
EB GUIDE Studio
User manual

Version 6.6.0.142803

EB GUIDE Studio

Page 2 of 336

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

ProOSEK®, tresos®, and street director® are registered trademarks of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2018, Elektrobit Automotive GmbH.

EB GUIDE Studio

Page 3 of 336

Table of Contents
1. About this documentation .. 15

1.1. Target audience: Modelers ... 15
1.2. Structure of user documentation ... 15
1.3. Typography and style conventions .. 16
1.4. Naming conventions ... 18
1.5. Path conventions ... 19

2. Safe and correct use .. 20
2.1. Intended use ... 20
2.2. Possible misuse ... 20

3. Support .. 21
4. Introduction to EB GUIDE ... 22

4.1. The EB GUIDE product line ... 22
4.2. EB GUIDE Studio .. 22

4.2.1. Modeling HMI behavior ... 22
4.2.2. Modeling HMI appearance ... 23
4.2.3. Handling data ... 23
4.2.4. Simulating the EB GUIDE model .. 23
4.2.5. Exporting the EB GUIDE model ... 24

4.3. EB GUIDE TF ... 24
5. Tutorial: Getting started .. 26

5.1. Starting EB GUIDE .. 26
5.2. Creating a project .. 27
5.3. Modeling HMI behavior .. 28
5.4. Modeling HMI appearance ... 31
5.5. Starting the simulation ... 34

6. Background information .. 35
6.1. 3D graphics ... 35

6.1.1. Supported 3D graphic formats ... 35
6.1.2. Settings for 3D graphic files ... 35
6.1.3. Import of a 3D graphic file ... 36

6.2. Animations .. 37
6.2.1. Animations for widgets .. 38
6.2.2. Animations for view transitions ... 38

6.3. Application programming interface between application and model .. 39
6.4. Communication context .. 39
6.5. Components of the graphical user interface ... 39

6.5.1. Project center ... 40
6.5.1.1. Navigation area .. 40
6.5.1.2. Content area .. 40

EB GUIDE Studio

Page 4 of 336

6.5.2. Project editor .. 41
6.5.2.1. Navigation component .. 42
6.5.2.2. Outline component .. 43
6.5.2.3. Toolbox component .. 43
6.5.2.4. Properties component ... 44
6.5.2.5. Content area .. 45
6.5.2.6. Events component ... 46
6.5.2.7. Datapool component .. 47
6.5.2.8. Assets component ... 47
6.5.2.9. Command area .. 47
6.5.2.10. Problems component .. 48

6.5.3. Dockable component ... 49
6.5.4. EB GUIDE Monitor .. 50

6.6. Datapool .. 52
6.6.1. Concept .. 52
6.6.2. Datapool items .. 52
6.6.3. Windowed lists .. 52

6.7. EB GUIDE model and EB GUIDE project .. 53
6.8. Event handling ... 54

6.8.1. Event system .. 54
6.8.2. Events .. 54

6.9. Extensions ... 54
6.9.1. EB GUIDE Studio extension .. 55
6.9.2. EB GUIDE GTF extension ... 55

6.10. Languages ... 55
6.10.1. Display languages in EB GUIDE Studio .. 55
6.10.2. Languages in the EB GUIDE model ... 56
6.10.3. Export and import of language-dependent texts ... 56

6.11. Skins ... 56
6.12. Resource management .. 57

6.12.1. Fonts .. 57
6.12.1.1. Bitmap fonts ... 58

6.12.2. Images ... 58
6.12.2.1. 9-patch images ... 58

6.12.3. Meshes for 3D graphics .. 59
6.12.4. .psd file format .. 60

6.13. Scripting language EB GUIDE Script ... 60
6.13.1. Capabilities and areas of application .. 60
6.13.2. Namespaces and identifiers ... 61
6.13.3. Comments .. 61
6.13.4. Types ... 62
6.13.5. Expressions .. 63

EB GUIDE Studio

Page 5 of 336

6.13.6. Constants and references .. 63
6.13.7. Arithmetic and logic expressions .. 64
6.13.8. L-values and r-values .. 64
6.13.9. Local variables .. 65
6.13.10. While loops ... 66
6.13.11. If-then-else .. 66
6.13.12. Foreign function calls ... 68
6.13.13. Datapool access .. 68
6.13.14. Widget properties .. 69
6.13.15. Lists .. 70
6.13.16. Events .. 71
6.13.17. String formatting .. 73
6.13.18. The standard library .. 73

6.14. Scripted values .. 73
6.15. Shortcuts, buttons and icons .. 75

6.15.1. Shortcuts .. 75
6.15.2. Command line options ... 76

6.15.2.1. Command line options for Studio.Console.exe ... 76
6.15.2.2. Command line options for Monitor.Console.exe 77

6.15.3. Buttons ... 78
6.15.4. Icons .. 79

6.16. State machines and states ... 79
6.16.1. State machines ... 79

6.16.1.1. Haptic state machine .. 79
6.16.1.2. Logic state machine .. 80
6.16.1.3. Dynamic state machine ... 80

6.16.2. States ... 80
6.16.2.1. Compound state ... 80
6.16.2.2. View state .. 82
6.16.2.3. Initial state ... 82
6.16.2.4. Final state .. 83
6.16.2.5. Choice state ... 84
6.16.2.6. History states ... 85

6.16.3. Transitions .. 88
6.16.4. Execution of a state machine ... 92
6.16.5. EB GUIDE notation in comparison to UML notation ... 96

6.16.5.1. Supported elements .. 97
6.16.5.2. Not supported elements .. 97
6.16.5.3. Deviations .. 97

6.17. Touch input .. 98
6.17.1. Non-path gestures ... 98
6.17.2. Path gestures ... 98

EB GUIDE Studio

Page 6 of 336

6.17.3. Input processing and gestures ... 99
6.17.4. Multi-touch input .. 99

6.18. Widgets ... 100
6.18.1. View ... 100
6.18.2. Widget categories .. 101
6.18.3. Widget properties .. 102
6.18.4. Widget templates ... 104
6.18.5. Widget features ... 104

6.18.5.1. Focus widget feature category ... 106
6.18.5.2. List management widget feature category .. 107

7. Modeling HMI behavior ... 108
7.1. Modeling a state machine .. 108

7.1.1. Adding a state machine ... 108
7.1.2. Adding a dynamic state machine .. 108
7.1.3. Defining an entry action for a state machine ... 109
7.1.4. Defining an exit action for a state machine ... 109
7.1.5. Deleting a state machine ... 110

7.2. Modeling states ... 110
7.2.1. Adding a state .. 110
7.2.2. Adding a state to a compound state ... 111
7.2.3. Adding a choice state .. 112
7.2.4. Defining an entry action for a state ... 113
7.2.5. Defining an exit action for a state ... 114
7.2.6. Deleting a model element from a state machine .. 115

7.3. Connecting states through transitions .. 115
7.3.1. Adding a transition between two states ... 115
7.3.2. Moving a transition .. 116
7.3.3. Defining a trigger for a transition .. 117
7.3.4. Adding a condition to a transition ... 118
7.3.5. Adding an action to a transition .. 119
7.3.6. Adding an internal transition to a state ... 121

8. Modeling HMI appearance .. 122
8.1. Working with widgets ... 122

8.1.1. Adding a view ... 122
8.1.2. Adding a basic widget to a view ... 123

8.1.2.1. Adding a rectangle ... 123
8.1.2.2. Adding an ellipse .. 123

8.1.2.2.1. Editing an ellipse ... 123
8.1.2.3. Adding an image .. 124
8.1.2.4. Adding a label .. 126

8.1.2.4.1. Changing the font of a label ... 126
8.1.2.5. Adding a container ... 127

EB GUIDE Studio

Page 7 of 336

8.1.2.6. Adding an instantiator ... 128
8.1.2.7. Adding an animation ... 130
8.1.2.8. Adding an alpha mask .. 131

8.1.3. Adding a 3D widget to a view .. 132
8.1.3.1. Adding a scene graph to a view .. 132

8.1.4. Adding a .psd file to a view .. 133
8.1.5. Deleting a widget from a view .. 134

8.2. Working with widget properties ... 135
8.2.1. Positioning a widget .. 135
8.2.2. Resizing a widget .. 136
8.2.3. Linking between widget properties .. 137
8.2.4. Linking a widget property to a datapool item ... 139
8.2.5. Adding a user-defined property to a widget ... 140

8.2.5.1. Adding a user-defined property of type Function (): bool 141
8.2.6. Renaming a user-defined property ... 142

8.3. Extending a widget by widget features .. 143
8.3.1. Adding a widget feature ... 143
8.3.2. Removing a widget feature .. 145

8.4. Adding a language to the EB GUIDE model .. 146
8.4.1. Adding a language .. 147
8.4.2. Deleting a language .. 148

8.5. Working with skin support .. 148
8.5.1. Adding a skin to the EB GUIDE model ... 149
8.5.2. Adding skin support to a datapool item ... 149
8.5.3. Switching between skins .. 150
8.5.4. Deleting a skin .. 151

8.6. Animating a view transition ... 151
8.6.1. Adding an entry animation ... 151
8.6.2. Adding an exit animation ... 152

8.7. Re-using a widget .. 153
8.7.1. Adding a template ... 153
8.7.2. Defining the template interface ... 153
8.7.3. Using a template ... 154
8.7.4. Deleting a template ... 155

9. Handling data ... 156
9.1. Adding an event .. 156
9.2. Adding a parameter to an event ... 156
9.3. Addressing an event .. 157
9.4. Deleting an event ... 158
9.5. Adding a datapool item .. 158
9.6. Editing datapool items of a list type .. 159
9.7. Converting a property to a scripted value .. 159

EB GUIDE Studio

Page 8 of 336

9.8. Establishing external communication ... 160
9.9. Linking between datapool items .. 161
9.10. Deleting a datapool item ... 163

10. Handling a project ... 164
10.1. Creating a project .. 164
10.2. Opening a project .. 165

10.2.1. Opening a project from the file explorer .. 165
10.2.2. Opening a project within EB GUIDE Studio ... 165

10.3. Renaming model elements ... 166
10.4. Validating and simulating an EB GUIDE model .. 166

10.4.1. Validating an EB GUIDE model .. 167
10.4.1.1. Validating an EB GUIDE model using EB GUIDE Studio 167
10.4.1.2. Validating an EB GUIDE model using command line 168

10.4.2. Starting and stopping the simulation ... 168
10.5. Exporting an EB GUIDE model ... 168

10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio .. 169
10.5.2. Exporting an EB GUIDE model using command line .. 169

10.6. Changing the display language of EB GUIDE Studio .. 170
10.7. Configuring profiles .. 170

10.7.1. Adding a profile ... 170
10.7.2. Adding a library ... 171
10.7.3. Configuring a scene .. 173

10.8. Exporting and importing language-dependent texts .. 174
10.8.1. Exporting language-dependent texts ... 174
10.8.2. Importing language-dependent texts ... 175

10.8.2.1. Importing language-dependent texts using EB GUIDE Studio 176
10.8.2.2. Importing language-dependent texts using command line 176

10.9. Working with EB GUIDE Monitor ... 177
10.9.1. Firing an event in EB GUIDE Monitor ... 177
10.9.2. Changing value of the datapool item with EB GUIDE Monitor 178
10.9.3. Starting scripts in EB GUIDE Monitor ... 179

10.9.3.1. Writing script files for EB GUIDE Monitor ... 180
10.9.4. Starting EB GUIDE Monitor as a stand-alone application .. 183

11. Tutorials .. 185
11.1. Tutorial: Adding a dynamic state machine .. 185
11.2. Tutorial: Modeling button behavior with EB GUIDE Script .. 193
11.3. Tutorial: Modeling a path gesture .. 200
11.4. Tutorial: Creating a list with dynamic content ... 203
11.5. Tutorial: Making an ellipse move across the screen .. 210
11.6. Tutorial: Adding a language-dependent text to a datapool item .. 213
11.7. Tutorial: Working with a 3D graphic ... 217

12. References ... 223

EB GUIDE Studio

Page 9 of 336

12.1. Android events ... 223
12.2. Datapool items ... 224
12.3. Data types ... 224

12.3.1. Mesh .. 224
12.3.2. Boolean .. 224
12.3.3. Color .. 225
12.3.4. Conditional script ... 225
12.3.5. Float ... 226
12.3.6. Font .. 226
12.3.7. Image ... 226
12.3.8. Integer .. 227
12.3.9. List ... 227
12.3.10. String .. 228

12.4. EB GUIDE Script ... 229
12.4.1. EB GUIDE Script keywords .. 229
12.4.2. EB GUIDE Script operator precedence ... 230
12.4.3. EB GUIDE Script standard library ... 230

12.4.3.1. EB GUIDE Script functions A .. 231
12.4.3.1.1. abs ... 231
12.4.3.1.2. absf ... 231
12.4.3.1.3. acosf ... 231
12.4.3.1.4. animation_before ... 231
12.4.3.1.5. animation_beyond ... 232
12.4.3.1.6. animation_cancel ... 232
12.4.3.1.7. animation_cancel_end ... 232
12.4.3.1.8. animation_cancel_reset ... 232
12.4.3.1.9. animation_pause ... 233
12.4.3.1.10. animation_play ... 233
12.4.3.1.11. animation_reverse .. 233
12.4.3.1.12. animation_running ... 233
12.4.3.1.13. animation_set_time ... 234
12.4.3.1.14. asinf ... 234
12.4.3.1.15. atan2f ... 234
12.4.3.1.16. atan2i ... 234
12.4.3.1.17. atanf ... 235

12.4.3.2. EB GUIDE Script functions C - H ... 235
12.4.3.2.1. ceil ... 235
12.4.3.2.2. changeDynamicStateMachinePriority 235
12.4.3.2.3. character2unicode ... 236
12.4.3.2.4. clearAllDynamicStateMachines .. 236
12.4.3.2.5. color2string ... 236
12.4.3.2.6. cosf ... 236

EB GUIDE Studio

Page 10 of 336

12.4.3.2.7. deg2rad ... 237
12.4.3.2.8. expf ... 237
12.4.3.2.9. float2string ... 237
12.4.3.2.10. floor ... 237
12.4.3.2.11. focusNext .. 238
12.4.3.2.12. focusPrevious ... 238
12.4.3.2.13. format_float ... 238
12.4.3.2.14. format_int ... 239
12.4.3.2.15. getLineCount ... 240
12.4.3.2.16. getTextHeight ... 240
12.4.3.2.17. getTextLength ... 240
12.4.3.2.18. getTextWidth ... 241
12.4.3.2.19. has_list_window ... 241
12.4.3.2.20. hsba2color ... 241

12.4.3.3. EB GUIDE Script functions I - R .. 242
12.4.3.3.1. int2float ... 242
12.4.3.3.2. int2string ... 242
12.4.3.3.3. isDynamicStateMachineActive .. 242
12.4.3.3.4. language ... 243
12.4.3.3.5. localtime_day ... 243
12.4.3.3.6. localtime_hour ... 243
12.4.3.3.7. localtime_minute ... 243
12.4.3.3.8. localtime_month ... 244
12.4.3.3.9. localtime_second ... 244
12.4.3.3.10. localtime_weekday ... 244
12.4.3.3.11. localtime_year .. 244
12.4.3.3.12. log10f ... 244
12.4.3.3.13. logf ... 245
12.4.3.3.14. nearbyint ... 245
12.4.3.3.15. popDynamicStateMachine .. 245
12.4.3.3.16. powf ... 245
12.4.3.3.17. pushDynamicStateMachine .. 246
12.4.3.3.18. rad2deg ... 246
12.4.3.3.19. rand ... 246
12.4.3.3.20. shutdown ... 246
12.4.3.3.21. rgba2color ... 247
12.4.3.3.22. round ... 247

12.4.3.4. EB GUIDE Script functions S - W .. 247
12.4.3.4.1. seed_rand ... 247
12.4.3.4.2. sinf ... 247
12.4.3.4.3. skin ... 248
12.4.3.4.4. sqrtf ... 248

EB GUIDE Studio

Page 11 of 336

12.4.3.4.5. string2float ... 248
12.4.3.4.6. string2int ... 249
12.4.3.4.7. string2string ... 249
12.4.3.4.8. substring ... 249
12.4.3.4.9. system_time ... 250
12.4.3.4.10. system_time_ms ... 250
12.4.3.4.11. tanf ... 250
12.4.3.4.12. trace_dp ... 250
12.4.3.4.13. trace_string ... 251
12.4.3.4.14. transformToScreenX ... 251
12.4.3.4.15. transformToScreenY ... 251
12.4.3.4.16. transformToWidgetX ... 251
12.4.3.4.17. transformToWidgetY ... 252
12.4.3.4.18. trunc ... 252
12.4.3.4.19. widgetGetChildCount ... 252

12.5. Events ... 253
12.6. model.json configuration file .. 253

12.6.1. Example model.json in EB GUIDE Studio ... 260
12.7. platform.json configuration file .. 262

12.7.1. Example platform.json in EB GUIDE Studio .. 264
12.8. Scenes .. 266
12.9. Touch screen types supported by EB GUIDE GTF ... 268
12.10. Widgets ... 268

12.10.1. View ... 268
12.10.2. Basic widgets .. 269

12.10.2.1. Alpha mask .. 270
12.10.2.2. Animation ... 271

12.10.2.2.1. Constant curves ... 272
12.10.2.2.2. Fast start curves .. 272
12.10.2.2.3. Slow start curves ... 273
12.10.2.2.4. Quadratic curves .. 273
12.10.2.2.5. Sinus curves .. 274
12.10.2.2.6. Script curves .. 274
12.10.2.2.7. Linear curves ... 275
12.10.2.2.8. Linear interpolation curves .. 275

12.10.2.3. Container ... 276
12.10.2.4. Ellipse .. 276
12.10.2.5. Image ... 277
12.10.2.6. Instantiator ... 277
12.10.2.7. Label .. 278
12.10.2.8. Rectangle ... 278

12.10.3. 3D widgets .. 279

EB GUIDE Studio

Page 12 of 336

12.10.3.1. Ambient light .. 279
12.10.3.2. Camera .. 279
12.10.3.3. Directional light ... 280
12.10.3.4. Material .. 280
12.10.3.5. Mesh .. 280
12.10.3.6. PBR GGX material .. 281
12.10.3.7. PBR Phong material ... 282
12.10.3.8. Point light ... 282
12.10.3.9. Scene graph ... 283
12.10.3.10. Scene graph node .. 283
12.10.3.11. Spot light .. 284

12.11. Widget features .. 284
12.11.1. Common ... 285

12.11.1.1. Child visibility selection .. 285
12.11.1.2. Enabled .. 285
12.11.1.3. Focused ... 285
12.11.1.4. Multiple lines ... 286
12.11.1.5. Pressed .. 286
12.11.1.6. Selected ... 287
12.11.1.7. Selection group ... 287
12.11.1.8. Spinning ... 288
12.11.1.9. Text truncation .. 288
12.11.1.10. Touched .. 289

12.11.2. Effect .. 290
12.11.2.1. Border .. 290
12.11.2.2. Coloration ... 290
12.11.2.3. Stroke ... 291

12.11.3. Focus .. 291
12.11.3.1. Auto focus .. 291
12.11.3.2. User-defined focus .. 292

12.11.4. Gestures ... 293
12.11.4.1. Flick gesture ... 293
12.11.4.2. Hold gesture ... 293
12.11.4.3. Long hold gesture ... 294
12.11.4.4. Path gestures ... 294

12.11.4.4.1. Gesture IDs ... 295
12.11.4.5. Pinch gesture .. 296
12.11.4.6. Rotate gesture .. 297

12.11.5. Input handling .. 298
12.11.5.1. Gestures ... 298
12.11.5.2. Key pressed ... 298
12.11.5.3. Key released .. 298

EB GUIDE Studio

Page 13 of 336

12.11.5.4. Key status changed ... 299
12.11.5.5. Key unicode .. 299
12.11.5.6. Move in .. 300
12.11.5.7. Move out .. 300
12.11.5.8. Move over .. 301
12.11.5.9. Moveable .. 301
12.11.5.10. Rotary .. 301
12.11.5.11. Touch lost ... 302
12.11.5.12. Touch move .. 302
12.11.5.13. Touch pressed .. 303
12.11.5.14. Touch released .. 303
12.11.5.15. Touch status changed .. 304

12.11.6. Layout ... 305
12.11.6.1. Absolute layout ... 305
12.11.6.2. Box layout .. 305
12.11.6.3. Flow layout ... 306
12.11.6.4. Grid layout .. 307
12.11.6.5. Layout margins ... 307
12.11.6.6. List layout ... 308
12.11.6.7. Scale mode .. 309

12.11.7. List management ... 310
12.11.7.1. Line index ... 310
12.11.7.2. List index .. 310
12.11.7.3. Template index .. 310
12.11.7.4. Viewport ... 310

12.11.8. 3D ... 311
12.11.8.1. Camera viewport ... 311
12.11.8.2. Ambient texture ... 311
12.11.8.3. Diffuse texture ... 312
12.11.8.4. Emissive texture .. 313
12.11.8.5. Light map texture .. 314
12.11.8.6. Normal map texture ... 315
12.11.8.7. Opaque texture ... 316
12.11.8.8. Reflection texture .. 316
12.11.8.9. Specular texture .. 317
12.11.8.10. Tone mapping ... 318

12.11.9. Transformation ... 319
12.11.9.1. Pivot ... 319
12.11.9.2. Rotation .. 320
12.11.9.3. Scaling ... 320
12.11.9.4. Shearing ... 320
12.11.9.5. Translation .. 321

EB GUIDE Studio

Page 14 of 336

13. Installation of EB GUIDE Studio .. 322
13.1. Background information .. 322

13.1.1. Restrictions ... 322
13.1.2. System requirements ... 322

13.2. Downloading EB GUIDE ... 323
13.3. Installing EB GUIDE ... 323
13.4. Uninstalling EB GUIDE ... 324

Glossary ... 326
Index .. 330

EB GUIDE Studio
Chapter 1. About this documentation

Page 15 of 336

1. About this documentation

1.1. Target audience: Modelers
Modelers use EB GUIDE Studio to create a human machine interface (HMI). In EB GUIDE the HMI is called
EB GUIDE model. Communication with applications is carried out through determined events using the event
mechanism, through datapool items using the datapool and through user-specific EB GUIDE Script functions.

