axis by y-axis if widget is a scene graph

19.13.9.5. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

EB GUIDE TF
Chapter 19. References

Page 254 of 269

Table 19.220. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX The translation on the x-axis

translationY The translation on the y-axis

translationZ The translation on the z-axis if widget is a scene graph

Appendix A. EB GUIDE TF APK

Page 255 of 269

Appendix A. EB GUIDE TF APK

A.1. Installation of EB GUIDE TF on Android
The Android application package (APK) file format is used to distribute and install applications and other mid-
dleware on Android devices.

A.1.1. System requirements
The Android APK version that is currently released for EB GUIDE TF is designed to run on a wide range of
Android devices.

Table A.1. Minimal requirements

Architecture ARMv7

Platform EB GUIDE TF: Android 5.0 (API Level 21)

A.1.2. Features of the EB GUIDE TF APK
Table A.2. Features of the EB GUIDE TF APK

Feature Description

Life cycle management EB GUIDE TF supports Android life cycle management.

Multi-touch support EB GUIDE TF supports up to ten fingers for multi-touch. The number of
supported fingers may be limited by the Android device.

Key handling EB GUIDE TF processes 16-bit UTF key mapping codes.

Interaction with the Java API EB GUIDE TF can be started and controlled by the Android activity. Ex-
ample code and a template implementation are provided by the appli-
cation. A native activity is not necessary.

Android layout handling The exported EB GUIDE model is informed through events if the layout
of the visible screen area changes. That way you can handle a virtual
keyboard or changes in rotation.

A.1.3. Description of the EB GUIDE TF APK files

Appendix A. EB GUIDE TF APK

Page 256 of 269

► EB GUIDE Launcher.apk

The EB GUIDE Launcher starts EB GUIDE TF and displays the exported EB GUIDE model.

If you start the EB GUIDE Launcher, it displays the exported EB GUIDE model that was selected last by
EB GUIDE Model Chooser.

► EB GUIDE Model Chooser.apk

The EB GUIDE Model Chooser provides a user interface to select an exported EB GUIDE model that is
executed on the Android device.

By selecting an exported EB GUIDE model, the EB GUIDE Launcher is started with the corresponding
model.

Clicking the Info button displays the directory where exported EB GUIDE models are stored for the EB
GUIDE Model Chooser, and a list with device-related details. For information about the location of the
exported EB GUIDE models in the file system, see section A.1.5, “Directory for EB GUIDE models”.

Appendix A. EB GUIDE TF APK

Page 257 of 269

Figure A.1. EB GUIDE Model Chooser

A.1.3.1. Released APK and custom APK

EB GUIDE TF is delivered and installed as an APK. Use either a pre-built released APK of the released version
or create a custom version based on the delivered Android binaries and the APK template in the SDK.

The following lists help you to decide whether or not you need a custom APK.

If the following applies to your project, use the released APK:

► Your project contains EB GUIDE functionality or feature demonstrations with no further extensions.

► Your project contains project-specific extensions, for example EB GUIDE GTF extensions, to be added
to the exported EB GUIDE model.

► Standard access rights are sufficient for your project. The standard access rights are read or write to the
external storage of the device, network access android.permission.INTERNET, record audio, and
modify audio settings.

Appendix A. EB GUIDE TF APK

Page 258 of 269

If the following applies to your project, use the delivered APK template:

► You need additional access rights that are not granted by the released APK version, for example CALL_-
PHONE.

► You require a customer-specific APK, for example a customer signature for APK verification or icons.

► You use Android framework features that are not accessible in the stable API of the native development
kit (NDK). The NDK contains only a small subset of features and functionality which you can use with the
Java API.

► You need additional Android application functionalities that require modifications to Java-related code
pieces, for example activities, services, skins, intents, or compositing.

A.1.3.2. Restrictions

The Android APK that is currently released for EB GUIDE TF has the following restrictions:

► The exported EB GUIDE model is informed about rotation changes and layout changes, for example an
incoming virtual keyboard on the display. The exported EB GUIDE model must handle these events.

► If the system uses Android layout handling, the Android flag SOFT_INPUT_ADJUST_NOTHING must not
be set in the configuration of the Android activity.

A.1.4. Android life cycle management

The Android life cycle management is an optimization implemented by the Android operating system. If an
application moves to the background, Android releases all graphics resources and makes the resources avail-
able for the application that moves to the foreground. An application is responsible for recreating the resources
when it moves to the foreground.

