Software Updates Over-the-Air and Diagnostics

Alexander Much
August 23, 2018
Interesting Times...

- Machine learning
- Crowdsourced data
- System of systems
- Third party access
- Personalization
- Shortened development cycles
- Evolution after SOP
- New topics
- New business models
Status Today

Setup:
- Main delivery of hardware and software respectively functions at SOP
- Updates will be done at garage

Business:
- Cash-Flow is Customer to OEM to Tier1, Tier2, …
- Software value not fully visible (cost is realized, value is not)
Driving Forces behind OTA

Setup:
- First delivery of hardware, software and functions at SOP
- New players enter the market with a focus on operations

Driving maybe not possible when data connection missing
Driving Forces behind OTA

Business:
- Value streams change
- Business cases always need to include both: production and operations
- Heterogeneous business models
Updates through the Ages

Classic software updates

- Physical access to vehicle necessary
- Needs to be done in repair shop

Software updates over-the-air

- Software updates executable anytime and anywhere
- Time- and cost-efficient updating of a fleet on the road
SW Update Process OTA “creates” New Challenges

Software updates over-the-air

- Software updates executable anytime and anywhere
- Time- and cost-efficient updating of a fleet on the road

Challenges for the SW update

- “Unprotected” environment / power consumption calculation necessary / download strategy
- Different embedded runtime environments and architecture
- Virtual diagnostic tester / embedded diagnostic client
- Security
- SW quality / Failover Strategy
SW Update OTA Major Use-Cases

Safety & security updates
- Prevent the intrusion of malicious software code with cybersecurity updates on connected cars
- React on new threats and vulnerabilities
- Mitigate the impact of software-related recalls

Functional updates
- Improve driver assistance functions on their way towards autonomous driving
- Enable Software-as-a-Service in the automotive area
- Enable an additional source of revenue after vehicles are sold

Infrastructure use-cases
- Update the vehicle’s ECU’s during manufacturing
- Enable remote diagnostics on a fleet of cars on the road
- Predict failures by conducting data analysis on the collected data
Benefit from our In-Vehicle Know-How

Classic AUTOSAR
- Deep understanding of underlying operation systems and basic software for update process
- Success story:
 - AUTOSAR migration for Renault-Nissan-Mitsubishi Alliance

Adaptive AUTOSAR
- EB is a supplier for SW for high performance controllers on the road in 2019
- Offering includes basic software, operating systems (Linux), Hypervisor, and tooling

Functional safety
- Basic software configuration and development to fulfill project requirements
- Functional safety concepts based on EB’s safety products
- ASIL- and SPICE-compliant development processes

Security
- Secure SW base for ECUs
- On the road in >36 million vehicles
- EB’s portfolio is extended by Argus’ offerings to enable a one-stop-shop

Software integration
- Can be integrated in any cloud environment
- Success stories:
 - ADAS integration for Daimler
 - Ford Sync integration
EB cadian Product Line at a Glance

EB cadian Analytics
Remote analytics tool to gain valuable insights from the fleet on the road, and as a powerful basis for updates.

EB cadian Sync
Secure software updates over-the-air.
On-Board OTA Component Allocations

Example 1
- TCU
 - Connectivity client
- Performance Gateway
 - VLM Master
 - Local storage
- Classic Target (Autosar)
- Performance Target
 - Update Slave

Example 2
- TCU (Performance ECU)
 - Connectivity Client
 - VLM Master
 - Local storage
- Classic Gateway
 - (Routing from TCU to update targets enabled)
- Classic Target (Autosar)
- Performance Target
 - Update Slave

Example 3
- TCU
 - Connectivity client
- Classic Gateway
 - VLM Master
 - Local storage
- Classic Target (Autosar)
- Performance Target
 - Update Slave
- IVI
 - VLM Master
 - Local storage
Modular Solutions for Maximum Flexibility

High level overview of EB cadian

On-board components
- EB cadian Sync components
- Lifespan protection components
- EB cadian Analytics components

Backend services
- EB cadian Sync services
- Lifespan protection services
- EB cadian Analytics services

Portal
- Update UI
- Security UI
- Analytics UI
- Foundation UI

Foundation service including on-board connectivity client

Argus service/component
Software Updates Over-the-Air in AdaptiveCore

EB corbos

- Update capability the Adaptive AUTOSAR is provided by services in the Adaptive platform

- On application level, the Connectivity client to enable backend communication and the Update master as central update manager are required
Benefit from Differential Updates

- Save costs by saving bandwidth
- Reduce update time through differential updates
- Creation of a differential file between initial software version and new software version on binary level
- Application of the diff to the target image
Software Updates Over-the-Air and Diagnostics

Failover Strategies in Detail

Retry

• In case of a failure during or after installation of the new software it is installed again to bring the target ECU back to an operational state
• Retry logic is in the VLM master
• Amount of retries is configurable

Rollback

• In case of a failure during or after installation of the new software the latest operational software will be installed again to bring the target ECU back to an operational state
• Rollback logic is in the VLM master or in the target ECU
• Requires additional storage to preserve the “old” software
Failover Strategies in Detail

A/B/A’ with external flash

- Download of the new application software (plus the old one – optional) to an external flash memory on the target ECU
- Update of the internal NvM with the previously downloaded software from the external flash memory
- In case of a failure the initial application software may be restored with the 2nd application image initially stored in external flash memory

A/B swap (double-bank)

- Internal NvM ist available with at least twice the size of the application software
- New software application is installed to the 2nd flash segment while parked
- When 2nd application was installed successfully, ECU will boot the new software
- Update while driving is possible with an additional SWC for installation of 2nd application while driving
Key Technologies for Connected Cars

EB cadian Sync

The way to manage higher SW complexity and shorter development and update cycle.

Enabler for new business – SWaaS, new features for cars on the road.

EB cadian Analytics

Key technology to update SW inside a car and enable new features.

Key technology to collect data for further analysis.

Change from “connected” to “embedded”

Elektrobit offer

End-to-end products for Connected services and Cyber Security using SW update OTA and embedded Diagnostics.
Thank you!

alexander.much@elektrobit.com
www.elektrobit.com