Modelers perform the following tasks:

► Use an architecture of widgets and views to specify graphical elements on the displays

► Communicate with designers and usability experts to optimize user interfaces

► Use state machine functionality to specify when graphical elements are displayed

► Define how elements react to input from devices such as control panels or touch screens

► Define how elements receive information from hardware or software applications that offer services like
a navigation unit

► Define interfaces between model elements as well as input and output devices

Modelers have profound knowledge of the following:

► EB GUIDE Studio features

► The UML state machine concept

► The specifications and requirements of the domain

► The interchanged data and the EB GUIDE GTF communication mechanism

► The specifications of 3D graphics, if 3D graphics are used in the project

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

EB GUIDE Studio
Chapter 1. About this documentation

Page 16 of 336

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
The following pictographs and signal words are used in this documentation to indicate important information.

The signal word WARNING indicates information that is vital for the success of the configuration.

WARNING Source and kind of problem
What can happen to the software?

What are the consequences of the problem?

How does the user avoid the problem?

The signal word NOTE indicates important information on a subject.

NOTE Important information
Gives important information on a subject.

The signal word TIP provides helpful hints, tips and shortcuts.

EB GUIDE Studio
Chapter 1. About this documentation

Page 17 of 336

TIP Helpful hints
Gives helpful hints

Throughout the documentation you will find words and phrases that are displayed in bold or in italic or mono-
spaced font.

To find out what these conventions mean, see the following examples.

All default text is written in Arial Regular font.

Font Description Example

Arial italics to emphasize new or important terms The basic building blocks of a configuration are
module configurations.

Arial boldface for GUI elements and keyboard keys 1. In the Project drop-down list box, select
Project_A.

2. Press the Enter key.

Monospaced font
(Courier)

for file names, directory names and
chapter names

Put your script in the function_name/abcdi-
rectory.

Monospaced font
(Courier)

for user input, code, and file directo-
ries

CC_FILES_TO_BUILD =(PROJECT_PATH)/

source/network/can_node.c CC_-

FILES_TO_BUILD += $(PROJECT_PATH)/

source/network/can_config.c

The module calls the BswM_Dcm_Re-
questSessionMode() function.

For the project name, enter Project_Test.

Square brackets
[]

to denote optional parameters; for
command syntax with optional para-
meters

insertBefore [<opt>]

Curly brackets {} to denote mandatory parameters; for
command syntax with mandatory pa-
rameters

insertBefore {<file>}

Three dots … to indicate further parameters; for
command syntax with multiple para-
meters

insertBefore [<opt>…]

A vertical bar | to indicate all available parameters;
for command syntax in which you se-
lect one of the available parameters

allowinvalidmarkup {on|off}

EB GUIDE Studio
Chapter 1. About this documentation

Page 18 of 336

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.6

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH/platform/<platform name>.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.6/platform/win32

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

C:/Users/[user name]/Documents/EB GUIDE 6.6/projects/

► The directory to which you export your EB GUIDE model is referred to as $EXPORT_PATH.

EB GUIDE Studio
Chapter 1. About this documentation

Page 19 of 336

1.5. Path conventions
EB GUIDE Studio supports handling of path names with more than 260 characters in Windows 10. A full path
name can have more than 260 characters, however, single file names or directory names in the path still have
a limit of 248 characters.

NOTE Long path names in Windows 7
Windows 7 does not support handling of long path names. To use long path names, run EB
GUIDE Studio on Windows 10. For more information on how to enable long path names in
Windows 10, see the Windows 10 documentation.

EB GUIDE Studio
Chapter 2. Safe and correct use

Page 20 of 336

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by Elektrobit Automotive GmbH to implement human
machine interfaces in safety-relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety-relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact Elektrobit Automotive GmbH for clarification at chapter 3, “Support“.

EB GUIDE Studio
Chapter 3. Support

Page 21 of 336

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click Help. The version number is located in the lower right corner of
the dialog.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 22 of 336

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE prod-
uct line provides tooling and platform for graphical or speech user interfaces. The EB GUIDE product line is
intended to be used in projects for infotainment head units, cluster instruments and selected industry applica-
tions. Main use cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. EB GUIDE TF is available for
development PCs and for different embedded platforms.

The EB GUIDE model that is created with EB GUIDE Studio and the exported EB GUIDE model that is executed
on EB GUIDE TF are completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

State machines
A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

States
States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 23 of 336

4.2.2. Modeling HMI appearance
In EB GUIDE Studio you define the graphical user interface and the speech user interface of the EB GUIDE
model.

Widgets
To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that
define the look. They are mainly used to display information, for example text labels or images. Widgets
also allow users to control system behavior, for example buttons or sliders. Multiple widgets are assembled
to a structure, which is called view.

Spidgets
To create a speech user interface EB GUIDE Studio offers spidgets. Spidgets are used to specify the
fundamental parts of a speech dialog. Speech recognition as user input and speech synthesis as system
output. A prompt spidget allows the modeling of text that is played through a text-to-speech synthesizer
(TTS). A command spidget allows the modeling of grammars that describe what a speech recognizer
understands. Related spidgets are grouped together through model elements. This group is called talk.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

Datapool
The datapool is an embedded database that holds all data to be displayed and further internal information.
Datapool items store and exchange data.

Event system
Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

Application software can access events and the datapool through the API.

4.2.4. Simulating the EB GUIDE model
With EB GUIDE Studio you can test the functionality of your EB GUIDE model during simulation. You start the
simulation with a mouse-click and can immediately experience the look and feel of your EB GUIDE model.

You interact with simulation using input devices like mouse, keyboard, or touch screen.

You can also control your EB GUIDE model with EB GUIDE Monitor and do the following:

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 24 of 336

► Change the displayed data by changing values of datapool items

► Simulate user input by firing events

► Track all changes in the log

► Start scripts

You can also use EB GUIDE Monitor as a stand-alone application.

4.2.5. Exporting the EB GUIDE model
To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
EB GUIDE TF consists of the GtfStartup executable file and a set of libraries, which are required to execute
an EB GUIDE model.

Depending on the project type selected in EB GUIDE Studio you execute:

► EB GUIDE GTF

EB GUIDE Graphics Target Framework is the run-time environment executing a graphical HMI.

► EB GUIDE STF

EB GUIDE Speech Target Framework is the run-time environment executing speech functionality in the
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

EB GUIDE Studio
Chapter 4. Introduction to EB GUIDE

Page 25 of 336

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstrac-
tion to the real graphic system on your hardware. EB GUIDE TF supports various renderers for different
platforms.

► Audio abstraction

The speech user interface requires access to audio hardware. The audio abstraction provides access to
microphones and speakers. EB GUIDE STF implements speech recognition and text-to-speech synthesis.
For this purpose EB GUIDE STF incorporates third-party speech engines.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 26 of 336

5. Tutorial: Getting started
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

The following section gives you a short overview on HMI modeling with EB GUIDE Studio. It explains you how
to start EB GUIDE Studio, how to create a project, how to model the behavior and appearance of an EB GUIDE
model, and how to simulate an EB GUIDE model.

Approximate duration: 20 minutes.

5.1. Starting EB GUIDE

Starting EB GUIDE

Prerequisite:

■ EB GUIDE is installed.

Step 1
In the Windows Start menu, click All Programs.

Step 2
In the Elektrobit menu, click the version you want to start.

EB GUIDE Studio starts. The project center is displayed.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 27 of 336

Figure 5.1. Project center

5.2. Creating a project

Creating a project

Prerequisite:

■ EB GUIDE Studio is started.

■ A directory C:/temp is created.

Step 1
In the navigation area of the project center, click New.

Step 2
In the content area, select the C:/temp directory as Location.

Step 3
Enter the project name MyProject.

Step 4
Click Create.

The project is created. The project editor opens and displays the empty project.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 28 of 336

The Main state machine is added by default and displayed in the content area.

Figure 5.2. Project editor with Main state machine

5.3. Modeling HMI behavior
The behavior of your EB GUIDE model is defined by state machines. EB GUIDE uses a syntax similar to UML
to do that.

In the following section, you learn how to model a state machine that displays a defined view on start-up and
changes to a different view when a button is pressed.

Adding states to the state machine

EB GUIDE offers a variety of states. The following section shows three different states. An initial state de-
fines the starting point of the state machine. A view state displays a view by default. And the final state of the
state machine terminates the state machine.

Prerequisite:

■ The project MyProject is created.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 29 of 336

■ The content area displays the Main state machine.

Step 1
Drag a view state from the Toolbox into the state machine.

Along with View state 1, a view is added to the EB GUIDE model.

Step 2
Repeat step 1.

View state 2 is added.

Step 3
Drag an initial state from the Toolbox into the state machine.

Step 4
Drag a final state from the Toolbox into the state machine.

The four states you added to the Main state machine are displayed both in the content area as a state chart
and in the Navigation component as a hierarchical tree view.

Figure 5.3. Project editor with states

Adding a transition

Transitions are the connection between states and trigger state changes. There are different transition types.
The following section shows a default transition and an event-triggered transition.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 30 of 336

Prerequisite:

■ The content area displays the Main state machine.

■ The Main state machine contains an initial state, two view states, and a final state.

Step 1
Select the initial state as a source state for the transition.

Step 2
Click the green drag point and keep the mouse button pressed.

Step 3
Drag the mouse into the target state, View state 1.

Step 4
When the target state is highlighted green, release the mouse button.

A transition is created and displayed as a green arrow.

Step 5
Add a transition between View state 1 and View state 2.

Select View state 1 and repeat steps 2 - 4.

Step 6
Select the transition between View state 1 and View state 2.

As a next step, you associate the transition to an event.

Step 7
Go to the Properties component, enter Event 1 in the Trigger combo box and click Add event.

An event called Event 1 is created and added as a transition trigger. Whenever Event 1 is fired, the transi-
tion is executed.

Step 8
Add a transition between View state 2 and the final state.

Select View state 2, and repeat steps 2 - 4.

Add a new event Event 2 as a trigger.

At this point, your state machine resembles the following figure:

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 31 of 336

Figure 5.4. States linked by transitions with events

You have defined the behavior of a basic state machine.

5.4. Modeling HMI appearance
The state machine you created in the section above contains two view states. In the following section, you
learn how to model a view.

Opening a view

Prerequisite:

■ View state 1 is added to the model.

Step 1
Double-click View state 1.

The content area displays View 1.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 32 of 336

Adding a button to a view

With EB GUIDE Studio you have a variety of options to model the appearance of a view.

To give you one example, the next section shows you how to add a rectangle to a view. The rectangle reacts
on user input and thus functions as a button.

Prerequisite:

■ The content area displays View 1.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
In the Properties component, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select Touch released.

Click Accept.

The related widget feature properties are added to the Properties component.

Step 4
In the Properties component, from the touchPolicy drop-down list box select Press then react.

The rectangle reacts on touch input.

Step 5
Go to the touchShortReleased property, and click Edit.

Step 6
Enter the following EB GUIDE Script:

 function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 1"()

 true

 }

If the rectangle is touched, Event 1 is fired after 500 milliseconds.

Step 7
Click Accept.

Step 8
In the Properties component, for the fillColor property select red.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 33 of 336

Step 9
In the Navigation component, double-click View 2.

The content area displays View 2.

Step 10
Repeat steps 1-5.

Step 11
Enter the following EB GUIDE Script:

 function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 2"()

 true

 }

Figure 5.5. Widget property with an EB GUIDE Script

Step 12
Click Accept.

If the rectangle is touched, Event 2 is fired after 500 milliseconds.

Step 13
In the Properties component, for the fillColor property select blue.

EB GUIDE Studio
Chapter 5. Tutorial: Getting started

Page 34 of 336

5.5. Starting the simulation
EB GUIDE allows you to simulate your model on the PC before exporting it to the target device.

Starting the simulation

Step 1
To save the project, click in the command area.

Step 2
In the command area, click .

The EB GUIDE model starts and shows the behavior and appearance you modeled.

First, View 1 is displayed. A click on the red rectangle changes the screen to View 2. This is because the
click fires Event 1 and Event 1 executes the transition from View state 1 to View state 2.

Then, View 2 is displayed. A click on the blue rectangle in View 2 terminates the state machine. This is be-
cause the click fires Event 2 and Event 2 executes the transition from View state 2 to the final state. The

simulation window remains open. To stop the simulation, click .

EB GUIDE Studio
Chapter 6. Background information

Page 35 of 336

6. Background information
The topics in this chapter are sorted alphabetically.

NOTE Default window layout
All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

6.1. 3D graphics
EB GUIDE Studio offers the possibility to use 3D graphics in your EB GUIDE project.

6.1.1. Supported 3D graphic formats

Only the OpenGL ES version 2.0 or higher and DirectX 11 renderers can display 3D graphics. The supported
3D graphic formats are COLLADA (.dae) and Filmbox (.fbx). For best results, use the Filmbox format.

6.1.2. Settings for 3D graphic files

To make 3D objects appear in a view in EB GUIDE Studio, you need to create the 3D graphic file with the
following options:

► A perspective camera

► At least one object containing a mesh and at least one material

► At least one light source

To create a 3D graphic file, use third-party 3D modeling software.

3D graphic files support a wide variety of additional content, which is listed below:

► 3D objects with positions, normals, binormals, tangents, and one texture channel

► Directional light sources

► Ambient light sources

EB GUIDE Studio
Chapter 6. Background information

Page 36 of 336

► Point light sources with constant, linear, quadratic, and cubic attenuation

► Spot light sources with cone angles, constant, linear, quadratic, and cubic attenuation

► Perspective camera support for fields of view, near plane, and far plane

► Textures: Emissive, diffuse, specular, normal map, opacity, reflection cube, and light map

TIP Setting up the 3D graphic file
Be aware that opacity maps need a valid alpha channel.

6.1.3. Import of a 3D graphic file

To add a 3D graphic to a view, you need to import a 3D graphic file using a scene graph. During import EB
GUIDE Studio converts the 3D graphic file into a widget tree with scene graph as a parent node. For the content
of the 3D graphic file, for example camera, material, meshes, EB GUIDE Studio creates the respective widgets.
If the 3D scene of the imported 3D graphic file contains animations, EB GUIDE Studio imports these animations
using linear key value interpolation integer curve and linear key value interpolation float curve.

Figure 6.1. Example of a scene graph as displayed in the Navigation component

EB GUIDE Studio
Chapter 6. Background information

Page 37 of 336

NOTE Restrictions
In EB GUIDE Studio only one material per mesh is allowed. If your 3D graphic has more
than one material per mesh, during import EB GUIDE Studio creates additional mesh for
each additional material.

During the import of an .fbx file only a default material widget is created. If your 3D model
has other types of materials, EB GUIDE Studio adds only a default material and its properties
are set to default values. In EB GUIDE Studio, you can add other types of materials using
PBR Phong material and PBR GGX material widgets.

After importing a 3D graphic file, a subdirectory is created in the directory $GUIDE_PROJECT_PATH/<project
name>/resources. The subdirectory is named after the imported .fbx file. Additionally date and time of
creation are added to the name of the subdirectory.

Example 6.1.
Naming of the import directory

The 3D graphic file is called car.fbx. After importing a 3D graphic file in EB GUIDE Studio, in
$GUIDE_PROJECT_PATH/<project name>/resources you find a subdirectory named car_-
20160102_103029.

The subdirectory contains the following:

► Meshes as .ebmesh files

► Textures as .png or .jpg files

To use additional textures for your 3D graphics, copy a texture into $GUIDE_PROJECT_PATH/<project
name>/resources. As texture use .png or .jpg images.

Import of multiple 3D graphics within one scene graph is possible.

After import, you can add, modify or delete 3D widgets.

For details, see section 6.18, “Widgets”, section 12.10.3, “3D widgets”, and section 12.11.8, “3D”.

For instructions, see section 8.1.3.1, “Adding a scene graph to a view”, and section 11.7, “Tutorial: Working
with a 3D graphic”.

6.2. Animations
Animations bring motion and visual effects into your EB GUIDE model. In EB GUIDE, you can use animations
for different use cases. You can animate widgets within a view and you can animate the transition from one
view to another.

EB GUIDE Studio
Chapter 6. Background information

Page 38 of 336

6.2.1. Animations for widgets

Animating a widget means moving a widget along a view. The movement is defined by curves. Therefore, the
Basic widgets category in the Toolbox includes a widget called animation. To every animation you can add
a set of curves, for example constant curve, linear interpolation curve, or sinus curve. A curve has a target
widget property and describes the time-based change of the target property.

Each animation has one or more curves associated to it.

Among others, animating a widget can do the following:

► Move a widget within a view

► Change the size of a widget

► Gradually change the color of a widget

An animation is controlled by the EB GUIDE Script functions f:animation_play, f:animation_pause,
f:animation_cancel, etc.

TIP Concurrent animations
In EB GUIDE, animations are concurrent animations and curves are executed in parallel.
This means that, if the curves of several animations use the same widget property as a
target, the curves overwrite that target property's value concurrently.

For animation and curve properties, see section 12.10.2.2, “Animation”.

For instructions, see section 8.1.2.7, “Adding an animation”.

6.2.2. Animations for view transitions

To animate a view transition means to define a moving or fading animation for entering or exiting a view. A
view change triggers such an animation.

You define view transition animations for view templates. Every time you re-use the view template, the instance
inherits the entry and exit animations.

There are various types of view transition animations. An entry animation is, for example, move in from right
or move in from bottom. An exit animation is, for example, move out from top to bottom.

For animation properties in view templates, see section 12.10.1, “View”.

For instructions, see section 8.6, “Animating a view transition”.

EB GUIDE Studio
Chapter 6. Background information

Page 39 of 336

6.3. Application programming interface between
application and model
EB GUIDE abstracts all communication data between an application and EB GUIDE TF in an application pro-
gramming interface (API). An application is for example a media player or a navigation.

The API is defined by datapool items and events. Events are sent between HMI and application.

Example 6.2.
Contents of an API

► Event START_TRACK that is sent to the application and that contains the parameter track for the
number of the track that should be played

► Event TRACK_STOPPED that is sent from the application to the HMI when the played track has
ended

► The dynamic datapool item MEDIA_CURRENT_TRACK that is written by the application

► The dynamic datapool item MEDIA_PLAY_SPEED that defines the speed for playing and is set by
the user in the HMI

6.4. Communication context
The communication context describes the environment in which communication occurs. An example for a com-
munication context is a media or a navigation application which communicates with an HMI model. Changes
made by one communication context are invisible to other communication contexts until the changes are pub-
lished by the writer application and updated by the reader application.

A communication context is identified by a unique name and numerical ID (0...255) in the project configuration.

For instructions, see section 9.8, “Establishing external communication”.

6.5. Components of the graphical user interface
The graphical user interface of EB GUIDE Studio is divided into two components: the project center and the
project editor. In the project center, you administer your EB GUIDE projects, configure options, and export EB
GUIDE models for copying to the target device. In the project editor, you model HMI appearance and behavior.

EB GUIDE Studio
Chapter 6. Background information

Page 40 of 336

6.5.1. Project center

The project center is the first screen that is displayed after starting EB GUIDE Studio. All project-related func-
tions are located in the project center. The project center consists of two parts: the navigation area and the
content area.

Figure 6.2. Project center with navigation area (1) and content area (2)

6.5.1.1. Navigation area

The navigation area of the project center consists of function tabs such as Configure or Export. You click a
tab in the navigation area and the content area displays the corresponding functions and settings.

6.5.1.2. Content area

The content area of the project center is where project management and configuration takes place. For exam-
ple, you select a directory to save a project or define the start-up behavior for your EB GUIDE model. The
appearance of the content area depends on the tab selected in the navigation area.

EB GUIDE Studio
Chapter 6. Background information

Page 41 of 336

6.5.2. Project editor
After creating a project, the project editor is displayed. In the project editor you model the behavior and the
appearance of the HMI: you model state machines, create views, and manage events and the datapool. The
project editor consists of the following areas and components. All components of the project editor can either
be docked or floating and placed at any position of the project editor except the content area.

Figure 6.3. Project editor with its areas and components

1 Toolbox component

2 Properties component

3 Command area

4 Content area

5 Datapool component

6 Search box

7 Events component

8 Assets component

9 Problems component

10 Outline component

11 Navigation component

EB GUIDE Studio
Chapter 6. Background information

Page 42 of 336

6.5.2.1. Navigation component

The Navigation component displays the model elements such as states, views, animations and transitions of
your EB GUIDE model as a hierarchical structure and allows you to navigate to any element. Double-clicking
a model element displays the model element in the content area.

The Navigation component gives you an overview of all graphical and non-graphical elements of the EB GUIDE
model and reflects the state machine hierarchy.

It is also where you add elements to your EB GUIDE model, such as state machines, dynamic state machines,
and templates. You can add elements from the Toolbox such as widgets and animations using a drag-and-
drop operation.

At the top you find a filter box to search for any model element within the component.

Clicking a model element in the Navigation component and pressing F3 starts a reference search: It opens
the search results window and lists all occurrences of the selected model element in the EB GUIDE model.

Figure 6.4. Navigation component in project editor

EB GUIDE Studio
Chapter 6. Background information

Page 43 of 336

6.5.2.2. Outline component

Displays only the structure and model elements contained in the tree part selected in the Navigation component
or in the editor component currently displayed in the content area.

NOTE Filter box
At the top of the component you find a filter box to search for any element within the com-
ponent.

Clicking an element in the component and pressing F3 starts a reference search: It opens
the search results window and lists all occurrences of the selected element in the EB GUIDE
model.

6.5.2.3. Toolbox component

All tools you need for modeling are available in the Toolbox component, also referred to as Toolbox. Depending
on the element that is displayed in the content area, the Toolbox offers a different set of tools, which can
be dragged into the content area or the Navigation component. The Toolbox can for example contain the
following:

► If the content area displays a state machine, the Toolbox contains states you can add to the state machine.

► If the content area displays a view, the Toolbox contains widgets you can arrange in the view.

► If the content area displays a scripted value property, the Toolbox contains EB GUIDE Script functions
you can insert.

EB GUIDE Studio
Chapter 6. Background information

Page 44 of 336

Figure 6.5. Toolbox in project editor

6.5.2.4. Properties component

The Properties component displays the properties of the selected model element, for example of a widget or
a state. The properties are grouped by categories and can be edited in the Properties component.