A.1.5. Directory for EB GUIDE models

EB GUIDE models are stored in the com.elektrobit.guide_model_chooser/files directory that is
located on the primary external storage directory. Application-related files are stored there permanently. One
directory is required per EB GUIDE model.

Appendix A. EB GUIDE TF APK

Page 259 of 269

NOTE com.elektrobit.guide_model_chooser/files directory
After you installed EB GUIDE Model Chooser and EB GUIDE Launcher the com.elektro-
bit.guide_model_chooser/files directory does not yet exist. The directory is creat-
ed when you start EB GUIDE Model Chooser for the first time. Alternatively, you can also
add the directory manually.

The EB GUIDE Model Chooser searches only in the primary external storage directory. Usually Android devices
have their primary external storage on a portion of the internal storage. Make sure you copy the files to the
correct place.

Examples for primary external storage directory:

► For a Samsung Galaxy S3 device with Android 5.0 that is connected to a PC with Windows 7, the di-
rectory is Computer/GT-I9300/Phone/Android/data/com.elektrobit.guide_model_choos-
er/files.

► For a Nexus 7 device with Android 5.0 that is connected to a PC with Windows 7, the directory is Com-
puter/Nexus 7/Internal storage/Android/data/com.elektrobit.guide_model_choos-

er/files.

On start-up or refresh, EB GUIDE Model Chooser recursively scans the directory for the EB GUIDE TF config-
uration file model.json. The parent directory for each start-up configuration is displayed as the EB GUIDE
model name.

A.1.6. Android layout handling

Android is designed for mobile devices. On a mobile device, some characteristics concerning the layout of the
visible screen area need to be considered.

EB GUIDE provides events that indicate layout changes in the visible screen area.

Example A.1.
Examples for layout handling

► When a mobile device is rotated, the GUI has to adapt according to the rotation.

► When a virtual keyboard is displayed on the screen, the GUI has to adapt to the new element.

Glossary

Page 260 of 269

Glossary

#
3D graphic A 3D graphic is a virtual picture of a 3D scene. A 3D scene is a collection of 3D

models (meshes or shapes), materials, light sources, and cameras. Materials
define the visual appearance of 3D models through colors and textures and
the behavior under virtual lighting. A camera provides the view point from
where a virtual picture of the 3D scene is taken.

A
API Application programming interface

application In the context of EB GUIDE, an application is computer software that interacts
with one or more EB GUIDE models at EB GUIDE GTF run-time by means of,
for example, the event system and datapool. An application is, for example,
entertainment software like media player, communication software like phone,
etc.
See Also API.

aspect In EB GUIDE, an aspect is an appearance-related modification of an EB
GUIDE model that is applied at EB GUIDE GTF run-time. Two types of as-
pects exist: skins, with which you can define different looks for your EB GUIDE
model, and languages.

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

Glossary

Page 261 of 269

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE. It consists of EB
GUIDE GTF and EB GUIDE STF. It is required to run an EB GUIDE model.

extension In EB GUIDE, an extension is an addition to any of the EB GUIDE products.
An extension is a plug-in in form of libraries (.dll or .so files) that add a
certain functionality to EB GUIDE Studio, EB GUIDE GTF, or EB GUIDE Mon-
itor. Such functionality could be, for example, a data exporter or an additional
widget feature.

G
GL Graphical library

Glossary

Page 262 of 269

GUI Graphical user interface

H
HMI Human machine interface

I
IBL Image-based lighting

IBLGenerator IBLGenerator is the tool to process environment lighting information.

L
library A library is a collection of pre-compiled software parts, sub-routines, or pro-

grams that are used in EB GUIDE. Libraries that are necessary for an EB
GUIDE project are defined in the project center. Two file types are supported:
.dll and .so.

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

multifont support Aggregation of multiple fonts for different character ranges acting as a single
font.

MVC Model-view-controller

N
namespace In EB GUIDE Studio, with namespaces you create groups of model elements

like datapool items and events. These groups have usually a defined function-
ality. Each namespace creates a naming scope for model elements so that
model elements in different namespaces can have the same name.

O
OS Operating system

Glossary

Page 263 of 269

P
PBR Physically-based rendering

profile In the project center, a profile is a set of specifications. In a profile you define li-
braries, messages and scenes for your project. During export of an EB GUIDE
model the data in the profile is written to the model.json configuration file.

project center All project-related functions are located in the project center, for example pro-
files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

R
resource A resource is a data package that is part of the EB GUIDE project. Examples

for resources are fonts, images, meshes. Resources are stored outside of the
EB GUIDE model, for example in files, depending on the operating system.

RomFS Read-only memory file system

S
shared library A shared library, as opposed to a static library, can be loaded when preparing

a program for execution. On Windows platforms shared libraries are called
dynamic link libraries and have a .dll file extension. On Unix systems shared
libraries are called shared objects and have an .so file extension.

state A state defines the status of the state machine. States and state transitions
are modeled in state charts.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

U
UI User interface

Glossary

Page 264 of 269

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

VTA View transition animation

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

Index

Page 265 of 269

Index
Symbols
3D graphic, 260
3D widgets

reference, 205

A
absolute layout

reference, 233
alpha mask

reference, 196
ambient light

reference, 205
ambient texture

reference, 240
Android APK, 255
Android APK restrictions , 258
animation

reference, 197
API, 27, 260
application, 27, 28, 260
aspect, 260
auto focus

reference, 219

B
basic widgets

reference, 195
boolean

data type, 129
boolean list

data type, 130
border

reference, 218
box layout

reference, 233

C
callback, 35
camera

reference, 205
camera viewport

reference, 239
change animation

reference, 195
child visibility selection

reference, 212
color

data type, 130
coloration

reference, 218
command line, 45
communication context, 260
conditional script

data type, 130
configuration file, 33, 89, 170, 183, 191
Configuration of EB GUIDE GTF, 43
constant curve

reference, 198
container

reference, 202
core life cycle, 37
critical_errors, 42
custom stage, 37, 51

D
data type

boolean, 129
boolean list, 129
color, 130
conditional script, 130
float, 131
font, 131
ibl, 132
image, 132
integer, 133
list, 134
mesh, 133
mesh list, 133
string, 133

datapool, 260
datapool item, 260

Index

Page 266 of 269

reference, 129
DependencyResolver, 42, 96
diffuse texture

reference, 240
directional light

reference, 206
DirectX 11, 33

E
EB GUIDE GTF, 261
EB GUIDE GTF extension (see extension)
EB GUIDE GTF instance, 28

multiple instances, 28
EB GUIDE GTF SDK, 261
EB GUIDE Launcher, 256
EB GUIDE model, 25, 261
EB GUIDE Model Chooser, 255
EB GUIDE Monitor, 25
EB GUIDE Monitor extension (see extension)
EB GUIDE product line, 261
EB GUIDE Script, 261
EB GUIDE SDK, 261
EB GUIDE Studio, 261
EB GUIDE Studio extension (see extension)
EB GUIDE Studio SDK;, 261
EB GUIDE TF, 261
effect

widget feature, 218
ellipse

reference, 202
emissive texture

reference, 241
enabled

reference, 213
entry animation

reference, 195
error handling, 41
event

reference, 168
executable file, 33
exit animation

reference, 195

export, 25
exported EB GUIDE model, 50
extension, 26, 261
external input events, 74

F
fast start curve

reference, 198
file system, 29
flick gesture

reference, 221
float

data type, 131
flow layout

reference, 234
focused

reference, 213
font

data type, 132

G
gesture

reference, 221, 226
gesture ID

reference, 223
GL, 261
grid layout

reference, 235
GtfPluginLoader, 33
GtfStartup.exe, 33, 45
GUI, 261

H
HMI, 262
hold gesture

reference, 221

I
ibl

data type, 132
IBL, 262
IBLGenerator, 262

Index

Page 267 of 269

image
data type, 132
reference, 203

image-based light
reference, 206

instantiator
line template, 203
reference, 203

integer
data type, 133

interface, 42

K
key pressed

reference, 226
key released

reference, 227
key status changed

reference, 227
key unicode

reference, 227

L
label

reference, 204
layout margins

reference, 236
library, 262 (see extension)