Clicking a property and pressing F3 starts a reference search: It opens the search results window and lists all
occurrences of the selected property in the EB GUIDE model.

EB GUIDE Studio
Chapter 6. Background information

Page 45 of 336

Figure 6.6. Properties component displaying properties of a widget

6.5.2.5. Content area

What is displayed in the content area depends on the selection in the Navigation component. To edit a model
element, you double-click the model element in the Navigation component and the content area displays it.
For example, you model the states of a state machine, you arrange widgets in a view, or you edit an EB GUIDE
Script in the content area.

EB GUIDE Studio
Chapter 6. Background information

Page 46 of 336

Figure 6.7. Content area in project editor

If in the content area you have an open view and the view contains an animation, the Animation editor is
opened. In the Animation editor you can add curves to widget properties. You can also edit the delay and
duration properties of the curves by moving the handles in the preview.

Figure 6.8. Animation editor

To start a reference search, click a state or a widget in the content area and press F3. The search results
window opens and lists all occurrences of the selected state or widget in the EB GUIDE model.

6.5.2.6. Events component

Here you can add events to your model and edit the properties such as Name, Group, Type and Parameter
name in the event table.

EB GUIDE Studio
Chapter 6. Background information

Page 47 of 336

NOTE Filter box
At the top of the component you find a filter box to search for any element within the com-
ponent.

Clicking an element in the component and pressing F3 starts a reference search: It opens
the search results window and lists all occurrences of the selected element in the EB GUIDE
model.

6.5.2.7. Datapool component

Here you can add Datapool items and edit the properties such as Name and Value. You can also add a link
to a datapool item, convert a value to script, and add a language and skin support.

NOTE Filter box
At the top of the component you find a filter box to search for any element within the com-
ponent.

Clicking an element in the component and pressing F3 starts a reference search: It opens
the search results window and lists all occurrences of the selected element in the EB GUIDE
model.

6.5.2.8. Assets component

Here you can add resources such as images, fonts, .ebmesh and .psd files. All resource files located in the
$GUIDE_PROJECT_PATH/<project name>/resources directory and its subdirectories are displayed in
the preview area of the component. You can add a resource to the model using a drag-and-drop operation.

NOTE Filter box
At the top of the component you find a filter box to search for any element within the com-
ponent.

Clicking an element in the component and pressing F3 starts a reference search: It opens
the search results window and lists all occurrences of the selected element in the EB GUIDE
model.

6.5.2.9. Command area

In the command area, you find:

► The button, which opens the project center

EB GUIDE Studio
Chapter 6. Background information

Page 48 of 336

► Search box to search for elements of the model and jump to them

► Further menus

Search box
Model elements can be found with the help of the search box. Use the search box as follows:

► Click the search box or use the Ctrl + F shortcut to jump into the search box. Enter the name of the
model element to be searched.

► Jump to a model element by double-clicking it in the hit list.

The left part of the search results window lists the model elements that are found grouped by categories.
Use the filter buttons above to show or hide categories. Select a model element to get a preview or to see
the properties of the model element in read-only mode.

When closing the search results window the last search term, filter settings and corresponding hit list are
saved and shown when the search results window is opened again. When model elements were changed
in between, the search needs to be executed again.

The search is not case sensitive.

When using the asterisk * for wildcard search the following rules apply:

► Search entry t returns all element names containing a t.

► Search entry *t returns all element names ending with t.

► Search entry t* returns all element names starting with t.

You can search for the following model element categories.

Table 6.1. Categories in search box

Category Description

States The hit list also shows the child elements of the states found.

Views The hit list also shows the child elements of the views found.

Templates The hit list also shows the child elements of the templates
found.

Events The preview shows the properties of the event.

Datapool items The preview shows the properties of the datapool item.

Scripts The preview shows the content of the scripts containing the
text. The found text is highlighted.

Properties The preview shows the widget to which the property belongs.

6.5.2.10. Problems component

EB GUIDE Studio
Chapter 6. Background information

Page 49 of 336

In the Problems component you can check if your model is valid. It displays possible errors and warnings of
the currently opened EB GUIDE model. To jump directly to the part where the problems occur, double-click
the description.

6.5.3. Dockable component

You can dock all components of the project as tabs or undock as floating components. You can drag a compo-
nent as floating component to any part of the project center except the content area.

The arrows of the docking control help you to select a docking location and the live preview shows you how
the layout is going to look like.

Figure 6.9. Docking control and live preview

EB GUIDE Studio
Chapter 6. Background information

Page 50 of 336

NOTE Default layout
To restore the default layout, go to the command area and select Layout > Reset to default
layout.

NOTE Auto-hide
To gain more space in the project editor, you can hide components.

► To hide a component or a component group, click the pin symbol.

► To display a hidden component, hover over the tab with the mouse and click the pin
symbol again.

6.5.4. EB GUIDE Monitor
EB GUIDE provides the tool EB GUIDE Monitor to observe and control an EB GUIDE model during the simu-
lation. EB GUIDE Monitor includes mechanisms for the communication with datapool, the event system, and
the state machines of the EB GUIDE model.

EB GUIDE Monitor is started automatically in EB GUIDE Studio during the EB GUIDE model simulation. You
can also use EB GUIDE Monitor as a stand-alone application.

Figure 6.10. EB GUIDE Monitor with default layout

1 Layout menu

EB GUIDE Studio
Chapter 6. Background information

Page 51 of 336

2 Datapool component

3 Logger component

4 Events component

EB GUIDE Monitor contains the following components:

► In the Events component you can search and fire events. If an event has parameters, you can change
the parameters and then fire this event.

► In the Datapool component you can search for datapool items and change their values.

► In the Logger component all changes, information messages, errors, and warnings are tracked. At the
top of the component you find a filter box to filter entries within the component. To enable or disable the
auto-scrolling functionality, at the bottom of the component check or clear the auto-scrolling check box.

► In the Scripting component you can start scripts and see the output script messages. Note that the Script-
ing component is not in the default layout. To add the component, click Layout > Scripting.

► In the State machines component the currently active state and state machine are shown. Note that
the State machines component is not in the default layout. To add the component, click Layout > State
machines.

You can rearrange components and add new components according to your project's needs. You can also dock
and undock components within the EB GUIDE Monitor window.

In the left bottom corner of the EB GUIDE Monitor window you find the following buttons for the connection
status.

Button Status

EB GUIDE Monitor is connected.

If you click the button, EB GUIDE Monitor disconnects.

EB GUIDE Monitor is disconnected.

If you click the button, EB GUIDE Monitor connects.

EB GUIDE Monitor is disconnected.

If you click the button, you can configure the connection settings of EB GUIDE Moni-
tor.

It is also possible to change the language and the skin using the drop-down boxes in the command area.

For instructions, see section 10.9, “Working with EB GUIDE Monitor”.

For the EB GUIDE Monitor API, see $GUIDE_INSTALL_PATH/doc/monitor/monitor_api.chm.

EB GUIDE Studio
Chapter 6. Background information

Page 52 of 336

6.6. Datapool

6.6.1. Concept

During the execution, a model communicates with different applications. To enable the communication, your EB
GUIDE model has to provide an interface. The datapool is an interface which allows access to datapool items
to exchange data. Datapool items store values and communicate between HMI and applications. Datapool
items are defined in the EB GUIDE model.

6.6.2. Datapool items

Datapool items are model elements that are used to do the following:

► Send data from the applications to the HMI

► Send data from the HMI to the applications

► Store data which is only used in either HMI or applications

For instructions, see section 9.5, “Adding a datapool item”.

To channel communication, you use writer and reader applications.

Internal communication is used to store data. Using two different applications establishes external communi-
cation.

For instructions, see section 9.8, “Establishing external communication”.

6.6.3. Windowed lists

The EB GUIDE product line supports the concept of windowed lists. The windowed list operating mode is often
used to reduce memory consumption for the display of large lists, for example all MP3 titles in a directory. Those
lists are typically provided by one application, for example media application, and are only partially displayed
by another application, for example HMI.

The writer application defines a virtual list length and a number of windows, which possibly contain only parts
of the list. The reader application reads data only from locations that are covered by windows. Reading from
other locations fails. In such a use case, the reader application has to inform the writer application about the

EB GUIDE Studio
Chapter 6. Background information

Page 53 of 336

currently required parts of the list. For example, HMI can make application calls that provide the current cursor
position within the complete list.

Example 6.3.
Windowed list

The MP3 title list of an audio player device has 1,000,000 elements. The HMI has to display this list on
three different displays in parallel: head unit display, cluster instrument display, and head-up display.

Each display is controlled separately, has a different number of display lines and has a different cursor
position within the complete list.

Whenever one of the three cursors moves, the HMI sends the new position asynchronously to the me-
dia application through an event. The media application provides a list with three windows. Each of the
three windows is associated to one of the three displays. Window updates delay a little bit after the cur-
sor moves. Therefore it is advisable to use window positions and window sizes which cover an extend-
ed range around the lines that are shown by the specific display.

6.7. EB GUIDE model and EB GUIDE project
An EB GUIDE model is the sum of all elements that describe the look and behavior of an HMI. It is built entirely
in EB GUIDE Studio. You can simulate the EB GUIDE model on your PC.

To execute an EB GUIDE model on a target device, you export the EB GUIDE model and copy the resulting
binary files to the target device.

An EB GUIDE project consists of an EB GUIDE model and settings that are needed for modeling. It includes
project-specific options, extensions, resources, and, for graphical projects, the description of a haptic dialog.

An EB GUIDE project contains objects that are configured and linked within an EB GUIDE model. These objects
are called EB GUIDE model elements. Examples for EB GUIDE model elements are as follows:

► Datapool item

► Event

► State

► State machine

► Widget

► Resource

► Language

EB GUIDE Studio
Chapter 6. Background information

Page 54 of 336

6.8. Event handling

6.8.1. Event system

The event system is an asynchronous mechanism for communication within or between applications.

The EB GUIDE event system delivers all events exactly in the order they were sent. There is no pre-defined
order for delivering an event to different subscribers.

6.8.2. Events

An event in EB GUIDE is a model element that has a unique event ID and belongs to an event group. The
event ID is used by EB GUIDE TF to send and receive the event.

Event group IDs between 0 and 65535 are reserved for internal use within the EB GUIDE product line. Excep-
tions to that are the event groups that are listed in the following table.

Table 6.2. Allowed event groups and IDs

Event group ID

Default 2

Key input events 10

Touch input events 11

Rotary input events 12

System notification events 13

The remaining range of group IDs is available for customer-specific applications.

For instructions, see the following:

► section 9.1, “Adding an event”

► section 9.3, “Addressing an event”

6.9. Extensions

EB GUIDE Studio
Chapter 6. Background information

Page 55 of 336

6.9.1. EB GUIDE Studio extension

An EB GUIDE Studio extension is a supplement to EB GUIDE Studio and is valid for all EB GUIDE models.
The EB GUIDE Studio extension does not concern EB GUIDE GTF.

Typical EB GUIDE Studio extensions are:

► Additional toolbar buttons

► Additional data exporters

6.9.2. EB GUIDE GTF extension

An EB GUIDE GTF extension is a supplement to EB GUIDE GTF which provides additional features in EB
GUIDE Studio, but is only valid for one EB GUIDE model. The EB GUIDE GTF extension is based on the EB
GUIDE GTF.

Typical EB GUIDE GTF extensions are:

► New widget features

► New EB GUIDE Script functions

EB GUIDE GTF extensions are dynamic link library (.dll) or shared object (.so) files.

Place the EB GUIDE GTF extension, including their third party libraries in the following directory:

$GUIDE_PROJECT_PATH/<project name>/resources/target

6.10. Languages

6.10.1. Display languages in EB GUIDE Studio

EB GUIDE Studio offers different display languages for the graphical user interface. You select the display
language in the project center, in the tab Options.

For instructions, see section 10.6, “Changing the display language of EB GUIDE Studio”.

EB GUIDE Studio
Chapter 6. Background information

Page 56 of 336

6.10.2. Languages in the EB GUIDE model

Most human machine interfaces offer the possibility to display texts in the user's preferred language. Such
language management is also provided by EB GUIDE. You add a language for an EB GUIDE model in the
project configuration.

For instructions, see section 8.4.1, “Adding a language”.

NOTE No skin support available
When you have defined a language support for a datapool item, it is not possible to add a
skin support to the same item.

It is possible to make datapool items language-dependent. A datapool item defines a value for each language.
To support languages select the Language support property.

Example 6.4.
Language-dependent texts

In the project configuration three languages are added: English, German, and French. A datapool item
has the value Welcome in English and the values Willkommen in German and Bienvenue in French.

For instructions, see section 11.6, “Tutorial: Adding a language-dependent text to a datapool item”.

The current language of the exported EB GUIDE model can be set during run-time.

6.10.3. Export and import of language-dependent texts

Use the export and import functionality in EB GUIDE Studio to export, edit, and import all language-dependent
texts. You export texts to an .xliff file and forward the file to the translator. .xliff (XML Localization
Interchange File Format) is an XML-based format to store extracted text and carry the data from one step to
another in the localization process.

After translation you import the translated .xliff file in the corresponding language in EB GUIDE Studio.

For instructions, see section 10.8, “Exporting and importing language-dependent texts”.

6.11. Skins

EB GUIDE Studio
Chapter 6. Background information

Page 57 of 336

Skins allow you to define different user interfaces by defining different datapool values for the same EB GUIDE
model. This way you can define various looks for the same HMI as for example skins for night and day mode.

You can switch between the skins during run-time to see the effect of the different datapool values.

Skin support is only available for plain datapool values and cannot be used for scripted values or linked datapool
items.

NOTE No language support available
When you have defined a skin support for a datapool item, it is not possible to add a lan-
guage support to the same item.

For instructions see section 8.5, “Working with skin support”.

6.12. Resource management
Resources are content that is not created within EB GUIDE but is required by your projects. Locate all resources
of an EB GUIDE Studio project in the resources directory.

The resources directory is located at $GUIDE_PROJECT_PATH/<project name>/resources.

EB GUIDE supports the following types of resource files:

1. Fonts

2. Images

3. Meshes for 3D graphics

4. .psd file format

In order to use resources in the project, add the resource files to the directory $GUIDE_PROJECT_PATH/
<project name>/resources.

6.12.1. Fonts

In order to use a font in the project, add the font to the directory $GUIDE_PROJECT_PATH/<project name>/
resources.

Supported font types are TrueType fonts (*.ttf, *.ttc), OpenType fonts (*.otf), and bitmap fonts (*.fnt).

For instructions, see section 8.1.2.4.1, “Changing the font of a label”.

EB GUIDE Studio
Chapter 6. Background information

Page 58 of 336

6.12.1.1. Bitmap fonts

EB GUIDE Studio supports the *.fnt bitmap fonts from Angelcode in version 3.0. To create a bitmap font, use
a third-party font generator, for example Angelcode Bitmap Font Generator. For more information, see http://
www.angelcode.com.

Make sure that the generated font has the following settings:

► The desired font size is defined.

► The character set is Unicode.

► The font descriptor is binary.

► The textures are provided as 8-bit .png files.

Note the following:

► In EB GUIDE Studio you cannot change the font size of a bitmap font using the font property of a label.
This means that you need to define the size when you generate your .fnt font.

► The Stroke widget feature does not apply to bitmap fonts. If you need a specific outline for your font, define
it when you generate your .fnt font.

► In the $GUIDE_PROJECT_PATH/resources directory create a subdirectory for your .fnt bitmap font
and .png texture files that you generated with a third-party tool. EB GUIDE Studio expects to find the
.png files in same directory as the .fnt file.

If you have several bitmap fonts, create a subdirectory for each of these fonts.

6.12.2. Images

In order to use an image in the project, add the image to the directory $GUIDE_PROJECT_PATH/<project
name>/resources. If you select an image from a different directory, the image is copied to the directory .

The supported image formats are Portable Network Graphic (*.png), JPEG (*.jpg) and 9-patch images
(*.9.png).

For instructions, see section 8.1.2.3, “Adding an image”.

6.12.2.1. 9-patch images

EB GUIDE Studio supports images with additional meta information according to the 9-patch image approach.
9-patch images are stretchable .png images. 9-patch images contain two black markers, one at the top and

http://www.angelcode.com
http://www.angelcode.com

EB GUIDE Studio
Chapter 6. Background information

Page 59 of 336

one at the left side of the image. Areas that are not marked will not be scaled. Marked areas will be scaled.
Markers are not displayed in EB GUIDE Studio.

Figure 6.11. 9-patch example

When you work with 9-patch images, consider the following:

► 9-patch processing works with the OpenGL ES version 2.0 or higher and the DirectX renderer only.

► 9-patch processing works with .png images only.

► For 9-patch images the *.9.png extension is mandatory.

► It is possible to specify none, one, or more than one marker at the top and the left side. The 9-patch
definition also includes markers for text areas at the right side and at the bottom of the image. These
markers are not evaluated in EB GUIDE Studio.

For instructions, see section 8.1.2.3, “Adding an image”.

6.12.3. Meshes for 3D graphics

It is possible to import 3D graphic files in EB GUIDE Studio. After importing a 3D graphic file in EB GUIDE Studio,
in $GUIDE_PROJECT_PATH/<project name>/resources you find a subdirectory. Meshes as defined in
the 3D graphic file are imported as .ebmesh files. For details, see section 6.1.3, “Import of a 3D graphic file”.

EB GUIDE Studio
Chapter 6. Background information

Page 60 of 336

For instructions, see section 8.1.3.1, “Adding a scene graph to a view”.

6.12.4. .psd file format

EB GUIDE Studio supports the .psd file format. After importing a .psd file in EB GUIDE Studio, a widget
tree is created. The widget tree consists of containers and images that are created during the import from the
layers of the .psd file. Note the following:

► If a layer in the .psd file was set to invisible, the check box next to the visible property of the corre-
sponding container or image is cleared.

► If a layer in the .psd file has the transparency value set, after the import the Coloration widget feature
is added to the corresponding image. The alpha channel of the colorationColor property is set to the
same transparency value as in the .psd file.

For instructions, see section 8.1.4, “Adding a .psd file to a view”.

6.13. Scripting language EB GUIDE Script
EB GUIDE Script is the built-in scripting language of EB GUIDE. This chapter describes EB GUIDE Script
language features, syntax, and usage.

6.13.1. Capabilities and areas of application

You can use EB GUIDE Script in a variety of places in a project, for example:

► In a widget property

► In the state machine as part of a transition or state

► In a datapool item

Not all features of EB GUIDE Script are available in all cases. For example access to local widget properties is
only allowed when the script is part of a widget. Access to the datapool, on the other hand, is always allowed.

With EB GUIDE Script you can directly manipulate model elements, for example to do the following:

► Fire events

► Write datapool items

EB GUIDE Studio
Chapter 6. Background information

Page 61 of 336

► Modify widget properties

6.13.2. Namespaces and identifiers

In EB GUIDE, it is possible to give identical names to different kinds of objects. For example, you can name both
an event and a datapool item Napoleon. EB GUIDE Script namespaces make this possible. Every identifier,
i.e. name of an object, in EB GUIDE Script must be prefixed with a namespace and a colon.

The set of namespaces is fixed in EB GUIDE Script, you cannot introduce new namespaces. The following
namespaces exist:

► ev: events

► dp: datapool items

► f: user-defined actions (foreign functions)

► v: local variables

For example, ev:Napoleon specifies the event named Napoleon while dp:Napoleon specifies the datapool
item named Napoleon.

Identifiers without a namespace prefix are string constants.

Identifiers in EB GUIDE contain many characters including spaces and punctuation. Thus it can be necessary
to quote identifiers in EB GUIDE Script. If an identifier does not contain special characters, for example a valid
C identifier consisting only of letters, numbers and underscores, it does not have to be quoted.

Example 6.5.
Identifiers in EB GUIDE Script

dp:some_text = foo; // foo is a string here

dp:some_text = "foo"; // this statement is identical to the one above

dp:some_text = v:foo; // foo is the name of a local variable

// of course you can quote identifiers, even if it is not strictly necessary

dp:some_text = v:"foo";

// again, a string constant

dp:some_text = "string with spaces, and -- punctuation!";

// identifiers can also contain special characters, but you have to quote them

dp:some_text = v:"identifier % $ with spaces @ and punctuation!";

6.13.3. Comments

EB GUIDE Studio
Chapter 6. Background information

Page 62 of 336

EB GUIDE Script has two kinds of comment: C style block comments and C++ style line comments. Block
comments must not be nested.

Example 6.6.
Comments in EB GUIDE Script

/* this is a C style block comment */

// this is a C++ style line comment

For every EB GUIDE Script comment that contains a string "todo", EB GUIDE Studio shows a warning in the
Problems component when you validate a project. Use this feature to mark all your open tasks and display
them at a glance.

NOTE Default comment for conditional scripts
By default, a datapool item or a property of type Conditional script contains a com-
ment // todo: auto generated return value, please adapt. To eliminate
the warning, delete the todo string from the comment once you entered the required EB
GUIDE Script code.

6.13.4. Types
EB GUIDE Script is a strongly-typed and statically-typed programming language. Every expression has a well
defined type. Supplying an unexpected type results in an error.

EB GUIDE Script supports the following types:

► Integer

► Unicode strings (string)

► Objects with reference counting

► Type definitions to the above listed types and to the following:

► Color (integer for 32-bit RGBA value)

► Boolean

► IDs of different model elements: datapool items, views, state machines, pop-ups (all of integer type)

► Void, also known as the unit type. This type has a role as in functional programming, for example Haskell.

► Widget and event references. These are record types, the fields of which you may access by using the dot
notation, as known in C or Java. You cannot directly create new objects of these kinds, they are created
automatically where appropriate.

All types and type definitions are incompatible with each other and there are no typecasts. This feature ensures
type safety once a script is successfully compiled.

EB GUIDE Studio
Chapter 6. Background information

Page 63 of 336

6.13.5. Expressions
EB GUIDE Script is expression-based. Every language construct is an expression. You form larger expressions
by combining smaller expressions with operators.

To evaluate an expression means to replace it by its value.

Example 6.7.
Evaluation of an integer value

1 + 2 // when this expression is evaluated, it yields the integer 3

6.13.6. Constants and references
The basic expressions are integer, color, boolean, and string constants and references to model elements.