(see also extension)
life cycle, 37, 51

model life cycle, 51
light map texture

reference, 242
line index

reference, 238
linear curve, 201
linear interpolation curve, 201
list

data type, 134
list index

reference, 238
list layout

reference, 236
long hold gesture

reference, 222

M
material

PBR GGX material, 207, 263
PBR Phong material, 209, 263
reference, 206, 207, 209

mesh
data type, 133
reference, 207

mesh list
data type, 133

metallic texture
reference, 243

model element, 262
model-view-controller, 55
model.json, 33, 45, 170

profile, 89
move in

reference, 228
move out

reference, 228
move over

reference, 229
moveable

reference, 229
multifont support, 262
multiple lines

reference, 214
multisampling, 190
MVC

model-view-controller, 55

N
namespace, 262
non-blocking strategy, 35
normal map texture

reference, 244

Index

Page 268 of 269

O
opaque texture

reference, 245
OpenGL ES, 33
operating system, 29
OS, 262

P
path gesture

reference, 223, 223
pinch gesture

reference, 224
pivot

reference, 252
platform.json, 45, 183
plug-in (see extension)
plugin, 44 (see extension)

application, 44
extension, 44

point light
reference, 210

pop up off animation
reference, 195

pop up on animation
reference, 195

pressed
references, 214

profile, 263
model.json, 89

project center, 263
project editor, 263

Q
quadratic curve

reference, 199

R
rectangle

reference, 204
reflection texture

reference, 246
resource, 263

resource management, 79
return value of the GtfStartup.exe, 42
RomFS, 47, 263
rotary

reference, 230
rotate gesture

reference, 225
rotation

reference, 252
roughness texture

reference, 247

S
scale mode

reference, 237
scaling

reference, 253
scene configuration

reference, 188
scene graph

reference, 210
scene graph node

reference, 211
script curve, 200
selected

reference, 215
selection group

reference, 215
severity level, 39
shared library, 33, 263
shearing

reference, 253
shininess texture

reference, 248
sinus curve

reference, 200
slow start curve

reference, 199
specular texture

reference, 249
spinning

reference, 216

Index

Page 269 of 269

spot light
reference, 212

stage, 37, 51
state, 263
state machine, 263
string

data type, 133
stroke

reference, 219

T
target platform, 29
template index

reference, 238
text truncation

reference, 216
tone mapping

reference, 251
touch lost

reference, 230
touch move

reference, 231
touch pressed

reference, 231
touch released

reference, 232
touch status changed

reference, 232
touched

reference, 217
tracing, 39
Tracing module, 39
tracing.json, 191
transition, 263
translation

reference, 253

U
UI, 263
user-defined focus

reference, 220

V
view, 264

reference, 194
view state

reference, 195
view template

reference, 194, 195
view transition animation, 264
viewport

reference, 239
visbility, 212
visiblity group, 212
VTA, 264

W
widget, 264

	EB GUIDE TF
	Table of Contents
	1.About this documentation
	1.1. Target audiences of the user documentation
	1.1.1. System integrators
	1.1.2. Application developers
	1.1.3. Extension developers

	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Simulating the EB GUIDE model
	4.2.5. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Framework overview
	5.1. Relationship between EB GUIDE Studio, EB GUIDE GTF and EB GUIDE Monitor
	5.2. Interactions between EB GUIDE GTF and extensions
	5.3. Interactions between EB GUIDE GTF and application
	5.4. Interaction between EB GUIDE GTF instances
	5.5. Dependencies to target platform
	5.6. Structure of EB GUIDE GTF
	5.7. Deployment of EB GUIDE GTF

	6.General concepts
	6.1. Non-blocking strategy
	6.1.1. Observer patterns and callbacks
	6.1.2. Delegates

	7.Core concepts
	7.1. Core life cycle stages
	7.2. Tracing
	7.3. Error handling
	7.3.1. Critical errors
	7.3.2. Return value of GtfStartup.exe

	7.4. Interface dependencies
	7.5. Configuration of EB GUIDE GTF
	7.6. EB GUIDE GTF plugin concept
	7.7. Run modes of EB GUIDE GTF
	7.7.1. Run EB GUIDE GTF with GtfStartup.exe
	7.7.1.1. Command line options

	7.7.2. Run EB GUIDE GTF in an existing process

	7.8. Read-only memory file system support

	8.Model concepts
	8.1. Configure EB GUIDE GTF with an exported EB GUIDE model
	8.2. Model life cycle stages
	8.3. Model structure
	8.3.1. Model MVC
	8.3.2. Model runtime structure
	8.3.3. Scene structure