The void type also has a value constant that can be written in two different but semantically equivalent ways:

► With the opening curly brace followed by the closing curly brace {}

► With the keyword unit

Example 6.8.
Usage of constants

"hello world" // a string constant

true // one of the two boolean constants

ev:back // the event named "back" of type event_id

dp:scrollIndex // the datapool item named "scrollIndex",

 // the type is whichever type the dp item has

5 // integer constants have a dummy type "integer constant"

5::int // typecast your constants to a concrete type!

color:255,255,255,255 // the color constant for white in RGBA format

 // the following are two ways to express the same

 if(true)

{

}

else

{

}

if(true)

 unit

else

EB GUIDE Studio
Chapter 6. Background information

Page 64 of 336

 unit

6.13.7. Arithmetic and logic expressions
EB GUIDE Script supports the following arithmetic expressions:

► Addition (+), subtraction (-), multiplication (*), division (/), and modulo (%) can be applied to ex-
pressions of type integer.

► The logical operators or (||), and (&&), not (!) can be applied to expressions of type boolean.

► Integers and strings can be compared with the comparison operators greater-than (>), less-than (<),
greater-than-or-equal (>=), less-than-or-equal (<=).

► Data types can be compared with the equality operators: equal to (==) and not equal to (!=).

Strings can be compared without case sensitivity with the equality operator (=Aa=).

NOTE Availability of equality operators
Events and resource data types, for example 3D graphics, fonts and images, do not
support the equality operators (==) and (!=).

► Strings can be concatenated with the (+) operator.

Example 6.9.
Arithmetic and logic expressions

10::int + 15::int // arithmetic expression of type int

dp:scrollIndex % 2 // arithmetic expression of type int,

 // the concrete type depends on the type

 // of dp:scrollIndex

"Morning Star" == "Evening Star" // type bool and value false (wait, what?)

"name" =Aa= "NAME" // type bool and value true

!true // type bool, value false

!(0 == 1) // type bool, value true

// as usual, parenthesis can be used to group expressions

((10 + dp:scrollIndex) >= 50) && (!dp:buttonClicked)

// string concatenation

"Napoleon thinks that " + "the moon is made of green cheese"

f:int2string(dp:speed) + " km/h" // another string concatenation

6.13.8. L-values and r-values

EB GUIDE Studio
Chapter 6. Background information

Page 65 of 336

There are two kinds of expressions in EB GUIDE Script: l-values and r-values. L-values have an address
and can occur on the left hand side of an assignment. R-values do not have an address and may never occur
on the left hand side of an assignment.

► L-values are datapool references, local widget properties, and local variables.

► R-values are event parameters and constant expressions such as string or integer constants.

6.13.9. Local variables

The let expression introduces local variables. It consists of a list of variable declarations and the in expres-
sion, in which the variables are visible. Variables are l-values, you can use them on the left hand side of as-
signments. Variables have the namespace v:. The syntax of the let expression is as follows:

let v:<identifier> = <expression> ;

 [v:<identifier> = <expression> ;]...

in

 <expression>

The type and value of the let expression are equal to the type and value of the in expression.

let expressions may be nested, variables of the outer let expressions are also visible in the inner expres-
sions.

Example 6.10.
Usage of the let expression

// assign 5 to the datapool item "Napoleon"

let v:x = 5 in dp:Napoleon = v:x;

// define several variables at once

let v:morning_star = "Venus";

 v:evening_star = "Venus";

in

 v:morning_star == v:evening_star; // Aha!

let v:x = 5;

 v:y = 20 * dp:foo;

in

{

 // Of course you may have a sequence as the in expression,

 // but parenthesis or braces are required then.

 v:x = v:y * 10;

 dp:foo = v:x;

}

EB GUIDE Studio
Chapter 6. Background information

Page 66 of 336

// Because let expression also have types and values, we can have them

// at the right hand side of assignments.

dp:x = let v:sum = dp:x + dp:y + dp:z

 in v:sum; // this is the result

 // of the let expression

// A nested let expression

let v:x = dp:x + dp:y;

v:a = 5;

in

{

 let v:z = v:x + v:a;

 in

 {

 dp:x = v:z;

 }

}

6.13.10. While loops

while loops in EB GUIDE Script have a syntax similar to that in C or Java, they consist of a condition expression
and a do expression. The syntax is as follows:

while (<condition expression>) <do expression>

The do expression is evaluated repeatedly until the condition expression yields false. The condition ex-
pression must be of type boolean, the do expression must be of type void. The while expression is of type
void and must not occur at the left or right hand side of an assignment.

Example 6.11.
Usage of the while loop

// Assume dp:whaleInSight is of type bool

while(! dp:whaleInSight)

{

 dp:whaleInSight = f:lookAtHorizon();

}

6.13.11. If-then-else

if-then-else in EB GUIDE Script behaves like the ternary conditional operator (?:) in C and Java.

EB GUIDE Studio
Chapter 6. Background information

Page 67 of 336

The if-then-else expression consists of the following sub-expressions:

► condition expression

► then expression

► else expression

The syntax is as follows:

if (< condition expression>) <then expression> else <else expression>

if-then-else is processed as follows:

1. First, the condition expression is evaluated. It must be of type boolean.

2. If the condition is true, the then expression is evaluated.

3. If the condition is false, the else expression is evaluated.

if-then-else itself is an expression. The type of the whole expression is the type of the then expression and
the else expression, which must be identical. The value of if-then-else expressions is either the value of
the then expression, or the value of the else expression, in accordance with the rules above.

There is a special form of if-then-else, in which you may omit the else branch. This special form is of
type void and cannot be used to return values from scripts.

Example 6.12.
Usage of if-then-else

// Assume dp:whaleInSight is of type bool

// and dp:user is of type string.

if(dp:whaleInSight && dp:user == "Captain Ahab")

{

 dp:mode = "insane";

}

else

{

 dp:mode = "normal";

}

// Because if-then-else is also an expression,

// we may simplify the previous example:

dp:mode = if(dp:whaleInSight && dp:user == "Captain Ahab")

 "insane"

 else

 "normal"

if (<expression>) <expression> // This is the reduced way of

 writing if-then-else

 //It is an alternative to the following

 if(<expression>) { <expression> ; {} } else {}

EB GUIDE Studio
Chapter 6. Background information

Page 68 of 336

6.13.12. Foreign function calls
You can extend EB GUIDE Script with functions written in C, so-called foreign functions.

An identifier prefixed by f: is the name of a foreign function. Foreign functions have an argument list and a
return value, as they do in C. The syntax of foreign function calls is as follows:

f:<identifier> (<expression> [, <expression>] ...)

Example 6.13.
Calling foreign functions

// write some text to the connection log

f:trace_string("hello world");

// display dp:some_index as the text of a label

v:this.text = f:int2string(dp:some_index);

// passing different parameters of matching type

f:int2string(v:this.x)

f:int2string(4)

f:int2string(dp:myInt)

f:int2string(v:myVar)

//passing parameters of different types

// starts an animation (parameter type GtfTypeRecord) from a script

// located in its parent widget

f:animation_play(v:this->Animation);

// checks the number of child widgets of a widget (parameter type widget)

f:widgetGetChildCount(v:this);

// traces debugging information about a datapool item (parameter type dp_id)

// to the connection log; uses the address of the datapool item as parameter

f:trace_dp(&dp:myFlag);

6.13.13. Datapool access
Scripts written in EB GUIDE Script can read and write datapool items. An identifier prefixed by a namespace
dp: is called datapool item expression. Its type is datapool item of type X, where X is the type of the
datapool entry it refers to.

EB GUIDE Studio
Chapter 6. Background information

Page 69 of 336

If a datapool item of type X occurs on the left hand side of an assignment, and an expression of type X occurs
on the right hand side of the assignment, the value of the datapool item is written.

If a datapool item occurs somewhere in a program but not on the left hand side of an assignment, the value
of the datapool item is read.

Example 6.14.
Assignment of datapool values

// Assume intA to be of type int. Assign 10 to it.

dp:intA = 10;

// Assume strA to be of type string. Assign the string "blah" to it.

dp:strA = blah; // Yes, we can omit the quotes, remember?

dp:strA = 42; // Error: integer cannot be assigned to string

// Assign the value of the datapool item intB to intA.

// Both datapool items must have the same type.

dp:intA = dp:intB;

// Multiply the value of intB by two and assign it to intA.

dp:intA = 2 * dp:intB;

// Use the value of a datapool item in an if-clause.

if(dp:speed > 100)

{

 // ...

}

The following operators can be applied to the datapool items:

► The reference operator (&) can be applied to datapool items. It refers to the address of a datapool item
rather than to its value. The reference operator is used in foreign function calls to pass parameters of
type dp_id.

► The redirect-link operator (=>) changes the link target of a datapool item. Link source can only be a datapool
item that was already linked.

6.13.14. Widget properties

If a script is part of a widget, it can access the properties of that widget. EB GUIDE Script creates a variable
called v:this to access the properties using the dot notation.

A script is part of a widget if it is attached to a widget property, for example as an input reaction such as click
or button press.

Example 6.15.

EB GUIDE Studio
Chapter 6. Background information

Page 70 of 336

Setting widget properties

// assume this script is part of a widget

v:this.x = 10; // if the widget has an x-coordinate

v:this.text = "hello world"; // if the widget is a label and has a text property

// assume testEvent has one integer parameter

fire ev:testEvent(v:this.x);

If a script is part of a widget, it can also access properties of other widgets in the widget tree.

The go-to operator (->) is used to refer to other widgets within the widget tree. The syntax is as follows:

<expression> -> <expression>

The expression on the left hand side must refer to a widget and the expression on the right hand side must
be a string, the name of a child widget. To navigate to the parent widget, use the symbol ^ on the right hand
side. The whole go-to expression refers to a widget.

Navigating the widget tree might affect run-time performance. Widgets are assigned to variables for the efficient
manipulation of multiple properties.

Example 6.16.
Accessing widget properties

v:this.x // access the properties of the current widget

v:this->^.x // access the x property of the parent widget

v:this->^->caption.text // access the text property of a label called caption,

 // read: "go-to parent, go-to caption, text"

// Modify several properties of the caption.

// This way, the navigation to the caption is only performed once.

let v:cap = v:this->^->caption

in

{

 v:cap.textColor = color:0,0,0,255;

 v:cap.x += 1;

 v:cap.y += 1;

}

6.13.15. Lists

Datapool items and widget properties can hold lists. The subscript operator ([]) accesses list elements. The
syntax is as follows:

EB GUIDE Studio
Chapter 6. Background information

Page 71 of 336

<expression> [<expression>]

The first expression must evaluate to a list type, the second expression must evaluate to an integer value. If
the list is of type list A, the whole list subscript expression must be of type A.

If the list subscript expression occurs at the left hand side of an assignment, the value of the referred list
element is written.

The length keyword returns the number of elements of a list. If it is put in front of a list expression, the whole
expression must be of type integer.

Example 6.17.
Lists

// Assume this widget is a label and dp:textList is a list of strings

v:this.text = dp:textList[3];

dp:textList[1] = v:this.text; // writing the value of the list element

v:this.width = length dp:textList;// checking the length of the list

dp:textList[length dp:textList - 1] = "the end is here";

Adding elements to and removing elements from lists is currently not supported in EB GUIDE Script.

Trying to access list elements beyond the end of a list stops the execution of the script immediately. Make sure
that all your list accesses are in range.

6.13.16. Events
EB GUIDE Script offers the following expressions to handle events:

► The fire expression sends events. The syntax is as follows:

fire ev:<identifier> (<parameter list>)

Events can, but do not need to have parameters. The parameter list of the fire expression must match
the parameters of the fired event. If an event has no parameters, the parentheses must be empty.

Example 6.18.
Using the fire expression

fire ev:toggleView(); // the event "toggleView" has no parameters

fire ev:mouseClick(10, 20); // "mouseClick" has two integer parameters

fire ev:userNameEntered("Ishmael"); // string event parameter

► The fire_delayed expression sends events after a specified time delay. The syntax is as follows:

EB GUIDE Studio
Chapter 6. Background information

Page 72 of 336

fire_delayed <time> , ev:<identifier> (<parameter list>)

The time parameter is an integer value that specifies the delay in milliseconds.

Example 6.19.
Using the fire_delayed expression

fire_delayed 3000, ev:mouseClick(10, 20); // send the event "mouseClick"

 //in 3 seconds.

► The cancel_fire expression cancels the delayed event. The syntax is as follows:

cancel_fire ev:<identifier>

► The match_event expression checks whether the execution of a script has been triggered by an event.
The syntax is as follows:

match_event v:<identifier> = ev:<identifier>

in

 <expression>

else

 <expression>

The type of the match_event expression is the type of the in expression and the else expression,
which must be identical.

There is a special form of the match_event expression, in which you can omit the else branch. This
special form is of type void and cannot be used to return values from scripts.

Example 6.20.
Using the match_event expression

match_event v:theEvent = ev:toggleView in

{

 // this code will be executed when the "toggleView" event

 // has triggered the script

 dp:infoText = "the view has been changed";

}

else {}

match_event (<expression>) in <expression> //special form

 //without an else branch

 //The special form is an alternative way to express the following

 match_event (<expression>) in { <expression> ; {} } else {}

If a script has been triggered by an event with parameters, the parameters are accessible in the in expression
of a match_event expression. Read parameters using the dot notation, as you would access fields of a
structure in C. Event parameters are not available in the else expression.

EB GUIDE Studio
Chapter 6. Background information

Page 73 of 336

Example 6.21.
Event parameters

// assume that "mouseClick" has two parameters: x and y

match_event v:event = ev:mouseClick in

{

 dp:rectX = v:event.x;

 dp:rectY = v:event.y;

}

6.13.17. String formatting
String formatting in EB GUIDE Script is done using the concatenation operator (+) on strings in combination with
various data-to-string conversion functions. The EB GUIDE Script standard library comes with the int2string
function for simple integer-to-string conversion.

Example 6.22.
String formatting

// Assume this widget is a label and has a text property.

// Further assume that the datapool item dp:time_hour and

// dp:time_minute hold the current time.

v:this.text = "the current time is: " + f:int2string(dp:time_hour)

 + ":" + f:int2string(dp:time_minute);

6.13.18. The standard library
EB GUIDE Script comes with a standard library that consists of a set of foreign functions for example as follows:

► String formatting

► Language management

► Tracing

► Time and date

► Random number generation

For details, see section 12.4.3, “EB GUIDE Script standard library”.

6.14. Scripted values

EB GUIDE Studio
Chapter 6. Background information

Page 74 of 336

A scripted value is an alternative notation for the value of a widget property or a datapool item. Such properties
of widgets or datapool items use other model elements to evaluate their own value or to react on events or
property updates. Scripted values are written in the EB GUIDE Script scripting language.

A property in EB GUIDE can be converted to a scripted value and back to its plain value.

For instructions, see section 9.7, “Converting a property to a scripted value”.

For editing a scripted value, EB GUIDE Studio contains a script editor which is divided into different categories.

Figure 6.12. EB GUIDE Script editor in EB GUIDE Studio

► The Read script is called when the scripted value property is read. If the property is of a list type, the
parameters include the list index.

The return value of the Read script represents the current value of the property.

► The Write script is called when the scripted value property is written.

The new property value is a parameter of the Write script. If the property is of a list type, the parameters
includes the list index.

The return value of the Write script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

EB GUIDE Studio
Chapter 6. Background information

Page 75 of 336

► The Trigger list contains a list of events, datapool items and widget properties that trigger the execution
of the On trigger script.

► The On trigger script is called on initialization, after an event trigger or after a property update.

The parameter of the On trigger script indicates the cause for the execution of the script. Execution can
be caused by initialization or by one of the triggers in the Trigger list.

The return value of the On trigger script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

► The Length script is only available for properties of a list type.

The return value of the Length script represents the current length of the list.

6.15. Shortcuts, buttons and icons

6.15.1. Shortcuts

The following table lists shortcuts available in EB GUIDE Studio and explains their meaning.

Table 6.3. Shortcuts

Shortcut Description

Ctrl + C Copy the selection

Ctrl + F Jump into search box

Ctrl + S Save

Ctrl + V Paste the copied selection

Ctrl + Y Redo

Ctrl + Z Undo

Alt + F4 Close the active window

Shift + F1 Open user documentation for EB GUIDE TF

F1 Open user documentation for EB GUIDE Studio

Shift + F2 Rename the selected element in the Datapool or Events component
and in all locations where the selected element is used, e.g. in EB
GUIDE Script. Applicable to datapool items and events.

EB GUIDE Studio
Chapter 6. Background information

Page 76 of 336

Shortcut Description

F2 Rename the selected element

F3 Find all occurrences of the selected element in the EB GUIDE model

F5 Start simulation

F6 Validate

Del Delete the selected element from the Content area or the component

- Collapse the selected element in the Navigation or Outline component

* and + Expand the selected model element in the Navigation or Outline com-
ponent

Up/Down/Left/Right Move the selected state or widget in the content area one pixel up,
down, left, or right

6.15.2. Command line options

6.15.2.1. Command line options for Studio.Console.exe

The following table lists command line options available in EB GUIDE Studio for Studio.Console.exe and
explains their meaning. Undefined command line options will be ignored.

The general syntax of a command line is as follows:

Studio.Console.exe <option> "project_name.ebguide"

Table 6.4. Command line options for Studio.Console.exe

Option Description

-c <logfile dir> Validates an EB GUIDE model and writes an logfile to the as logfile
dir specified directory

-e <destination dir> Exports an EB GUIDE model to the destination directory destina-
tion dir

Use with the command line option -p, see an example below.

-h Shows the help message

-l <language file> Imports one language file that is saved as language file (.xliff)
into an EB GUIDE model and creates a logfile

-m Allows the migration of the project

EB GUIDE Studio
Chapter 6. Background information

Page 77 of 336

Option Description

-o Opens the project file

-p <profile> Uses the as profile specified profile during export

Example 6.23.
Command line options

The command line Studio.Console.exe -e "C:/temp/exported_project" -p "tar-
get_profile" -o "project_name.ebguide" exports project_name.ebguide by using the
profile target_profile to the specified destination directory C:/temp/exported_project.

For instructions, see the following:

► section 10.4.1.2, “Validating an EB GUIDE model using command line”

► section 10.5.2, “Exporting an EB GUIDE model using command line”

► section 10.8.2.2, “Importing language-dependent texts using command line”

6.15.2.2. Command line options for Monitor.Console.exe

The following table lists command line options available in EB GUIDE Monitor for Monitor.Console.exe
and explains their meaning. Undefined command line options will be ignored.

The general syntax of a command line is as follows:

Monitor.Console.exe <option> "monitor.cfg"

Table 6.5. Command line options for Monitor.Console.exe

Option Description

-c <host:port> Connects an EB GUIDE model to a running EB GUIDE GTF process

-h Shows the help message

-l <language> Sets the language of EB GUIDE Monitor to one of the following: en for
English, ja for Japanese, ko for Korean, zh-cn for Chinese.

-o Opens the configuration file monitor.cfg

-s Executes all methods in a defined script

Example 6.24.

EB GUIDE Studio
Chapter 6. Background information

Page 78 of 336

Command line options

The command line Monitor.Console.exe -l ko sets the language of EB GUIDE Monitor to Kore-
an.

For instructions on how to use EB GUIDE Monitor, see section 10.9, “Working with EB GUIDE Monitor”.

6.15.3. Buttons

The following table lists buttons that are used in EB GUIDE Studio and EB GUIDE Monitor and explains their
meaning.

Table 6.6. Buttons in EB GUIDE Studio

Button Description

Undo

Redo

Save

Validate the project

Start the simulation

Stop the simulation

Open the project center

Open an additional editor

Synchronize content area and Navigation component

Add an event, a datapool item, or a state machine

Open a property-related context menu.

Depending on the button's color it indicates the following:

 Property is local.

 Property is linked to another property.

 Property is linked to a datapool item.

 Property value is equal to template value.

Fire an event

EB GUIDE Studio
Chapter 6. Background information

Page 79 of 336

6.15.4. Icons

The following table lists icons that are used in EB GUIDE Studio and explains their meaning.

Table 6.7. Icons in EB GUIDE Studio

Icon Description

Indicates an exit animation of a view template

Indicates an entry animation of a view template

Indicates an entry action of a state machine or state

Indicates an exit action of a state machine or state

Opens a context menu to delete an entry or exit action

Indicates that a dynamic state machine list is enabled

Indicates a template

Indicates a transition

Indicates an internal transition

Widget template:

Indicates that a property is added to the widget template interface

6.16. State machines and states

6.16.1. State machines

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system. In EB
GUIDE, a state machine consists of an arbitrary number of hierarchically ordered states and of transitions
between the states.

In EB GUIDE you can create the following types of state machines:

6.16.1.1. Haptic state machine

Haptic state machine allows the specification of GUI.

EB GUIDE Studio
Chapter 6. Background information

Page 80 of 336

6.16.1.2. Logic state machine

Logic state machine allows the specification of some logic without GUI.

6.16.1.3. Dynamic state machine

Dynamic state machine runs parallel to other state machines.

Dynamic state machine does not start automatically at system start. The start and stop of dynamic state ma-
chines is initiated by another state machine.

There are two kinds of dynamic state machines:

► Haptic dynamic state machine

► Logic dynamic state machine

For instructions, see section 11.1, “Tutorial: Adding a dynamic state machine”.

6.16.2. States

EB GUIDE uses a concept of states. States determine the status and behavior of a state machine. States are
linked by transitions. Transitions are the connection between states and define a state change from a source
state to a destination state.

A state has the following properties:

► Entry action

► Exit action

► Internal transitions

6.16.2.1. Compound state

A compound state can have other states within it as child states. The compound state structure is hierarchical
and the number of possible child states is arbitrary. Any type of state can be nested in a compound state.

EB GUIDE Studio
Chapter 6. Background information

Page 81 of 336

Figure 6.13. Compound states

In the Navigation component, the state hierarchy is shown as a tree structure.

EB GUIDE Studio
Chapter 6. Background information

Page 82 of 336

Figure 6.14. State hierarchy as a tree

A compound state can have an arbitrary number of incoming and outgoing transitions, and of internal transitions.
Child states inherit the transitions of parent states.