	8.4. Extensions description
	8.5. Scenes and properties
	8.5.1. Widget MVC
	8.5.2. Construction and decomposition of a scene element tree
	8.5.3. Renderer
	8.5.4. Animations and view transition animations
	8.5.5. Focus policy

	8.6. Update processing in EB GUIDE GTF
	8.7. Event system
	8.7.1. Event publication
	8.7.2. Event receipt

	8.8. External input events
	8.9. Datapool
	8.9.1. Identifiers of datapool items
	8.9.2. Synchronization of datapool items
	8.9.3. Windowed lists

	8.10. Aspect
	8.11. Resource management
	8.12. Inter-process communication
	8.12.1. Connection modes
	8.12.1.1. Broadcast
	8.12.1.2. Multicast
	8.12.1.3. Direct

	9.Running EB GUIDE GTF
	9.1. Configuring an EB GUIDE model for running on a target platform
	9.2. Exporting an EB GUIDE model
	9.3. Configuring and starting EB GUIDE GTF
	9.4. Running EB GUIDE GTF with a read-only memory file system (RomFS) container

	10.Using the EB GUIDE GTF plugin mechanism
	10.1. Creating an EB GUIDE GTF plugin
	10.2. Writing an EB GUIDE GTF plugin
	10.3. Copying the resulting .dll file
	10.4. Adding an EB GUIDE GTF plugin
	10.5. Starting the simulation with GtfStartup.exe

	11.Resolving interface dependencies
	11.1. Retrieving an item from DependencyContainer
	11.2. Retrieving all instances registered to an interface
	11.3. Registering an instance to the container
	11.4. Unregistering an instance
	11.5. Registering a catalog
	11.6. Unregistering a catalog
	11.7. Creating a container

	12.Configuring EB GUIDE GTF
	12.1. Adding a scalar item to Configuration
	12.2. Adding a list item to Configuration
	12.3. Adding an object item in Configuration
	12.4. Retrieving an item from Configuration
	12.5. Creating a path value using Configuration
	12.6. Using a custom .json file to define configuration items.
	12.7. Creating new Settings

	13.Tracing logging messages
	14.Extending EB GUIDE Script with foreign functions
	15.Using the Properties module
	15.1. Using Container interface
	15.2. Using Children interface
	15.3. Using Property interface

	16.Adding widgets and widget features
	17.Using external input events
	17.1. Getting the ExternalInput interface
	17.2. Creating and sending a key event
	17.3. Creating and sending a touch event
	17.4. Creating and sending a rotary event
	17.5. Reading a key event
	17.6. Reading a touch event
	17.7. Reading a rotary event

	18.Monitoring memory usage
	19.References
	19.1. Android events
	19.2. Datapool items
	19.3. Data types
	19.3.1. Boolean
	19.3.2. Color
	19.3.3. Conditional script
	19.3.4. Float
	19.3.5. Font
	19.3.6. Function () : bool
	19.3.7. Ibl
	19.3.8. Image
	19.3.9. Integer
	19.3.10. Mesh
	19.3.11. String
	19.3.12. List

	19.4. EB GUIDE Script
	19.4.1. EB GUIDE Script keywords
	19.4.2. EB GUIDE Script operator precedence
	19.4.3. EB GUIDE Script standard library
	19.4.3.1. EB GUIDE Script functions A - B
	19.4.3.1.1. abs
	19.4.3.1.2. absf
	19.4.3.1.3. acosf
	19.4.3.1.4. animation_before
	19.4.3.1.5. animation_beyond
	19.4.3.1.6. animation_cancel
	19.4.3.1.7. animation_cancel_end
	19.4.3.1.8. animation_cancel_reset
	19.4.3.1.9. animation_pause
	19.4.3.1.10. animation_play
	19.4.3.1.11. animation_reverse
	19.4.3.1.12. animation_running
	19.4.3.1.13. animation_set_time
	19.4.3.1.14. asinf
	19.4.3.1.15. atan2f
	19.4.3.1.16. atan2i
	19.4.3.1.17. atanf
	19.4.3.1.18. bool2string

	19.4.3.2. EB GUIDE Script functions C - H
	19.4.3.2.1. ceil
	19.4.3.2.2. changeDynamicStateMachinePriority
	19.4.3.2.3. character2unicode
	19.4.3.2.4. clampf
	19.4.3.2.5. clampi
	19.4.3.2.6. clearAllDynamicStateMachines
	19.4.3.2.7. color2string
	19.4.3.2.8. cosf
	19.4.3.2.9. deg2rad
	19.4.3.2.10. expf
	19.4.3.2.11. float2string
	19.4.3.2.12. floor
	19.4.3.2.13. fmod
	19.4.3.2.14. focusMoveTo
	19.4.3.2.15. focusNext
	19.4.3.2.16. focusPrevious
	19.4.3.2.17. format_float
	19.4.3.2.18. format_int
	19.4.3.2.19. frac
	19.4.3.2.20. getConfigItem
	19.4.3.2.21. getFontAscender
	19.4.3.2.22. getFontDescender
	19.4.3.2.23. getFontLineGap
	19.4.3.2.24. getImageHeight
	19.4.3.2.25. getImageWidth
	19.4.3.2.26. getLabelTextHeight
	19.4.3.2.27. getLabelTextWidth
	19.4.3.2.28. getLineCount
	19.4.3.2.29. getLineHeight
	19.4.3.2.30. getProductString
	19.4.3.2.31. getTextHeight
	19.4.3.2.32. getTextLength
	19.4.3.2.33. getTextWidth
	19.4.3.2.34. getVersionString
	19.4.3.2.35. has_list_window
	19.4.3.2.36. hsba2color

	19.4.3.3. EB GUIDE Script functions I - R
	19.4.3.3.1. int2float
	19.4.3.3.2. int2string
	19.4.3.3.3. isDynamicStateMachineActive
	19.4.3.3.4. isWidgetOnActiveStatemachine
	19.4.3.3.5. language
	19.4.3.3.6. lerp
	19.4.3.3.7. localtime_day
	19.4.3.3.8. localtime_hour
	19.4.3.3.9. localtime_minute
	19.4.3.3.10. localtime_month
	19.4.3.3.11. localtime_second
	19.4.3.3.12. localtime_weekday
	19.4.3.3.13. localtime_year
	19.4.3.3.14. log10f
	19.4.3.3.15. logf
	19.4.3.3.16. maxf
	19.4.3.3.17. maxi
	19.4.3.3.18. minf
	19.4.3.3.19. mini
	19.4.3.3.20. nearbyint
	19.4.3.3.21. popDynamicStateMachine
	19.4.3.3.22. powf
	19.4.3.3.23. pushDynamicStateMachine
	19.4.3.3.24. rad2deg
	19.4.3.3.25. rand
	19.4.3.3.26. rgba2color
	19.4.3.3.27. round

	19.4.3.4. EB GUIDE Script functions S - W
	19.4.3.4.1. saturate
	19.4.3.4.2. seed_rand
	19.4.3.4.3. shutdown
	19.4.3.4.4. sinf
	19.4.3.4.5. skin
	19.4.3.4.6. smoothstep
	19.4.3.4.7. sqrtf
	19.4.3.4.8. string2float
	19.4.3.4.9. string2int
	19.4.3.4.10. string2string
	19.4.3.4.11. substring
	19.4.3.4.12. system_time
	19.4.3.4.13. system_time_ms
	19.4.3.4.14. tanf
	19.4.3.4.15. trace_dp
	19.4.3.4.16. trace_string
	19.4.3.4.17. transformToScreenX
	19.4.3.4.18. transformToScreenY
	19.4.3.4.19. transformToWidgetX
	19.4.3.4.20. transformToWidgetY
	19.4.3.4.21. trunc
	19.4.3.4.22. widgetGetChildCount

	19.5. Events
	19.5.1. Decimal codes for key events

	19.6. model.json configuration file
	19.6.1. Example model.json in EB GUIDE Studio

	19.7. OpenGL ES extensions
	19.8. platform.json configuration file
	19.8.1. Example platform.json in EB GUIDE Studio

	19.9. Scenes
	19.10. Touch screen types supported by EB GUIDE GTF
	19.11. tracing.json configuration file
	19.11.1. Severity levels
	19.11.2. Example tracing.json