6.16.2.2. View state

A view state contains a view. A view represents a project specific HMI screen. The view is displayed while
the corresponding view state is active. The view consists of widgets which are the interface between user and
system.

6.16.2.3. Initial state

An initial state defines the starting point of the state machine. An initial state has an outgoing default transition
that points to the first state. An initial state has no incoming transition.

Initial state can be used as starting point of a compound state or to enter a compound state in the following ways:

► With a transition to compound state, initial state is mandatory

► With a transition to a child state of a compound state

EB GUIDE Studio
Chapter 6. Background information

Page 83 of 336

Figure 6.15. An example of an initial state

6.16.2.4. Final state

A final state is used to exit a compound state. If the final state of the state machine is entered, the state machine
terminates. Any history states within the compound state are reset. A final state does not have any outgoing
transitions.

A compound state can have only one final state. The final state is triggered by the following actions:

► A transition from a child state to the outside of the compound state (the transition with event z)

► An outgoing transition from the compound state (the transition with event y)

► A transition to the final state in a compound state (the transition with event x)

If a compound state contains a final state, the compound state must have an outgoing transition.

EB GUIDE Studio
Chapter 6. Background information

Page 84 of 336

Figure 6.16. Final state usage in a compound state

6.16.2.5. Choice state

A choice state realizes a dynamic conditional branch. It is used when firing an event depends on conditions. A
choice state is the connection between a source state and a destination state. A choice state can have several
incoming and outgoing transitions. Every outgoing transition is assigned a condition and is only executed if the
condition evaluates to true. One outgoing transition is the else transition. It is executed if all other conditions
evaluate to false. The else transition is mandatory.

It is possible that several of the outgoing transitions are true, thus it is necessary to define the order in which
the outgoing transitions are evaluated.

EB GUIDE Studio
Chapter 6. Background information

Page 85 of 336

Figure 6.17. Choice state with incoming and outgoing transitions

6.16.2.6. History states

EB GUIDE supports two types of history states:

► Shallow history state stores the most recent active sub-state: the sub-state that was active just before
exiting the compound state.

► Deep history state stores a compound state and its complete sub-hierarchy just before the compound
state is exited.

When the parent state of a history state is entered for the first time, the last active child state is restored.

A shallow history state only remembers the last state that was active before compound state was exited. It
cannot remember hierarchies.

EB GUIDE Studio
Chapter 6. Background information

Page 86 of 336

A shallow history state restores the last active state recorded within a compound state. It has an outgoing
default transition without conditions but can have multiple incoming transitions.

When a compound state is entered for the first time the shallow history state is empty. When an empty shallow
history state is entered the shallow history state default transition determines the next state.

Example 6.25.
Shallow history state

A shallow history state can be used as follows.

Figure 6.18. Shallow history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the shallow history state is entered.

3. From the shallow history state, the state machine enters state D because state D was the last
active state in Compound State.

► Case 2: The active state is B.

EB GUIDE Studio
Chapter 6. Background information

Page 87 of 336

1. event b is fired and state C is entered.

2. event b is fired again the shallow history state is entered.

3. From the shallow history state, the state machine enters Inner state because shallow his-
tory states remember the state last active but cannot remember hierarchies.

4. Entering Inner state leads to state A.

A deep history state is able to save hierarchical histories.

Example 6.26.
Deep history state

A deep history state can be used as follows.

Figure 6.19. Deep history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

EB GUIDE Studio
Chapter 6. Background information

Page 88 of 336

3. From the deep history state, the state machine enters state D because state D was the last ac-
tive state in Compound State.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state B because state B was the last ac-
tive state and deep history state remembers state hierarchies.

One state can have either a shallow history state or deep history state. You can have a history state in a parent
state and another history state in a child state.

6.16.3. Transitions

A transition is a directed relationship between a source state and a target state. It takes the state machine from
one state to another. A transition has the following properties:

► A trigger to execute the transition

A trigger can either be an event or the change of a datapool item.

► A condition that must be evaluated as true to execute the transition

► An action that is executed along with the transition

EB GUIDE Studio
Chapter 6. Background information

Page 89 of 336

Figure 6.20. A transition

NOTE Transitions are deterministic
It is not possible to have more than one transition from a particular source state for the same
event even with different conditions. If the state machine is supposed to jump to different
destination states depending on different conditions, use a choice state.

A state inherits all transitions from its parent states. If a number of states share the same transitions to another
state, an enclosing compound state can be used to bundle the transitions and thus reduce the number of
conditions.

Example 6.27.

EB GUIDE Studio
Chapter 6. Background information

Page 90 of 336

Transition inheritance

Figure 6.21. Transition inheritance

If the event b is fired while the state machine is in State B1, the transition to State C is executed be-
cause the child states State B1 and State B2 inherit the transitions of state State B.

If an internal transition from the child state uses the same event as the external transition from the parent state,
transition inheritance is overridden.

Example 6.28.

EB GUIDE Studio
Chapter 6. Background information

Page 91 of 336

Transition override

Figure 6.22. Transition override

If event d is fired while the state machine is in state State B, the transition to State C is executed.

If event d is fired while the state machine is in state State B1, the transition to State B2 is executed
instead of the transition to State C. Because the two transitions have the same name, the inner transi-
tion overrides the outer one.

NOTE Execution hierarchy
In a state machine the hierarchy for the execution of transitions that use the same event
is always from the inside out. This means internal transitions are preferred compared to
external transitions.

There are different types of transitions.

► Default transition

A default transition is triggered automatically and not by any event or datapool item update. It has no
condition, but can have an action. It is used with initial state, final state, choice state, and history states.

EB GUIDE Studio
Chapter 6. Background information

Page 92 of 336

► Choice transition

A choice transition is an outgoing transition with a condition assigned to it. Its source state is a choice
state. Choice transitions are triggered by the evaluation of their condition. They result in an action. The
first choice transition that has condition true is executed.

► Else transition

An else transition is the mandatory counterpart of a choice transition. Every choice state needs to have
one else transition which is executed if the conditions of all its choice transitions evaluate to false.

► Internal transition

An internal transition is a transition that has no destination state and thus does not change the active state.
The purpose of an internal transition is to react to an event without leaving the present state. It can have
a condition and it results in an action.

It is possible to have several internal transitions for the same event in a state. The order of execution is
defined.

► Self transition

A self transition is a transition with the same state as source state and destination state. Unlike an internal
transition, a self transition leaves and re-enters the state and thus executes its entry and exit actions.

6.16.4. Execution of a state machine
When a state machine is executed, at any moment in time it has exactly one active state. A state machine
is event-driven.

The state machine cycle is as follows:

1. The state machine is started by entering its initial state.

2. The state machine waits for incoming events.

a. Internal transitions are found.

i. Start at the current state and search for the first internal transition that is triggered by the current
event and has condition true. If such a transition is found, it is executed.

ii. If no transition is found, go to the parent state and search for the first internal transition that is
triggered by the current event and has condition true.

iii. If no transition is found, repeat the previous step until the top-level state is reached.

b. Internal transitions are processed.

Executing an internal transition only triggers the action that is connected to the internal transition. The
state is not exited and re-entered.

EB GUIDE Studio
Chapter 6. Background information

Page 93 of 336

c. Transitions are found.

i. Start at the current state and search for a transition that is triggered by the current event and has
condition true. If such a transition is found, it is executed.

ii. If no transition is found, go up to the parent state and search for a transition.

iii. Repeat the previous step until the first fitting transition is found.

d. Transitions are processed.

Executing a transition changes the state machine from one state to another state. The source state
is exited and the destination state is entered.

A transition is only executed when its corresponding event is fired and the condition is evaluated to
true.

A transition can exit and enter several compound states in the state hierarchy. Between the exit cas-
cade and the entry cascade the transition's action is executed.

Entering a state can require a subsequent transition, for example entering a compound state requires
executing the transition of an initial state as a subsequent transition. A chain of several subsequent
transitions is possible.

3. The state machine stops when the final state of the state machine is reached.

If a transition crosses several states in the state hierarchy, a cascade of exit and entry actions is executed.

Example 6.29.

EB GUIDE Studio
Chapter 6. Background information

Page 94 of 336

Executing a transition

Figure 6.23. Executing a transition

When event a is fired, the following happens:

1. State B is exited.

2. State C is entered.

When event b is fired, the following happens:

1. State B is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

When event c is fired, the following happens:

1. If state B or state C is active, state B or state C is exited.

2. State A is exited.

EB GUIDE Studio
Chapter 6. Background information

Page 95 of 336

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

Example 6.30.
Executing a transition

Figure 6.24. Executing a transition

When event a triggers the transition, the following happens:

1. State S4 is exited.

2. State S3 is exited.

3. State S1 is exited.

4. State S2 is entered.

5. State S5 is entered.

Example 6.31.

EB GUIDE Studio
Chapter 6. Background information

Page 96 of 336

Executing a transition

Figure 6.25. Executing a transition

The transition that is triggered by event a causes the following transition sequence:

1. The state machine goes to state S2.

2. The default transition leads to state S3.

3. The next default transition enters the shallow history state.

4. Shallow history state restores the last active state of state S3, either state S4 or state S5.

For each step the entry-exit-cascade is executed separately.

6.16.5. EB GUIDE notation in comparison to UML notation

In this section the EB GUIDE notation is compared to the Unified Modeling Language (UML) 2.5 notation.

EB GUIDE Studio
Chapter 6. Background information

Page 97 of 336

6.16.5.1. Supported elements

The following table shows all UML 2.5 elements that are supported by EB GUIDE. The names of some elements
deviate from the naming convention in UML 2.5, but the functionality behind these elements remains the same:

Name in EB GUIDE Name in UML 2.5

Initial state Initial (pseudostate)

Final state Final state

Compound state State

Choice state Choice (pseudostate)

Deep history state DeepHistory (pseudostate)

Shallow history state ShallowHistory (pseudostate)

Internal transition Internal transition

Transition External/local transition a

aEB GUIDE does not differentiate between external and local transitions.

6.16.5.2. Not supported elements

The following UML 2.5 elements are not supported in EB GUIDE:

► Join

► Fork

► Junction

► Entry point

► Exit point

► Terminate

6.16.5.3. Deviations

Some elements of the UML 2.5 notation are not implemented in EB GUIDE. But the functionality of these
elements can be modeled with EB GUIDE concepts.

Concept in UML 2.5 Workaround with EB GUIDE

Parallel states Concept is implemented using dynamic state machines.

Number of triggers per transition Concept is implemented using EB GUIDE Script in a datapool item or a
view.

EB GUIDE Studio
Chapter 6. Background information

Page 98 of 336

Concept in UML 2.5 Workaround with EB GUIDE

Time triggers at transitions Concept is implemented using EB GUIDE Script (fire_delayed) in a
state machine, a datapool item, a transition, or a view.

6.17. Touch input
EB GUIDE supports two types of touch input: Touch gestures and multi-touch input.

Each touch gesture is represented in EB GUIDE Studio as a widget feature. Enabling the widget feature adds
a set of properties to a widget.

The gestures are divided into two basic types:

► Non-path gestures

► Path gestures

6.17.1. Non-path gestures

EB GUIDE implements the following non-path gestures:

► Flick

► Pinch

► Rotate

► Hold

► Long hold

Non-path gestures include multi-touch and single-touch gestures. Multi-touch gestures require an input device
that supports multi-touch input. Single-touch gestures work with any supported input device.

Each gesture reacts independently of the others. If several gestures are enabled, the modeler is responsible
to make sure that the EB GUIDE model behaves consistently.

6.17.2. Path gestures

Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device. When
a widget has the widget feature enabled, the user can enter a shape starting on the widget. The shape has to

EB GUIDE Studio
Chapter 6. Background information

Page 99 of 336

exceed a configurable minimal bounding box to be considered by the path gesture recognizer. The shape is
matched against a set of known shapes and, if a match is found, a gesture is recognized.

For instructions, see section 11.3, “Tutorial: Modeling a path gesture”.

6.17.3. Input processing and gestures
Gesture recognition runs in parallel to ordinary input processing. Each gesture can request that the contact
involved in the gesture is removed from ordinary input processing. The moment at which a gesture requests
contact removal depends on the actual gesture and for some gestures this can be configured.

Contact removal is only relevant for fingers involved in a gesture. Once a contact is removed, it is ignored by
ordinary input handling until a release event is received for the contact. On a touch screen without proximity
support this implies that a contact, once removed, does not trigger any further touch reactions.

TIP Removing a contact from ordinary input processing
Consider a window with a button and a widget feature for gestures. When a contact is
involved in a gesture it should not cause the action associated with the button to be triggered,
even if the contact is released while on the button.

6.17.4. Multi-touch input
EB GUIDE is able to handle multi-touch input, if a compatible multi-touch input device is used.

Multi-touch is the ability of a surface to recognize and track more than one point of contact on an input device.
The typical scenario are multiple fingers touching a touch screen.

► Multi-touch event handling

Multi-touch events are dispatched using the mechanism for touch events, in the same way events from
the mouse and from single-touch touch screens are dispatched. The only difference is that each contact
triggers touch reactions independently of all others. To be able to distinguish individual contacts, each
touch reaction is supplied with a parameter called fingerid.

► Finger ID

Each contact tracked by an input device is assigned a number that identifies it. This identifier is called
fingerid and is unique per input device. However, the same value can be assigned to another contact
at a later time when it is no longer in use.

Consider the extra touch interaction sequences the end user is allowed to make when multi-touch input is
enabled. They include the following:

EB GUIDE Studio
Chapter 6. Background information

Page 100 of 336

► The end user can interact with multiple elements of the interface at the same time, for example press a
button while scrolling in a list.

► The end user can place multiple fingers on a single widget.

Two typical situations where this manifests are scrolling and dragging. They can be handled correctly by em-
ploying fingerid. Depending on the required behavior, possible solutions include the following:

► Allow only the first finger that pressed a widget to do scrolling and/or dragging.

► Always use the last finger to land on a widget to do scrolling and/or dragging. This is easily achieved by
a slight modification of the previous approach.

6.18. Widgets
Widgets are the basic graphical elements an EB GUIDE model is composed of.

Widgets can be customized. Editing the properties of a widget adapts the widget to individual needs. Example
properties are size, color, layout, or behavior when being touched or moved.

Widgets can be combined: Out of small building blocks, complex structures are created. For example, a button
can be made up of an ellipse, an image, a label, and a rectangle.

Widgets can be nested: In a widget hierarchy, the subordinate widgets are referred to as child widgets, the
superordinate widgets are referred to as parent widgets.

6.18.1. View

A view is the topmost widget of each scene. While modeling, basic widgets, 3D widgets, animations, and widget
templates are placed into views. Every view is associated to exactly one view state. A view cannot exist without
a view state.

EB GUIDE Studio
Chapter 6. Background information

Page 101 of 336

NOTE Change the size of a view
In EB GUIDE Studio, you can increase or decrease the size of a view to get a close-up view
or to see more. To zoom in and zoom out, use the slider or click the text box at the bottom
of the view. The default zoom level is 100%. Alternatively, use the Ctrl + + to zoom in, Ctrl
 + - to zoom out and Ctrl + 0 to reset the zoom level to 100%.

Figure 6.26. A view that contains a rectangle, a label, and an image

6.18.2. Widget categories
In the Toolbox, widgets are grouped by categories. The following categories are available.

► Basic widgets

The basic widgets are alpha mask, animation, container, ellipse, image, instantiator, label, and rectangle.

► 3D widgets

The 3D widgets category contains widgets to display a 3D graphic. The 3D widgets are scene graph,
scene graph node, material, PBR Phong material, PBR GGX material, mesh, camera, directional light,
point light, spot light, and ambient light.

EB GUIDE Studio
Chapter 6. Background information

Page 102 of 336

NOTE Supported renderers
To display 3D graphics, OpenGL ES version 2.0 or higher or DirectX 11 renderer is
required. Make sure that your graphic driver is compatible to the version of the renderer.

► Widget templates

The Templates category contains widget templates. It is only visible if widget templates are defined.

► Custom widgets

The Custom widgets category contains customized widgets and is therefore only visible, when
customized widgets are added to the project. For more information, see our website https://
www.elektrobit.com/ebguide/learn/resources/.

For instructions, see section 8.1, “Working with widgets”.

6.18.3. Widget properties

A widget is defined by a set of properties which specify the appearance and behavior of the widget. The
Properties component displays the properties of the currently focused widget and allows editing the properties.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE Studio
Chapter 6. Background information

Page 103 of 336

Figure 6.27. A rectangle and its properties

There are three types of widget properties:

► Default widget properties are created along with each widget instance. For a list of default properties for
all widgets, see section 12.10, “Widgets”.

► User-defined widget properties are created by the modeler in addition to the default ones.

► Widget feature properties are created by EB GUIDE Studio when the modeler adds a widget feature to a
widget. Widget feature properties are grouped by categories. Widget features add more functionality for
the appearance and behavior of widgets.

Example 6.32.
Touched widget feature

The Touched widget feature defines if and how a widget reacts to being touched. It adds four
properties. The boolean property touchable determines if the widget reacts on touch input. The
boolean property touched is set during run-time by EB GUIDE if the widget is currently touched.
The two integer properties touchPolicy and touchBehavior determine how the widget reacts
on touch input.

EB GUIDE Studio
Chapter 6. Background information

Page 104 of 336

6.18.4. Widget templates

A widget template allows the definition of a customized widget that can be used multiple times in an EB GUIDE
model. You can define templates on the basis of existing widgets or derive a new template from an existing one.
After creating, you modify the template according to your needs, for example by adding properties or widget
features. Widget templates thus allow you to built a library of complex widgets.

A widget template has a template interface. The template interface contains the properties of the template which
are visible and accessible in widget instances. A widget instance thus inherits the properties of its template's

interface. Inherited properties are called template properties. Template properties are marked with the button.

When you change the value of a template property, the property is turned into a local property. Local properties

are marked with the button.

Example 6.33.
Relation of the properties of a widget template and its instances

You add a widget template Square to the EB GUIDE model. Let Square have a property color. col-
or is added to the template interface. Let the value of color be red.

You add an instance of the widget template Square to a view. The instance is named BlueSquare.

► BlueSquare inherits color with the value red.

► Change the value of color in the Square template to green.

=> The value of color in BlueSquare changes to green, too.

► Change the value of color in BlueSquare to blue.

Change the value of color in the Square template to yellow.

=> The value of color in BlueSquare remains blue.

For instructions, see section 8.7, “Re-using a widget”.

6.18.5. Widget features

Widgets and widget templates can be extended in their functionality using widget features. Widget features
have predefined widget properties. Widget features are grouped into categories.

EB GUIDE Studio
Chapter 6. Background information

Page 105 of 336

Figure 6.28. Widget features

If you add a widget feature to a widget template, any created widget template instance inherits the added
widget feature. Note that you cannot add widget features to a widget template instance or to a template that
was created from a template.

Restrictions for usage of widget features are as follows:

► Widget features do not have an inheritance hierarchy.

► It is not possible to add a widget feature more than once per widget.

► Some widget features are interdependent. This means, to add one widget feature, you have to add another,
or widget features may exclude each other.

► Widget features can be restricted to a particular type of widgets.

► Widget features cannot be activated or deactivated during run-time.

By default all widget features are disabled. If you need a specific widget feature, you must add it to a widget.

For instructions, see section 8.3, “Extending a widget by widget features”. For a list of all widget features, see
section 12.11, “Widget features”.

EB GUIDE Studio
Chapter 6. Background information

Page 106 of 336

6.18.5.1. Focus widget feature category

In EB GUIDE Studio you model the focus management of the widgets using the Focus widget features: Auto
focus and User-defined focus.

The following two focus directions are available:

1. Forward direction: The next focusable widget is focused.

2. Backward direction: The previous focusable widget is focused.

The Auto focus and User-defined focus widget features provide a configuration for how the focus is handled
for the forward direction. For the backward directions the same focus order is used but only in reverse direction.

The Focus widget features have the following characteristics:

Auto focus
In this policy the focus is distributed between the focusable widgets from left to right starting with the top
row. The order is defined through the structure of the widget tree.

Figure 6.29. The policy of the Auto focus widget feature

Focusable child widgets cannot be skipped. Invisible widgets, widgets with disabled focused property,
and widgets without the Focused widget feature are not recognized as valid focusable widgets. Thus they
are skipped over when the currently focused widget is determined.

User-defined focus
Due to view complexity the focus sequencing through the auto focus policy may be quite difficult. In this
case it is useful to determine a user-defined focus order.

Figure 6.30. The policy of the User-defined focus widget feature

EB GUIDE Studio
Chapter 6. Background information

Page 107 of 336

In figure 6.30, “The policy of the User-defined focus widget feature”, (a) shows the view, while (b) shows
the focus order. The order, in which the focus changes are processed, may differ from the widget tree
structure.

When widgets within a widget hierarchy are marked as focusable, they are part of a focus hierarchy. This
focus hierarchy consists of focusable widgets and a focus policy, the Auto focus widget feature or the User-
defined focus widget feature, that defines how the focus is handled within the hierarchy. Focus hierarchies
can be nested.

6.18.5.2. List management widget feature category

The Line index and Template index widget features allow you to connect data, for example images, song
titles, to the corresponding dynamically created line templates of an instantiator.

Line index
The Line index widget feature is used to customize the line templates of the instantiator widget. The Line
index widget feature defines the unique position for each line of your list or table.

Example 6.34.
Line index widget feature

If you want to model a list, you would expect that each entry of the list has a specific value that
reflects the entry in a list property. To access a certain entry in a list, the instance of the line tem-
plate needs to know which of the instantiator's child it is. The Line index widget feature adds the
lineIndex property. While the instantiator creates the instances of line templates, it fills lineIn-
dex with values: The index starts with zero for the first instance. If you have two elements in the in-
stantiator, the second element receives the lineIndex value 1.

For instructions, see section 11.4, “Tutorial: Creating a list with dynamic content”.

Template index
The Template index widget feature allows complex data abstraction. For very complex lists or tables you
require more than one data list to visualize an entry or a set of entries. For example, a table with mixed
image and text content requires a list of images and a list of strings. To cover such complex cases, the
Template index widget feature provides the property lineTemplateIndex.

Example 6.35.
Template index widget feature

If you model a list using an instantiator with the property lineMapping set to 0|1 and the property
numItems set to 5, the lineTemplateIndex results in 0|0|1|1|2.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 108 of 336

7. Modeling HMI behavior
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

7.1. Modeling a state machine

7.1.1. Adding a state machine

Adding a state machine

Step 1
In the Navigation component, go to State machines, and click .

A menu expands.

Step 2
Select a type for the state machine.

A new state machine of the selected type is added.

Step 3
Rename the state machine.

7.1.2. Adding a dynamic state machine

Dynamic state machines run in parallel to other state machines and can be started (pushed) and stopped
(popped) during run-time.

Adding a dynamic state machine

You use a dynamic state machine for example to show an error message that overlays the regular screen.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 109 of 336

Prerequisite:

■ A state machine, view state, or compound state is added to the EB GUIDE model.

Step 1
In the Navigation component, go to Dynamic state machines, and click .

A menu expands.

Step 2
Select a type for the dynamic state machine.

A new dynamic state machine of the selected type is added.

Step 3
In the Navigation component, click the state machine, view state, or compound state to which you want to
run in parallel the dynamic state machine.

Step 4
In the Properties component, select the Dynamic state machine list check box.

With these steps done, you use EB GUIDE Script functions that are related to dynamic state machines.

For details, see section 11.1, “Tutorial: Adding a dynamic state machine”.

7.1.3. Defining an entry action for a state machine

Defining an entry action for a state machine

Step 1
Select a state machine.

Step 2
In the Properties component, go to the Entry action property, and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

You defined an entry action for a state machine.

7.1.4. Defining an exit action for a state machine

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 110 of 336

Defining an exit action for a state machine

Step 1
Select a state machine.

Step 2
In the Properties component, go to the Exit action property, and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

You defined an exit action for a state machine.

7.1.5. Deleting a state machine

Deleting a state machine

Step 1
In the Navigation component, right-click the state machine.

Step 2
In the context menu, click Delete.

The state machine is deleted.

7.2. Modeling states

7.2.1. Adding a state

Adding a state

Prerequisite:

■ The content area displays a state machine.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 111 of 336

Step 1
Drag a state from the Toolbox into the state machine.

A state is added to the state machine.

NOTE Initial state, final state, and history states are unique
You can insert initial state, final state, and history states only once per compound state.

TIP Copying and finding states
Alternatively, you can copy and paste an existing state using the context menu or Ctrl + C
and Ctrl + V.

To find a specific state within your EB GUIDE model, enter the name of the state in the
search box or use Ctrl + F. To jump to a state, double-click it in the hit list.

7.2.2. Adding a state to a compound state

Adding a state to a compound state

To create a state hierarchy, you create a state as a child to another state. You do so by adding a state to a
compound state.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains a compound state.

Step 1
In the Navigation component, double-click the compound state.

The compound state expands in the content area.

Step 2
Drag a state from the Toolbox into the compound state.

The state is added as a child state to the compound state.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 112 of 336

Figure 7.1. A compound state with a nested view state

7.2.3. Adding a choice state

Adding a choice state

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

Step 1
Drag a choice state from the Toolbox into the state machine.

Step 2
Add an outgoing transition from the choice state.

Step 3
Add a condition to the outgoing transition. For details see section 7.3.4, “Adding a condition to a transition”

The condition is assigned priority one. When the state machine enters the choice state, the condition with pri-
ority one is evaluated first.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 113 of 336

Step 4
To add more choice transitions, repeat the two previous steps.

A new choice transition is assigned a lower priority than the transition that was created before.

Step 5
Add an outgoing transition from the choice state.

Step 6
In the Navigation component, right-click the transition. In the context menu, click Convert to else.

You added an else transition. The else transition is executed when all conditions which are assigned to out-
going choice transitions evaluate to false.

Figure 7.2. A choice state with its choice transitions

7.2.4. Defining an entry action for a state

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 114 of 336

Defining an entry action for a state

For view states and compound states you can define an entry action. The entry action is executed every time
the state is entered.

Prerequisite:

■ A state machine contains a view state or a compound state.

Step 1
Select a state.

Step 2
In the Properties component, go to the Entry action property, and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

7.2.5. Defining an exit action for a state

Defining an exit action for a state

For view states and compound states you can define an exit action. The exit action is executed every time
the state is exited.

Prerequisite:

■ A state machine contains a view state or a compound state.

Step 1
Select a state.

Step 2
In the Properties component, go to the Exit action property, and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 115 of 336

Step 4
Click Accept.

7.2.6. Deleting a model element from a state machine

Deleting a model element from a state machine

Prerequisite:

■ A state machine contains at least one model element.

Step 1
In the Navigation component, right-click a model element.

Step 2
In the context menu, click Delete.

The model element is deleted.

7.3. Connecting states through transitions

7.3.1. Adding a transition between two states

Adding a transition between two states

With a transition, you connect a source state to a target state.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

Step 1
Select a state as a source state for the transition.

Step 2
Click the green drag point, and keep the mouse button pressed.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 116 of 336

Step 3
Drag the mouse into the target state.

Step 4
When the target state is highlighted green, release the mouse button.

Figure 7.3. A transition

A transition is added and displayed as a green arrow.

TIP Connect transitions to the state machine
The state machine is the top-most compound state. Therefore, you can create transitions
to and from the border of the state machine. All states in the state machine inherit such a
transition.

7.3.2. Moving a transition

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 117 of 336

Moving a transition

You move a transition by moving one of its end points.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
In the content area, click a transition.

Two green drag points are displayed.

Step 2
Click the drag point you would like to move, and keep the mouse button pressed.

Step 3
Drag the mouse into a different state.

Step 4
When the state is highlighted green, release the mouse button.

The transition is moved.

7.3.3. Defining a trigger for a transition

Defining a trigger for a transition

For a transition, you can define an event that triggers it.

Prerequisite:

■ A state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
In the Properties component, expand the Trigger combo box.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 118 of 336

Step 3
Select an event.

Step 4
To create a new event, enter a name in the Trigger combo box, and click Add event.

The event is added as a transition trigger.

Figure 7.4. A transition with a trigger

7.3.4. Adding a condition to a transition

Adding a condition to a transition

For every transition, you can define a condition that needs to be fulfilled to execute the transition.

Prerequisite:

■ A state machine contains at least two states.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 119 of 336

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add a condition to the transition, go to the Properties component. Next to the Condition property, click
Add.

Step 3
Enter a condition using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

The condition is added to the transition.

Figure 7.5. A transition with a condition

7.3.5. Adding an action to a transition

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 120 of 336

Adding an action to a transition

For every transition, you can define an action that is executed along with the transition.

Prerequisite:

■ A state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add an action to the transition, go to the Properties component. Next to the Action property, click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information, see section 6.13, “Scripting language EB GUIDE Script”.

Step 4
Click Accept.

The action is added to the transition.

EB GUIDE Studio
Chapter 7. Modeling HMI behavior

Page 121 of 336

Figure 7.6. A transition with an action

7.3.6. Adding an internal transition to a state

Adding an internal transition to a state

Prerequisite:

■ A state machine contains a state.

Step 1
Select a state.

Step 2
In the Properties component, go to Internal transitions, and click Add.

An internal transition is added to the state. The internal transition is visible in the Navigation component.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 122 of 336

8. Modeling HMI appearance
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

8.1. Working with widgets
TIP Copying and finding views and widgets

You can copy and paste an existing view or widget using the context menu or Ctrl + C and
Ctrl + V.

To find a specific view or widget within your EB GUIDE model, enter the name of the view
or widget in the search box or use Ctrl + F. To jump to a view or widget, double-click it in
the hit list.

8.1.1. Adding a view

Adding a view

Prerequisite:

■ The content area displays a state machine.

Step 1
Drag a view state from the Toolbox into the state machine.

Along with the view state, a view is added to the model.

Step 2
In the Navigation component, click the view.

Step 3
Press the F2 key, and rename the view.

Step 4
Double-click the view state in the content area.

The content area displays the new view.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 123 of 336

8.1.2. Adding a basic widget to a view
For details on basic widgets, see section 12.10.2, “Basic widgets”.

8.1.2.1. Adding a rectangle

Adding a rectangle

Prerequisite:

■ The content area displays a view.

Step 1
Drag a rectangle from the Toolbox into the view.

The rectangle is added to the view.

8.1.2.2. Adding an ellipse

Adding an ellipse

Prerequisite:

■ The content area displays a view.

Step 1
Drag an ellipse from the Toolbox into the view.

The widget is added to the view.

8.1.2.2.1. Editing an ellipse

You can draw just a sector of an ellipse and you can change the arc of an ellipse.

Creating a circular sector

Prerequisite:

■ The view contains an ellipse.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 124 of 336

Step 1
Click the ellipse and go to the Properties component.

Step 2
Enter the angle of the sector in the centralAngle text box.

Step 3
Enter the orientation of the sector in the sectorRotation text box.

You created a circular sector.

Creating a circular arc

Prerequisite:

■ The view contains an ellipse.

Step 1
Click the ellipse and go to the Properties component.

Step 2
Enter the width of the arc in the arcWidth text box.

You created a circular arc.

8.1.2.3. Adding an image

Adding an image using Toolbox

Prerequisite:

■ An image file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For
supported file types, see section 6.12.2, “Images”.

■ The content area displays a view.

Step 1
Drag an image from the Toolbox into the view.

Step 2
In the Properties component, select an image from the image combo box. Alternatively, drag another image
from the Assets component into the image drop-down list box.

The view displays the image.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 125 of 336

Adding an image using Assets component

Prerequisite:

■ An image file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For
supported file types, see section 6.12.2, “Images”.

■ The content area displays a view.

Step 1
Drag an image file from the Assets component into the view.

The view displays the image.

Step 2
To change the image file, go to the Properties component and select an image from the image combo box.
Alternatively, drag another image from the Assets component into the image combo box.

The view displays the image.

Adding 9-patch images

Prerequisite:

■ A 9-patch image file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory.
For background information on 9-patch images, see section 6.12.2.1, “9-patch images”.

■ The content area displays a view.

■ An image is added to the EB GUIDE model.

Step 1
Select the image, and go to the Properties component.

Step 2
From the image combo box, select a 9-patch image.

Step 3
Go to the Widget features properties and click Add/Remove.

The Widget feature dialog is displayed.

Step 4
Under Available widget features, expand the Layout category, and select Scale mode.

Step 5
Click Accept.

The related widget properties are added to the image and displayed in the Properties component.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 126 of 336

Step 6
In the Properties component, for the scaleMode property select fit to Size (=1).

NOTE Adding 9-patch images
If you do not add the Scale mode widget feature or if for the scaleMode property you
select original Size (=0) or keep aspect ratio (=2), the 9-patch image is
scaled like a normal .png image.

8.1.2.4. Adding a label

Adding a label using Toolbox

Prerequisite:

■ The content area displays a view.

Step 1
Drag a label from the Toolbox into the view.

The label is added to the view. The label has the default font PT_Sans_Narrow.ttf.

Adding a label using Assets component

Prerequisite:

■ A font file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For sup-
ported file types, see section 6.12.1, “Fonts”.

■ The content area displays a view.

Step 1
Drag a font file from the Assets component into the view.

The view displays the label with the selected font.

8.1.2.4.1. Changing the font of a label

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 127 of 336

Changing the font of a label

Prerequisite:

■ A font file is located in the $GUIDE_PROJECT_PATH/<project name>/resources directory. For sup-
ported file types, see section 6.12.1, “Fonts”.

■ The EB GUIDE model contains a view state.

■ The view contains a label.

Step 1
Select the label in the view.

Step 2
In the Properties component, select a font from the font combo box.

Alternatively, drag a font file from the Assets component into the font combo box.

The view displays the label with the new font. Note that if you select an .fnt bitmap font, the size of the font
is fixed and you cannot change it in the font property of the label.

NOTE Calculation of text height and line gap
The following figure shows, how text height, line height, and line gap are calculated in EB
GUIDE Studio. Take this into account when changing font style, size or line gap of a label.

Figure 8.1. Calculation of text height, line height, and line gap

8.1.2.5. Adding a container

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 128 of 336

Adding a container

A container allows grouping widgets.

Prerequisite:

■ The content area displays a view.

Step 1
Drag a container from the Toolbox into the view.

Step 2
In the content area, enlarge the container by dragging one of its corners.

Step 3
Drag two or more widgets from the Toolbox into the container.

The widgets are modeled as child widgets of the container. Moving the container moves its child widgets
along with it.

8.1.2.6. Adding an instantiator

Adding an instantiator

Prerequisite:

■ The content area displays a view.

Step 1
Drag an instantiator from the Toolbox into the view.

Step 2
Drag a widget from the Toolbox into the instantiator.

The widget serves as a line template.

Step 3
Select the instantiator, and go to the Properties component.

Step 3.1
For the numItems property enter a value that is greater than one.

Step 3.2
Add one of the following widget features to the instantiator:

► Box layout

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 129 of 336

► Flow layout

► Grid layout

► List layout

For details, see section 8.3.1, “Adding a widget feature”.

In the view, the child widget is displayed as many times as specified by the numItems property and in the
layout specified by widget features for the instantiator.

Step 4
Drag a widget from the Toolbox into the instantiator.

You added the second child widget that serves as the second line template.

Step 5
Select the instantiator, and go to the Properties component.

Step 5.1
Next to the lineMapping click .

Step 5.2
Click the Add button.

The new entry is added to the table.

Step 5.3
In the Value text box enter 0.

Step 5.4
Click the Add button.

The new entry is added to the table.

Step 5.5
In the Value text box enter 1.

You defined the order in which the line templates are instantiated.

Example 8.1.
Instantiation order

The lineMapping property defines the order of instantiation. For example, if you enter the values 1|
0, the instantiator instantiates the line template 1 as the first child widget and the line template 0 as the
second child widget.

The lineMapping property is applied iteratively. This means that if for the numItems property you en-
ter 10, the result is the order 1|0|1|0|1|0|1|0|1|0.

For a detailed example of how to use instantiators, see section 11.4, “Tutorial: Creating a list with dynamic
content”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 130 of 336

NOTE Linking of properties of the line templates
The following are the rules for linking:

► You cannot link properties between line templates.

► You cannot link from the outside of the instantiator to its line templates.

► You can link from a line template to the corresponding instantiator.

8.1.2.7. Adding an animation

Adding an animation

For details on curves and for a description of curve properties, see section 12.10.2.2, “Animation”.

Prerequisite:

■ The content area displays a view.

Step 1
Drag one of the basic widgets from the Toolbox into the view.

Step 2
Drag an animation from the Toolbox into the widget you added.

Step 3
Go to the Animation editor and next to Animation properties click .

A menu expands.

Step 4
Under Animation properties select the property that you want to animate and under Animation curve se-
lect a respective curve.

Figure 8.2. Animation editor with an example curve

Step 5
Select the basic widget, and add a user-defined property of type Conditional script. For details, see
section 8.2.5, “Adding a user-defined property to a widget”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 131 of 336

Step 6
In the Properties component next to the name of the property, click Edit.

A script editor opens.

Step 7
Enter the following EB GUIDE Script:

 function(v:arg0::bool)

 {

 f:animation_play(v:this->"Animation 1")

 }

Animation 1 is the default name of the animation that is added first. If the animation you added in step two
has a different name, replace the name in the On trigger script.

Step 8
Start the simulation.

The linked property of your widget gradually changes as specified by the curve you added.

As a follow-up step, you can change the properties of the animation or the curve.

For a concrete animation example, see section 11.5, “Tutorial: Making an ellipse move across the screen”.

8.1.2.8. Adding an alpha mask

Adding an alpha mask

For details on alpha mask, see section 12.10.2.1, “Alpha mask”.

Prerequisite:

■ The $GUIDE_PROJECT_PATH/<project name>/resources directory contains an image.

■ The content area displays a view.

Step 1
Drag the alpha mask from the Toolbox into the view.

Step 2
Go to the Properties component and select an image from the image drop-down list box.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 132 of 336

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. DirectX 11
and OpenGL ES version 2.0 or higher support .png files and .jpg files. RGB images are
converted to grayscale images before being used as alpha masks. Grayscale images are
used as is. The alpha channel in the image is ignored.

You cannot use the alpha mask with 9-patch images.

Step 3
Add one of the basic widgets from the Toolbox as a child widget to the alpha mask.

The alpha channel, i.e. the opacity of the child widget is controlled with the alpha mask.

8.1.3. Adding a 3D widget to a view

8.1.3.1. Adding a scene graph to a view

Adding a scene graph to a view

For restrictions and recommendations, see section 6.1.2, “Settings for 3D graphic files”.

Prerequisite:

■ A 3D graphic file is available. The file contains a camera, a light source, and one object containing a mesh
and at least one material. For supported 3D graphic file formats, see section 6.1.1, “Supported 3D graphic
formats”.

■ The content area displays a view.

Step 1
Drag a scene graph from the Toolbox into the view.

The view displays the empty bounding box.

Step 2
In the Properties component, click Import file.

A dialog opens.

Step 3
Navigate to the directory where the 3D graphic file is stored.

Step 4
Select the 3D graphic file.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 133 of 336

Step 5
Click Open.

The import starts. A dialog opens.

Step 6
Click OK.

The view displays the 3D graphic. The Navigation component displays the imported widget tree with the
scene graph as a parent node. If the imported 3D scene has animations, the linear key value interpolation in-
teger or linear key value interpolation float curve are added. Note that you cannot modify the underlying key-
value pairs of these curves in EB GUIDE Studio.

TIP Multiple import
Import of multiple 3D graphics within one scene graph is possible.

After importing, multiple 3D graphics are rendered on top of each other. To display 3D ob-
jects separately, use the visible property of RootNode.

8.1.4. Adding a .psd file to a view

Adding a .psd file to a view

Prerequisite:

■ A .psd file is available in $GUIDE_PROJECT_PATH/<project name>/resources. For background in-
formation, see section 6.12.4, “.psd file format”.

■ The content area displays a view.

Step 1
In the Assets component, select the resource folder.

Step 2
From the preview area, drag the .psd file into the content area.

The import status message appears.

Step 3
Click OK.

If the import was successful, the Navigation component displays the widget tree that was created from the
.psd file. The widget tree consists of containers and images and reflects the structure of the .psd file. In the
$GUIDE_PROJECT_PATH/<project name>/resources directory a subdirectory with all extracted im-
ages is created.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 134 of 336

Extracting images from a .psd file

You can extract images from a .psd file without importing it. This means a widget tree is not created.

Prerequisite:

■ A .psd file is available in $GUIDE_PROJECT_PATH/<project name>/resources. For background in-
formation, see section 6.12.4, “.psd file format”.

■ The content area displays a view.

Step 1
In the Assets component, right-click the .psd file and select Generate images from .psd file.

In the $GUIDE_PROJECT_PATH/<project name>/resources directory a subdirectory with all extracted
images is created.

8.1.5. Deleting a widget from a view

Deleting a widget from a view

Prerequisite:

■ The EB GUIDE model contains a widget.

Step 1
In the Navigation component, right-click a widget.

Step 2
In the context menu, click Delete.

The widget is deleted.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 135 of 336

TIP Deleting widgets from the content area
It is also possible to delete a widget by selecting it in the content area and pressing the
Delete key.

8.2. Working with widget properties

8.2.1. Positioning a widget

Positioning a widget

Positioning a widget means adjusting the widget's x and y properties. The point of origin where both x and y
have the value 0 is the top left corner of the parent widget.

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
To define the x-coordinate of the widget enter a value in the x text box.

Step 3
To define the y-coordinate of the widget enter a value in the y text box.

Step 4
Click outside the text box.

The content area displays the widget at the entered position.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 136 of 336

TIP Alternative approach
To position a widget by visual judgment, select the widget in the content area and move it
with the mouse.

8.2.2. Resizing a widget

Resizing a widget

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Figure 8.3. Properties of an image

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 137 of 336

Step 2
To define the height of the widget enter a value in the height text box.

Step 3
To define the width of the widget enter a value in the width text box.

Step 4
Click outside the text box.

The content area displays the widget with the entered size.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

TIP Alternative approach
To resize a widget by visual judgment, select the widget in the content area and drag one
of its corners with the mouse.

8.2.3. Linking between widget properties

Linking between widget properties

In order to make sure that two widget properties have the same value at all times, you can link two widget
properties. As an example, the following instructions show you how to link the width property of a rectangle
to the width property of a view.

You can only link the properties of widgets within the same view

You cannot link to properties of child widgets of an instantiator.

Prerequisite:

■ The EB GUIDE model contains a view state.

■ The view contains a rectangle.

■ The width property of the rectangle is not a scripted value.

Step 1
Click the rectangle.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 138 of 336

The Properties component displays the properties of the rectangle.

Step 2
In the Properties component, go to the width property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

Figure 8.4. Linking between widget properties

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property. It indicates that the width property
of the rectangle is now linked to the width property of the view. Whenever you change the width of the view,
the width of the rectangle changes and vice versa.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 139 of 336

NOTE Link source and link target
The button is only displayed next the link source. It is not displayed for the link target.

TIP Removing the link
To remove the link, click the button again. In the menu that opens click Remove link.

8.2.4. Linking a widget property to a datapool item

Linking a widget property to a datapool item

In order to make sure that a widget property and a datapool item have the same value at all times, you can
link a widget property to a datapool item. As an example, the following instructions show you how to link the
image property of an image to a new datapool item.

Prerequisite:

■ The EB GUIDE model contains a view state.

■ The view contains an image.

■ The image property of the image is not a scripted value.

Step 1
Click the image.

The Properties component displays the properties of the image.

Step 2
In the Properties component, go to the image property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the text box.

Step 5
Click Add datapool item.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 140 of 336

Step 6
Click Accept.

Figure 8.5. Linking to a datapool item

A new datapool item is added.

Step 7
The dialog closes. The button is displayed next to the image property. It indicates that the image property
is now linked to a datapool item. Whenever you change the image, the datapool item changes and vice ver-
sa.

NOTE Link source and link target
The button is only displayed next the link source. It is not displayed for the link target.

TIP Removing the link
To remove the link, click the button again. In the menu that opens, click Remove link.

8.2.5. Adding a user-defined property to a widget

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 141 of 336

Adding a user-defined property to a widget

Prerequisite:

■ The EB GUIDE model contains a view state.

■ The view contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the User-defined properties category, and click .