	19.12. Widgets
	19.12.1. View
	19.12.2. Basic widgets
	19.12.2.1. Alpha mask
	19.12.2.2. Animation
	19.12.2.2.1. Constant curve
	19.12.2.2.2. Fast start curve
	19.12.2.2.3. Slow start curve
	19.12.2.2.4. Quadratic curve
	19.12.2.2.5. Sinus curve
	19.12.2.2.6. Script curve
	19.12.2.2.7. Linear curve
	19.12.2.2.8. Linear interpolation curve

	19.12.2.3. Container
	19.12.2.4. Ellipse
	19.12.2.5. Image
	19.12.2.6. Instantiator
	19.12.2.7. Label
	19.12.2.8. Rectangle

	19.12.3. 3D widgets
	19.12.3.1. Ambient light
	19.12.3.2. Camera
	19.12.3.3. Directional light
	19.12.3.4. Image-based light
	19.12.3.5. Material
	19.12.3.6. Mesh
	19.12.3.7. PBR GGX material
	19.12.3.8. PBR Phong material
	19.12.3.9. Point light
	19.12.3.10. Scene graph
	19.12.3.11. Scene graph node
	19.12.3.12. Spot light

	19.13. Widget features
	19.13.1. Common
	19.13.1.1. Child visibility selection
	19.13.1.2. Enabled
	19.13.1.3. Focused
	19.13.1.4. Multiple lines
	19.13.1.5. Pressed
	19.13.1.6. Selected
	19.13.1.7. Selection group
	19.13.1.8. Spinning
	19.13.1.9. Text truncation
	19.13.1.10. Touched

	19.13.2. Effect
	19.13.2.1. Border
	19.13.2.2. Coloration
	19.13.2.3. Stroke

	19.13.3. Focus
	19.13.3.1. Auto focus
	19.13.3.2. User-defined focus

	19.13.4. Gestures
	19.13.4.1. Flick gesture
	19.13.4.2. Hold gesture
	19.13.4.3. Long hold gesture
	19.13.4.4. Path gestures
	19.13.4.4.1. Gesture IDs

	19.13.4.5. Pinch gesture
	19.13.4.6. Rotate gesture

	19.13.5. Input handling
	19.13.5.1. Gestures
	19.13.5.2. Key pressed
	19.13.5.3. Key released
	19.13.5.4. Key status changed
	19.13.5.5. Key unicode
	19.13.5.6. Move in
	19.13.5.7. Move out
	19.13.5.8. Move over
	19.13.5.9. Moveable
	19.13.5.10. Rotary
	19.13.5.11. Touch lost
	19.13.5.12. Touch move
	19.13.5.13. Touch pressed
	19.13.5.14. Touch released
	19.13.5.15. Touch status changed

	19.13.6. Layout
	19.13.6.1. Absolute layout
	19.13.6.2. Box layout
	19.13.6.3. Flow layout
	19.13.6.4. Grid layout
	19.13.6.5. Layout margins
	19.13.6.6. List layout
	19.13.6.7. Scale mode

	19.13.7. List management
	19.13.7.1. Line index
	19.13.7.2. List index
	19.13.7.3. Template index
	19.13.7.4. Viewport

	19.13.8. 3D
	19.13.8.1. Camera viewport
	19.13.8.2. Ambient texture
	19.13.8.3. Diffuse texture
	19.13.8.4. Emissive texture
	19.13.8.5. Light map texture
	19.13.8.6. Metallic texture
	19.13.8.7. Normal map texture
	19.13.8.8. Opaque texture
	19.13.8.9. Reflection texture
	19.13.8.10. Roughness texture
	19.13.8.11. Shininess texture
	19.13.8.12. Specular texture
	19.13.8.13. Texture coordinate transformation
	19.13.8.14. Tone mapping

	19.13.9. Transformation
	19.13.9.1. Pivot
	19.13.9.2. Rotation
	19.13.9.3. Scaling
	19.13.9.4. Shearing
	19.13.9.5. Translation

	Appendix A. EB GUIDE TF APK
	A.1. Installation of EB GUIDE TF on Android
	A.1.1. System requirements
	A.1.2. Features of the EB GUIDE TF APK
	A.1.3. Description of the EB GUIDE TF APK files
	A.1.3.1. Released APK and custom APK
	A.1.3.2. Restrictions

	A.1.4. Android life cycle management
	A.1.5. Directory for EB GUIDE models
	A.1.6. Android layout handling

	Glossary
	Index