A menu expands.

Step 3
In the menu, click a type for the user-defined property.

A new widget property of the selected type is added to the widget.

Step 4
Rename the property.

8.2.5.1. Adding a user-defined property of type Function (): bool

Adding a user-defined property of type Function (): bool

A property of type Function (): bool is a function that has no parameters and returns a boolean value.
You call the function in EB GUIDE Script in the way you address widget properties followed by the arguments
list.

Prerequisite:

■ The EB GUIDE model contains a view state.

■ The view contains a widget.

Step 1
Select a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the User-defined properties category, and click .

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 142 of 336

A menu expands.

Step 3
In the menu, click Function (): bool.

A new widget property of type Function (): bool is added to the widget.

Step 4
Rename the property.

Step 5
Next to the property, click Edit.

A script editor opens.

Step 6
Define the behavior of the new function using EB GUIDE Script.

Step 7
Click Accept.

Example 8.2.
Calling a property of type Function (): bool

In your EB GUIDE model, there is a rectangle called Background color. You added a property of
type Function (): bool to it. The property is called change.

In any EB GUIDE Script code in the EB GUIDE model, you can call the script in the property as follows:

"Background color".change()

8.2.6. Renaming a user-defined property

Renaming a user-defined property

Prerequisite:

■ The EB GUIDE model contains a widget with a user-defined property.

Step 1
In the Navigation component, select the widget with the user-defined property.

Step 2
In the Properties component, click the button next to the property.

A menu expands.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 143 of 336

Step 3
In the menu click Rename.

Step 4
Enter a name for the property.

Step 5
Press the Enter key.

8.3. Extending a widget by widget features
Widget features add more functionality for the appearance and behavior of widgets. Adding a widget feature
to a widget means adding one or more widget properties. The offered widget features depend on the type of
the widget.

8.3.1. Adding a widget feature

Adding a widget feature

Prerequisite:

■ The EB GUIDE model contains a widget.

Step 1
In the Navigation component, click a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 144 of 336

Figure 8.6. Widget features dialog

Step 3
Under Available widget features, expand a category, and select the widget feature you want to add.

The selected widget feature as well as dependent widget features that are activated automatically along with
it, are listed under Preview.

Click Accept.

TIP Dependencies between widget features
Some widget features require other widget features. Therefore, in some cases, if you select
a widget feature, other widget features are selected automatically.

For example, you want to add the widget feature Moveable. In addition the widget features
Touched and Touch Move are added automatically.

For a list of widget features grouped by categories, see section 12.11, “Widget features”.

For tutorials, see the following:

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 145 of 336

► section 11.3, “Tutorial: Modeling a path gesture”

► section 11.4, “Tutorial: Creating a list with dynamic content”

► section 11.2, “Tutorial: Modeling button behavior with EB GUIDE Script”

8.3.2. Removing a widget feature

Removing a widget feature

Prerequisite:

■ The EB GUIDE model contains a widget.

■ At least one widget feature is added to the widget.

Step 1
In the Navigation component, click a widget.

The Properties component displays the properties of the selected widget.

Step 2
In the Properties component, go to the Widget feature properties category and click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 146 of 336

Figure 8.7. Widget features dialog

Step 3
Under Preview clear the widget feature you want to remove.

Click Accept.

The related widget feature properties are removed from the Properties component.

NOTE Removing widget features with dependencies
Widget features which were added automatically due to dependencies are not deleted au-
tomatically. They cannot be removed directly. Clear the parent widget feature before you
clear the child widget feature.

8.4. Adding a language to the EB GUIDE model
To enable language support during run-time, you add languages to the EB GUIDE model.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 147 of 336

8.4.1. Adding a language

NOTE No skin support available
When you have defined a language support for a datapool item, it is not possible to add a
skin support to the same item.

Adding a language

The first language in the list is always the default language and cannot be deleted. If you add a language, the
language uses the standard language settings as initial values.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

The available languages are displayed.

Step 3
In the content area, click Add.

A language is added to the table.

Step 4
Press F2, and enter a name for the language.

Step 5
Select a language from the Language drop-down list box.

Step 6
Select a country from the Country drop-down list box.

You added a language.

For instructions on how to change the language during run-time, see section 11.6, “Tutorial: Adding a lan-
guage-dependent text to a datapool item”.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 148 of 336

8.4.2. Deleting a language

Deleting a language

Prerequisite:

■ At minimum two languages are added to the EB GUIDE model.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

The available languages are displayed.

Step 3
In the content area, select a language.

Step 4
In the content area, click Delete.

The language is deleted from the table.

8.5. Working with skin support
With skin support you can define different datapool values for your model. This way you can define different
looks for the same model, as for example night and day mode.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 149 of 336

8.5.1. Adding a skin to the EB GUIDE model

NOTE No language support available
When you have defined a skin support for a datapool item, it is not possible to add a lan-
guage support to the same item.

Adding a skin to the EB GUIDE model

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Skins.

A standard skin is added to each model by default.

Step 3
In the content area, click Add.

A skin is added to the table.

Step 4
Press F2 and rename the skin.

The new skin is added to the model. In the project editor, the new skin can be selected in the drop-down list
box of the command area.

8.5.2. Adding skin support to a datapool item

Adding skin support to a datapool item

To define different datapool values and thus define various looks for the your EB GUIDE model, you first
need to add a skin support to the datapool item.

Prerequisite:

■ The EB GUIDE model contains datapool items.

■ A skin is added to the model.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 150 of 336

Step 1
In the project editor, go to the Datapool component.

Step 2
Next to the Value property of a datapool item, click the button.

A menu expands.

Step 3
In the menu, click Add skin support.

The dialog closes. Next to the Value property, the button is displayed. It indicates that a skin support is
added to this datapool item and now different values for each skin can be defined.

Step 4
To define different values for the datapool item, select the datapool in the Datapool component.

The Properties component displays a table with all skins available in the EB GUIDE model.

Step 5
Define a value for each skin in the table.

8.5.3. Switching between skins

Switching between skins

Prerequisite:

■ The EB GUIDE model contains datapool items.

■ A skin is added to the model.

Step 1
In the project editor go to the command area.

Step 2
Select a skin in the drop-down list box.

The content area displays the model with the datapool values valid for this skin. Also the simulation mode will
display the model with the specific skin values.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 151 of 336

8.5.4. Deleting a skin

Deleting a skin

Prerequisite:

■ A skin is added to the model.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Skins.

All skins of the current project are listed.

Step 3
Select the skin to be deleted and click Delete.

The skin is deleted from the table.

8.6. Animating a view transition

8.6.1. Adding an entry animation

Adding an entry animation

To make a view appear with a moving or fading animation, you add an entry animation to a view template.

Prerequisite:

■ A view template is added.

Step 1
In the Navigation component, click a view template.

Step 2
Go to the Properties component.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 152 of 336

Step 3
To define an animation that is played when the view is entered, select the Entry animation check box.

Step 4
From the Transition type drop-down list box, select a type for the view transition.

Step 5
Enter a duration in milliseconds in the Duration text box.

Step 6
Select the Play after exit animation check box.

Result: Every view you derive from this view template is entered with the animation you defined. With the
Play after exit animation check box you defined that the entry animation waits until the exit animation of the
previous view is finished.

8.6.2. Adding an exit animation

Adding an exit animation

To make a view disappear with a moving or fading animation, you add an exit animation to a view template.

Prerequisite:

■ A view template is added.

Step 1
In the Navigation component, click a view template.

Step 2
Go to the Properties component.

Step 3
To define an exit animation that is played when the view is exited, select the Exit animation check box.

Step 4
From the Transition type drop-down list box, select a type for the view transition.

Step 5
Enter a duration in milliseconds in the Duration text box.

Step 6
Enter a delay in milliseconds in the Delay text box.

Result: Every view you derive from this view template is exited with the animation you defined.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 153 of 336

8.7. Re-using a widget

8.7.1. Adding a template

Adding a template

Step 1
In the Navigation component, go to Templates, and click .

A menu expands.

Step 2
In the menu, click a type for the template.

A new template of the selected type is added. The content area displays the template.

Step 3
Rename the template.

Step 4
In the Properties component, edit the template's properties, and define the template interface.

TIP Templates of templates
A type for the template can be an existing template. EB GUIDE thus allows creating tem-
plates from templates.

TIP Copying and finding templates
Alternatively, you can copy and paste an existing template using the context menu or Ctrl
 + C and Ctrl + V.

To find a specific template within your EB GUIDE model, enter the name of the template in
the search box or use Ctrl + F. To jump to a template, double-click it in the hit list.

8.7.2. Defining the template interface

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 154 of 336

Defining the template interface

Prerequisite:

■ The EB GUIDE model contains a template.

Step 1
Select a template.

Step 2
To add a property to the template interface, in the Properties component click the button next to the prop-
erty. In the menu, click Add to template interface.

The icon is displayed next to the property.

Step 3
To remove a property from the template interface, click the button next to the property. In the menu, click
Remove from template interface.

The icon is no longer displayed next to the property.

NOTE Instantiator templates
For templates of instantiators, it is not possible to add properties of the instantiator's child
widgets to the template interface.

8.7.3. Using a template

Using a template

Prerequisite:

■ The content area displays a view.

■ In the Toolbox, a widget template is available.

■ There is at least one property in the template interface of the widget template.

Step 1
Drag a widget template from the Toolbox into the view.

An instance of the template is added to the view. The Properties component displays the properties which
belong to the template interface.

EB GUIDE Studio
Chapter 8. Modeling HMI appearance

Page 155 of 336

TIP Define the template interface
If the Properties component does not display any properties for a template instance, no
properties have been added to the template interface. Define the template interface to
change that.

Step 2
In the Properties component, edit the properties of the template instance.

After editing a property, the button changes to the button.

Step 3
To reset a property value to the value of the template, click the button next to the property. In the menu,
click Reset to template value.

8.7.4. Deleting a template

Deleting a template

Step 1
In the Navigation component, right-click a template.

Step 2
In the context menu, click Delete.

The template is deleted.

EB GUIDE Studio
Chapter 9. Handling data

Page 156 of 336

9. Handling data
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

9.1. Adding an event

Adding an event

Step 1
In the Events component, click .

An event is added to the table.

Step 2
Rename the event.

TIP Copying and finding events
Alternatively, you can copy and paste an existing event using the context menu or Ctrl + C
and Ctrl + V. To prevent duplicates, the pasted event has a different event ID than the copied
event.

To find a specific event within your EB GUIDE model, enter the name of the event in the
search box or use Ctrl + F. To jump to an event, double-click it in the hit list.

9.2. Adding a parameter to an event

Adding a parameter to an event

Prerequisite:

■ An event is added to the EB GUIDE model.

EB GUIDE Studio
Chapter 9. Handling data

Page 157 of 336

Step 1
In the Events component, click an event.

Step 2
In the events table click next to the event.

Step 3
From the drop-down list box select a type for the parameter.

A parameter of the selected type is added to the event.

Step 4
Rename the parameter.

9.3. Addressing an event
Event IDs and event group IDs are used to address events. EB GUIDE TF uses the IDs to send and receive
the events at run-time.

Adding an event group

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Event groups.

Step 3
In the content area, click Add.

An event group is added to the table.

Step 4
Rename the event group.

Step 5
To change an event group ID, double-click the ID, and type a number.

Addressing an event for EB GUIDE TF

Prerequisite:

■ An event group is added.

■ An event is added to the EB GUIDE model.

EB GUIDE Studio
Chapter 9. Handling data

Page 158 of 336

Step 1
In the Events component, click an event.

The Properties component displays the properties of the selected event.

Step 2
Insert an ID in the Event ID text box.

Step 3
Go to the Events component and select an event group from the Group drop-down list box.

9.4. Deleting an event

Deleting an event

Prerequisite:

■ An event is added to the EB GUIDE model.

Step 1
In the Events component, right-click the event.

Step 2
In the context menu, click Delete.

The event is deleted.

9.5. Adding a datapool item

Adding a datapool item

Step 1
In the Datapool component, click .

A menu expands.

Step 2
In the menu, click a type for the datapool item.

A new datapool item of the selected type is added. The datapool item is prepared for internal use.

EB GUIDE Studio
Chapter 9. Handling data

Page 159 of 336

Step 3
Rename the datapool item.

TIP Copying and finding datapool items
Alternatively, you can copy and paste an existing datapool item using the context menu or
Ctrl + C and Ctrl + V.

To find a specific datapool item within your EB GUIDE model, enter the name of the datapool
item in the search box or use Ctrl + F. To jump to a datapool item, double-click it in the hit list.

9.6. Editing datapool items of a list type

Editing datapool items of a list type

Prerequisite:

■ A datapool item of a list type is added.

Step 1
In the Datapool component, click a datapool item of a list type.

Step 2
In the Value column, click .

An editor opens.

Step 3
To add an item to the list datapool item, click Add.

A new entry is added to the table.

Step 4
Enter a value for the new entry in the Value text box or select a value from the combo box.

Step 5
Repeat steps three and four to add more items to the list.

Step 6
Click Accept.

The content of the list is displayed in the Value column.

9.7. Converting a property to a scripted value

EB GUIDE Studio
Chapter 9. Handling data

Page 160 of 336

Converting a property to a scripted value

Properties of datapool items and widgets can be converted to a scripted value and back to their plain value.
The following instruction shows the procedure with a datapool item value. With a widget property, the proce-
dure is the same.

Prerequisite:

■ A datapool item is added.

■ The datapool item is not language-dependent.

■ The datapool item is not linked.

Step 1
In the Datapool component, click a datapool item and click the button.

A menu expands.

Step 2
In the menu, click Convert to script.

The datapool item is converted to a scripted value.

Step 3
In the Value column, click Edit.

A script editor opens in the content area.

Step 4
Edit the EB GUIDE Script.

Step 5
To convert the datapool item back to its plain value, click the button.

A menu expands.

Step 6
In the menu, click Convert to plain value.

The datapool item is converted to its plain value.

9.8. Establishing external communication
To establish external communication for example between the EB GUIDE model and an application, you add
communication contexts to the EB GUIDE model.

EB GUIDE Studio
Chapter 9. Handling data

Page 161 of 336

Adding a communication context

With communication contexts you are able to channel communication.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Communication contexts.

Step 3
In the content area, click Add.

A communication context is added to the table.

Step 4
Rename the communication context, for example to Media.

Step 5
To run the communication context in an own thread, select Use own thread.

Figure 9.1. Communication context Media.

9.9. Linking between datapool items

EB GUIDE Studio
Chapter 9. Handling data

Page 162 of 336

Linking between datapool items

Prerequisite:

■ A datapool item is added.

■ The datapool item is not language-dependent.

■ The datapool item is not a scripted value.

Step 1
In the Datapool component, click a datapool item.

Step 2
Click the button.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the text box.

Step 5
Click Add datapool item.

Step 6
Click Accept.

EB GUIDE Studio
Chapter 9. Handling data

Page 163 of 336

Figure 9.2. Linking between datapool items

The dialog closes. Next to the Value property, the button is displayed. It indicates that the Value proper-
ty is linked to a datapool item. Whenever one of the datapool items changes its value, the value of the other
datapool item changes as well.

9.10. Deleting a datapool item

Deleting a datapool item

Prerequisite:

■ A datapool item is added.

Step 1
In the Datapool component, right-click the datapool item.

Step 2
In the context menu, click Delete.

The datapool item is deleted.

EB GUIDE Studio
Chapter 10. Handling a project

Page 164 of 336

10. Handling a project
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

10.1. Creating a project

Creating a project

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click New.

Step 3
Enter a project name, and select a location.

Step 4
Click Create.

The project is created. The project editor opens and displays the new project.

EB GUIDE Studio
Chapter 10. Handling a project

Page 165 of 336

10.2. Opening a project

10.2.1. Opening a project from the file explorer

Opening a project from the file explorer

Prerequisite:

■ An EB GUIDE Studio project is created.

Step 1
Open the file explorer, and select the EB GUIDE Studio project file you would like to open. EB GUIDE Studio
project files have the file extension .ebguide.

Step 2
Double-click the EB GUIDE Studio project file.

The project opens in EB GUIDE Studio.

10.2.2. Opening a project within EB GUIDE Studio

Opening a project within EB GUIDE Studio

Prerequisite:

■ An EB GUIDE Studio project is created.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Open tab.

Step 3
Select a project that is listed under Recent projects or click Browse, and select the EB GUIDE Studio
project file you would like to open. EB GUIDE Studio project files have the file extension .ebguide.

The project opens in EB GUIDE Studio.

EB GUIDE Studio
Chapter 10. Handling a project

Page 166 of 336

10.3. Renaming model elements

Renaming model elements

The following instruction guides you through the process of renaming model elements such as states, state
machines, widgets, transitions, datapool items and events.

Prerequisite:

■ A model element is added to the EB GUIDE model.

Step 1
To rename a model element, perform the following:

► To rename a model element such as widget, state, state machine, or transition, in the Navigation com-
ponent, right-click the model element.

► To rename a datapool item, in the Datapool component, right-click the datapool item .

► To rename an event, in the Events component, right-click the datapool item.

The context menu opens.

Step 2
In the context menu, select either of the following:

► To rename only the selected model element, select Rename.

► To rename the selected model element, and also its occurrences in the EB GUIDE model, for example in
EB GUIDE Script, select Rename global.

10.4. Validating and simulating an EB GUIDE mod-
el
Before exporting an EB GUIDE model to the target device, you resolve errors and simulate the model on your
PC.

EB GUIDE Studio
Chapter 10. Handling a project

Page 167 of 336

10.4.1. Validating an EB GUIDE model

10.4.1.1. Validating an EB GUIDE model using EB GUIDE Studio

Validating an EB GUIDE model using EB GUIDE Studio

In the Problems component, EB GUIDE displays the following:

► errors

► warnings

Step 1
In the Problems component, click .

The number of errors and warnings is displayed.

Step 2
Click Problems to expand the Problems component.

A list of errors and warnings is displayed.

Figure 10.1. Problems component

Step 3
To navigate to the source of a problem, double-click the corresponding line.

The element that causes the problem is highlighted.

Step 4
Solve the problem.

Step 5
Click .

The problem you solved is no longer listed in the Problems component.

EB GUIDE Studio
Chapter 10. Handling a project

Page 168 of 336

Step 6
To collapse the Problems component, click Problems once again.

If there are no errors, the EB GUIDE model is valid. The EB GUIDE model is also valid if there are some
warnings.

10.4.1.2. Validating an EB GUIDE model using command line

Validating an EB GUIDE model using command line

Step 1
With command line navigate to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -c "<logfile dir>/log.txt" -o "$GUIDE_PROJECT_PATH/
project_name.ebguide".

The EB GUIDE model is validated and the result is saved to a logfile at the specified location <logfile
dir>.

10.4.2. Starting and stopping the simulation

Starting and stopping the simulation

Step 1
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. The simulation starts with its own configuration.

To change the configuration, go to the project center, and click Configure > Profiles.

Step 2
To stop the simulation, click in the command area.

The simulation and EB GUIDE Monitor stop.

10.5. Exporting an EB GUIDE model

EB GUIDE Studio
Chapter 10. Handling a project

Page 169 of 336

10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio

Exporting an EB GUIDE model using EB GUIDE Studio

To copy the EB GUIDE model to the target device, you need to export it using EB GUIDE Studio.

For every export of an EB GUIDE model you select a profile.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Export tab.

Step 3
From the Profile drop-down list box select a profile.

Step 4
Click Browse, and select a location where to export the binary files.

Step 5
Click Select folder.

Step 6
Click Export.

The binary files are exported to the selected location.

10.5.2. Exporting an EB GUIDE model using command line

Exporting an EB GUIDE model using command line

Prerequisite:

■ The EB GUIDE model is free of errors and warnings.

Step 1
With command line navigate to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -e <destination dir> -p <profile> -o "$GUIDE_PROJECT_-
PATH/project_name.ebguide".

EB GUIDE Studio
Chapter 10. Handling a project

Page 170 of 336

The EB GUIDE model is exported to the selected location <destination dir> with the specified profile
<profile>.

10.6. Changing the display language of EB GUIDE
Studio

Changing the display language of EB GUIDE Studio

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Options tab.

Step 3
Select a language from the Display language drop-down list box.

Step 4
Restart EB GUIDE Studio.

After restarting the graphical user interface is displayed in the selected language.

10.7. Configuring profiles
EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model.

You use profiles to do the following:

► Send messages

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

10.7.1. Adding a profile

EB GUIDE Studio
Chapter 10. Handling a project

Page 171 of 336

Adding a profile

To add a profile in EB GUIDE Studio, clone an existing profile.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, click Configure > Profiles.

Step 2
In the content area, select the Simulation profile.

Step 3
Click Clone.

A profile is added to the table. The profile is a clone of the default profile Simulation.

Step 4
Double-click in the table and rename the profile to MySimulation.

Step 5
Select Use for simulation.

The MySimulation profile is used for simulation on the PC.

10.7.2. Adding a library
The default delivery of EB GUIDE TF runs on operating systems that support shared libraries, for example
Windows 10, Linux or QNX. EB GUIDE TF is divided into executable file and a set of libraries to fit most
customer projects out of the box.

The following tasks show you how to add a user-defined library that interacts with the EB GUIDE model and
provides additional functionality.

Adding a library: Platform

This task shows you how to add a library or several libraries that can be used by all EB GUIDE models on
the current platform.

Prerequisite:

■ An EB GUIDE Studio project is opened.

EB GUIDE Studio
Chapter 10. Handling a project

Page 172 of 336

■ The project center is displayed.

■ In the navigation area, the tab Configure > Profiles is selected.

■ A profile MySimulation is added.

■ Libraries MyLibraryA and MyLibraryB are available in $GTF_INSTALL_PATH/platform/<plat-
form name>.

Step 1
In the content area, select the MySimulation profile.

Step 2
Click the Platform tab.

Step 3
Enter the following code:

{

 "gtf":

 {

 "core":

 {

 "pluginstoload": ["MyLibraryA", "MyLibraryB"]

 }

 }

}

You added libraries MyLibraryA and MyLibraryB to the start-up code.

NOTE JSON object notation
If you configure platform.json within EB GUIDE Studio, use the JSON object notation.

For an example, see section 12.7.1, “Example platform.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

Adding a library: Model

This task shows you how to add a library or several libraries that can be used only by the current EB GUIDE
model.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

■ In the navigation area, the tab Configure > Profiles is selected.

http://www.json.org

EB GUIDE Studio
Chapter 10. Handling a project

Page 173 of 336

■ A profile MySimulation is added.

■ Libraries MyLibraryA and MyLibraryB are available in $GUIDE_PROJECT_PATH/<project name>/
resources.

Step 1
In the content area, select the MySimulation profile.

Step 2
Click the Model tab.

Step 3
Enter the following code:

{

 "gtf":

 {

 "model":

 {

 "pluginstoload": ["resources/MyLibraryA", "resources/MyLibraryB"]

 }

 }

}

You added libraries MyLibraryA and MyLibraryB to the start-up code.

NOTE JSON object notation
If you configure model.json in EB GUIDE Studio, use the JSON object notation.

For an example, see section 12.6.1, “Example model.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

10.7.3. Configuring a scene

In EB GUIDE Studio it is possible to configure a scene for every state machine.

Projects can have more than one state machine for one of the following reasons:

► To separate the logic of the model into different state machines

► To use more than one display or layer

http://www.json.org

EB GUIDE Studio
Chapter 10. Handling a project

Page 174 of 336

Configuring a scene

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

■ In the navigation area, the tab Configure > Profiles is selected.

Step 1
In the content area, click the Scenes tab.

Step 2
From the State machine drop-down list box select the state machine of your main display, for example Main.

Step 3
To set the initial position of the window on the PC desktop, enter a value for x and y.

Step 4
Select a renderer from the Renderer drop-down list box.

Step 5
Adjust further properties. For information on each property, see section 12.8, “Scenes”.

10.8. Exporting and importing language-depen-
dent texts

10.8.1. Exporting language-dependent texts

TIP Validating the EB GUIDE model
To avoid errors during export and import of texts, validate your EB GUIDE model before
you start.

Exporting language-dependent texts

To provide texts in the user's preferred language, you export all language-dependent texts of datapool items
and pass on the texts to translators.

EB GUIDE Studio
Chapter 10. Handling a project

Page 175 of 336

Prerequisite:

■ A datapool item of type String or String list is added.

■ The datapool item has language support. For information on how to add language-dependent texts, see
section 11.6, “Tutorial: Adding a language-dependent text to a datapool item”.

■ At minimum two languages are added to the EB GUIDE model.

■ The EB GUIDE model is free of errors and warnings.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

Step 3
In the content area, select the target language which needs to be translated.

Multi-selection is possible.

Step 4
Click Export.

A dialog opens.

Step 5
Select a directory to export the file.

Step 6
Click Select folder.

Result: The export starts. A file is saved in the selected directory. The file has a language-dependent
acronym and the format .xliff. The file contains values for the source language and values for the target
language.

NOTE One file per language is exported
For every language you select in the project center, a separate file is exported.

10.8.2. Importing language-dependent texts

EB GUIDE Studio
Chapter 10. Handling a project

Page 176 of 336

10.8.2.1. Importing language-dependent texts using EB GUIDE Studio

Importing language-dependent texts using EB GUIDE Studio

Prerequisite:

■ A datapool item of type String or String list is added.

■ The datapool item has language support. For information on how to add language-dependent texts, see
section 11.6, “Tutorial: Adding a language-dependent text to a datapool item”.

■ At minimum two languages are added to the EB GUIDE model.

■ The EB GUIDE model is free of errors and warnings.

■ At minimum one translated .xliff file is available.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

Step 3
Click Import.

A dialog opens.

Step 4
Select the directory where the translated .xliff file is stored.

Step 5
Select the translated .xliff file.

Multi-selection is possible.

Step 6
Click Open.

The import starts. A dialog opens.

Step 7
Click Close.

10.8.2.2. Importing language-dependent texts using command line

EB GUIDE Studio
Chapter 10. Handling a project

Page 177 of 336

Importing language-dependent texts using command line

Prerequisite:

■ At minimum two languages are added to the EB GUIDE model.

■ The EB GUIDE model is free of errors and warnings.

■ One translated .xliff language file is available.

Step 1
With command line navigate to $GUIDE_INSTALL_PATH/Studio.

Step 2
Enter Studio.Console.exe -l <language file> -o "$GUIDE_PROJECT_PATH/project_-
name.ebguide".

If the import was successful, the EB GUIDE model is saved. If the import was not successful, the EB GUIDE
model is not saved. In both cases a logfile is generated. A date and a time stamp are added to the name of
the logfile.

10.9. Working with EB GUIDE Monitor

10.9.1. Firing an event in EB GUIDE Monitor

Firing an event in EB GUIDE Monitor

Prerequisite:

■ The EB GUIDE model contains an event.

■ The simulation of the EB GUIDE model is started.

■ The EB GUIDE Monitor is started.

Step 1
In EB GUIDE Monitor, in the Events component search for an event to be fired in the Search for event
search box.

Step 2
Click the event.

EB GUIDE Studio
Chapter 10. Handling a project

Page 178 of 336

The event is added to the list.

Step 3
To fire an event, click in the Events component next to the event.

The event is fired. In the Logger component a log message appears.

Step 4

Step 4.1
If the event has parameters, click to expand parameters.

Step 4.2
Change parameters in the Value column.

Step 4.3
To fire an event, click next to the event.

The event is fired with changed parameters. In the Logger component a log message appears.

10.9.2. Changing value of the datapool item with EB GUIDE
Monitor

Changing value of the datapool item in EB GUIDE Monitor

Prerequisite:

■ The EB GUIDE model contains a datapool item.

■ The simulation of the EB GUIDE model is started.

■ The EB GUIDE Monitor is started.

Step 1
In EB GUIDE Monitor, in the Datapool component search for a datapool item in the Search for datapool
item search box.

Step 2
Click the datapool item.

The datapool item is added to the list.

Step 3
Change the value of the datapool item in the Value column.

EB GUIDE Studio
Chapter 10. Handling a project

Page 179 of 336

NOTE Supported types
You can change datapool items of the following data types:

► Boolean

► Color

► Integer

► Float

► String

The value of the datapool item is changed. In the Logger component a log message appears.

10.9.3. Starting scripts in EB GUIDE Monitor

Starting scripts in EB GUIDE Monitor

Prerequisite:

■ The simulation of the EB GUIDE model is started.

■ The EB GUIDE Monitor is started.

■ A .cs or a .dll file with a script is available on your computer. For script examples, see section 10.9.3.1,
“Writing script files for EB GUIDE Monitor”.

Step 1
To open the Scripting component, select Layout > Scripting.

The Scripting component opens as a docked component.

Step 2
In the Scripting component click the Open button.

The file explorer opens.

Step 3
Select a .cs or a .dll file and click Open.

All applicable methods and the corresponding classes, which were included in the file, are listed in the Script
table.

Step 4
Select a method and click the start button.

The script is started. In the Script output area a log message appears.

EB GUIDE Studio
Chapter 10. Handling a project

Page 180 of 336

10.9.3.1. Writing script files for EB GUIDE Monitor

For more information on script methods, see the EB GUIDE Monitor API in $GUIDE_INSTALL_PATH/doc/
monitor/monitor_api.chm.

The following is an example for basic EB GUIDE Monitor script functions.

NOTE Using methods for states and state machines
If your EB GUIDE model has several states or state machines with identical names, use
uint IDs. Find uint IDs that are relevant for your project in $EXPORT_ PATH/moni-
tor.cfg.

Example 10.1.
Example script file for EB GUIDE Monitor

The following is an example script MonitorScriptSample.cs.

namespace MyProject

{

 using System.Threading.Tasks;

 using System.Windows.Media; // necessary for Color type!

 using Elektrobit.Guide.Monitor.Scripting.MonitorContext;

 public class Basic

 {

 public async Task PrintMessage(IMonitorContext monitor) //❶

 {

 await monitor.Write("Hello World");

 }

 public async Task FireEvent(IMonitorContext monitor) //❷

 {

 await monitor.FireEvent("nextView");

 }

 }

 public class Events

 {

 public async Task FireEventWithParameter(IMonitorContext monitor)

 {

 await monitor.FireEvent("setBool", true);

 }

 public async Task WaitForEvent(IMonitorContext monitor) //❸

EB GUIDE Studio
Chapter 10. Handling a project

Page 181 of 336

 {

 var ev = await monitor.WaitForEvent("nextView");

 await monitor.Write("Even occured: " + ev.EventModel.Name);

 }

 public async Task WaitForEventWithParameters(IMonitorContext monitor)

 {

 var ev = await monitor.WaitForEvent("setBool");

 bool mv1 = ev["value"]; // read parameter via name

 bool mv2 = ev[0]; // read the parameter via index

 await monitor.Write("Parameter 'value' is: " + mv1);

 await monitor.Write("Parameter [0] is: " + mv2);

 }

 }

 public class Datapool

 {

 public async Task WriteDpValue(IMonitorContext monitor) //❹

 {

 await monitor.WriteDatapool("Boolean 1", true);

 }

 public async Task ReadDatapoolValue(IMonitorContext monitor) //❺

 {

 bool boolValue = await monitor.ReadDatapool("Boolean 1");

 string stringValue = await monitor.ReadDatapool("String 1");

 int integerValue = await monitor.ReadDatapool("Integer 1");

 float floatValue = await monitor.ReadDatapool("Float 1");

 await monitor.Write("Boolean: " + boolValue);

 await monitor.Write("String: " + stringValue);

 await monitor.Write("Integer: " + integerValue);

 await monitor.Write("Float: " + floatValue);

 }

 public async Task ReadColor(IMonitorContext monitor)

 {

 Color colorValue = await monitor.ReadDatapool("Color 1");

 await monitor.Write("Boolean: " + colorValue);

 }

 }

 public class StateMachines

 {

 public async Task WaitForStateChanges(IMonitorContext monitor)

EB GUIDE Studio
Chapter 10. Handling a project

Page 182 of 336

 {

 var leftState = await monitor.WaitForStateExit

 ("Main", "State 1"); //❻

 await monitor.Write(string.Format("State {0} left",

 leftState.Name));

 var enteredState = await monitor.WaitForStateEnter

 ("Main", "State 2"); //❼

 await monitor.Write(string.Format("State {0} entered",

 enteredState.Name));

 }

 public async Task WaitForStateMachineChanges(IMonitorContext monitor)

 {

 var startedStateMachine = await monitor.WaitForStateMachineStart

 ("Dynamic state machine 1"); //❽

 await monitor.Write(string.Format("State Machine {0} started",

 startedStateMachine.Name));

 var stoppedStateMachine = await monitor.WaitForStateMachineStop

 ("Dynamic state machine 1"); //❾

 await monitor.Write(string.Format("State Machine {0} stopped",

 stoppedStateMachine.Name));

 }

 }

 public class Advanced

 {

 public async Task CaptureScreenshot(IMonitorContext monitor) //❿

 {

 // make sure remote framebuffer is enabled in profile

 uint sceneId = 0;

 await monitor.CaptureScreenshot(sceneId, @"d:/image.png");

 }

 public async Task CountTo10(IMonitorContext monitor)

 {

 for (var i = 0; i < 10; i++)

 {

 await monitor.Write("Hello World: " + i);

 await Task.Delay(1000, monitor.CancellationToken);

 monitor.CancellationToken.ThrowIfCancellationRequested();

 }

 }

EB GUIDE Studio
Chapter 10. Handling a project

Page 183 of 336

 public async Task WaitForEventWithTimeout(IMonitorContext monitor) // 11

 {

 // Disclaimer:

 // this is just one of many opportunities provided by

 // the .NET's "Task Parallel Library"

 var eventWaitTask = monitor.WaitForEvent("nextView");

 await Task.WhenAny(eventWaitTask, Task.Delay(5000));

 if (!eventWaitTask.IsCompleted || eventWaitTask.IsFaulted)

 {

 return;

 }

 await monitor.Write("event occured");

 }

 }

}

❶ Method to print out a message

❷ Method to fire an event

❸ Method to wait for an event

❹ Method to write a datapool value

❺ Method to read a datapool value

❻ Method to wait until the state is entered and then to report it

❼ Method to wait until the state is exited and then to report it

❽ Method to wait until the state machine is started and then to report it

❾ Method to wait until the state machine is stopped and then to report it

❿ Method to capture a screenshot
11 Method to wait for an event with timeout

10.9.4. Starting EB GUIDE Monitor as a stand-alone application

EB GUIDE Monitor starts automatically in EB GUIDE Studio during the simulation of an EB GUIDE model.
But you can also start EB GUIDE Monitor as a stand-alone application in $GUIDE_INSTALL_PATH/tools/
monitor or using the command line.

EB GUIDE Studio
Chapter 10. Handling a project

Page 184 of 336

Starting EB GUIDE Monitor using command line

Prerequisite:

■ EB GUIDE is installed.

■ An EB GUIDE model is exported to $EXPORT_PATH.

Step 1
In the file explorer, navigate to $GUIDE_INSTALL_PATH/tools/monitor.

Step 2
Open command line and enter the following: Monitor.exe -c <ip adress>:<port> -o <$EX-
PORT_PATH/monitor.cfg>

EB GUIDE Monitor starts.

TIP Reusing preconfigured datapool items and events
In EB GUIDE Monitor you can configure datapool items and events. The configured val-
ues are stored in C:/Users/<username>/AppData/Local/Temp/eb_guide_simu-
lation_export/<guide_project>/monitor_settings.xml. To reuse the precon-
figured values, copy monitor_settings.xml to $EXPORT_PATH.

Changing the display language of EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is started as a stand-alone application.

Step 1
From the File > Display language menu select a language.

Step 2
Restart EB GUIDE Monitor.

After restarting, the graphical user interface is displayed in the selected language.

Note that if EB GUIDE Monitor is started in EB GUIDE Studio, you cannot change the display language of
the graphical user interface. This means EB GUIDE Monitor has the same display language as EB GUIDE
Studio.

EB GUIDE Studio
Chapter 11. Tutorials

Page 185 of 336

11. Tutorials
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

11.1. Tutorial: Adding a dynamic state machine
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

Dynamic state machines allow pop-ups during run-time. You use dynamic state machines for example to display
error messages that overlay the regular display.

The following instructions guide you through the process of creating a dynamic state machine. The instructions
show you how to model a dynamic state machine for volume control. For best results, work through the following
steps in the order presented.

Approximate duration: 20 minutes.

Adding events and datapool items

The following instructions guide you through the process of adding events and datapool items. These events
are used to change the volume afterwards. The purpose of the datapool item is to change the position of a
graphical element in a later section.

Step 1
Go to the Events component and click .

An event is added to the table.

Step 2
Rename the event to Volume up.

Step 3
Add an event, and rename it to Volume down.

Step 4
Add an event, and rename it to Close volume control.

EB GUIDE Studio
Chapter 11. Tutorials

Page 186 of 336

Step 5
Go to the Datapool component and click .

A menu expands.

Step 6
In the menu, click Integer.

A datapool item of type Integer is added.

Step 7
Rename the datapool item to Volume indicator.

You added three events and a datapool item.

Adding a dynamic state machine and modeling the behavior

The following instructions guide you through the process of adding a dynamic state machine. The haptic dy-
namic state machine that you model is used to control the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, go to Dynamic state machines and click .

A menu expands.

Step 2
In the menu, click Haptic dynamic state machine.

A haptic dynamic state machine is added and displayed in the content area.

Step 3
Rename the dynamic state machine to Volume control.

Step 4
Drag an initial state from the Toolbox into the dynamic state machine.

Step 5
Drag a view state from the Toolbox into the dynamic state machine.

Along with the view state, a view is added to the EB GUIDE model.

Step 6
In the Navigation component, click the view state.

Step 7
Press the F2 key, and rename the view state to Volume.

Step 8
Add a transition from the initial state to the Volume view state.

EB GUIDE Studio
Chapter 11. Tutorials

Page 187 of 336

Modeling a slider

The following instructions guide you through the process of modeling a horizontal slider indicator. The slider
indicator shows the volume during run-time.

The slider indicator consists of two rectangles. One rectangle represents the background of the slider. The
second rectangle indicates the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, expand the Volume view state. Double-click the view.

The content area displays the view.

Step 2
Drag a rectangle from the Toolbox into the view.

Step 3
In the Navigation component, click the rectangle, and press the F2 key.

Step 4
Rename the rectangle to Slider background.

Step 5
To change the appearance of Slider background, click the rectangle, and go to the Properties compo-
nent.

Step 5.1
Enter 500 in the width text box.

Step 5.2
Enter 125 in the x text box.

Step 5.3
Enter 300 in the y text box.

Step 6
Drag a rectangle from the Toolbox into Slider background in the Navigation component.

The rectangle is added as a child widget to Slider background.

Step 7
In the Navigation component, click the rectangle, and press the F2 key.

Step 8
Rename the rectangle to Indicator.

Step 9
To change the appearance of Indicator, click the rectangle, and go to the Properties component.

EB GUIDE Studio
Chapter 11. Tutorials

Page 188 of 336

Step 9.1
Enter 40 in the width text box.

Step 9.2
Enter 80 in the height text box.

Step 9.3
Next to the x property, click the button.

A menu expands.

Step 9.4
In the menu, click Add link to datapool item.

A dialog opens.

Step 9.5
From the list, select the Volume indicator datapool item.

Step 9.6
Click Accept.

The dialog closes. The button is displayed next to the x property. The values of x and Volume indi-
cator are now linked.

Step 9.7
Enter 10 in the y text box.

Step 9.8
Select black for the fillColor property.

You added two rectangles to the view. You changed the appearance of the rectangles.

EB GUIDE Studio
Chapter 11. Tutorials

Page 189 of 336

Figure 11.1. Appearance of View 1 with two rectangles

Step 10
In the Datapool component, click the Volume indicator datapool item.

Step 11
In the Value text box enter 10.

In the content area, the Indicator rectangle changes the position.

The Volume indicator datapool item controls the x position of the Indicator rectangle.

Adding states to the Main state machine

In the following instructions, you add an initial state and a view state to the Main state machine. You use the
view state to run the dynamic state machine in parallel to other state machines.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, double-click Main.

The Main state machine is displayed in the content area.

EB GUIDE Studio
Chapter 11. Tutorials

Page 190 of 336

Step 2
Drag an initial state from the Toolbox into the state machine.

Step 3
Drag a view state from the Toolbox into the state machine.

Along with the view state, a view is added to the EB GUIDE model.

Step 4
Rename the view state to Home.

Step 5
In the content area, click the initial state.

Step 6
Add a transition from the initial state to the Home view state.

Step 7
In the Navigation component, click Main.

Step 8
In the Properties component, select the Dynamic state machine list check box.

With these steps done, you can use EB GUIDE Script functions that are related to dynamic state machines.

You added an initial state and a view state to the Main state machine. The haptic dynamic state machine
runs in parallel to the Main state machine.

Adding internal transitions to the Main state machine

In the following instruction, you add internal transitions. You use the internal transitions to start (push) and
stop (pop) the dynamic state machine during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Main state machine.

Step 2
In the Properties component, go to Internal transitions, and click Add.

An internal transition is added to the state machine. The internal transition is visible in the Navigation com-
ponent.

Step 3
Add two more internal transitions.

Step 4
In the Navigation component, click the first internal transition.

EB GUIDE Studio
Chapter 11. Tutorials

Page 191 of 336

Step 4.1
Go to the Properties component.

Step 4.2
In the Trigger combo box, select Volume up.

Step 4.3
Next to the Action property, click Add.

Step 4.4
Enter the following EB GUIDE Script:

 function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" + 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 4.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Volume up.

Step 5
In the Navigation component, click the second internal transition.

Step 5.1
Go to the Properties component.

Step 5.2
In the Trigger combo box, select Volume down.

Step 5.3
Next to the Action property, click Add.

Step 5.4
Enter the following EB GUIDE Script:

 function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" - 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 5.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Volume down.

EB GUIDE Studio
Chapter 11. Tutorials

Page 192 of 336

Step 6
In the Navigation component, click the third internal transition.

Step 6.1
Go to the Properties component.

Step 6.2
In the Trigger combo box, select Close volume control.

Step 6.3
Next to the Action property, click Add.

Step 6.4
Enter the following EB GUIDE Script:

 function()

 {

 f:popDynamicStateMachine(popup_stack:Main,sm:"Volume control")

 }

Step 6.5
Click Accept.

The action is added to the transition. In the Navigation component, the internal transition is renamed to
Close volume control.

You added three internal transitions which start and stop the dynamic state machine. Furthermore, the in-
ternal transitions Volume up and Volume down change the position of the Indicator rectangle.

Figure 11.2. EB GUIDE model with all model elements

EB GUIDE Studio
Chapter 11. Tutorials

Page 193 of 336

Starting the simulation and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. The EB GUIDE model displays the Home view state.
Step 1
In EB GUIDE Monitor in the Events component, select the Volume up event and click to fire the event.

The dynamic state machine is started and shows the slider indicator. The dynamic state machine overlays
the Home view state.

When you fire the events Volume up or Volume down the black Indicator rectangle moves. If you fire
the event Close volume control, the slider disappears from the view.

If you add additional states to the Main state machine, the Volume control dynamic state machine will
overlay the other states as well.

11.2. Tutorial: Modeling button behavior with EB
GUIDE Script

NOTE Default window layout
All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

With EB GUIDE Script you can express property values, actions, or conditions and evaluate them during run-
time.

The following instructions guide you through the process of using EB GUIDE Script to model the behavior of
a button. The button increases in size when it is clicked and shrinks back to its original size when it reaches a
defined maximum size. For best results, work through the steps in the order presented.

Approximate duration: 10 minutes.

EB GUIDE Studio
Chapter 11. Tutorials

Page 194 of 336

Adding widgets

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

■ The content area displays the view.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
In the Navigation component, click the rectangle, press the F2 key, and rename the rectangle to Back-
ground.

Step 3
Drag a rectangle from the Toolbox into the Navigation component. Place it as a child widget to the Back-
ground rectangle.

Step 4
In the Navigation component, click the new rectangle, press the F2 key, and rename the rectangle to But-
ton.

Step 5
Drag a label from the Toolbox into the Navigation component. Place the label as a child widget to the But-
ton rectangle.

Step 6
In the Navigation component, click the label, press the F2 key, and rename the label to Button text.

Your widget hierarchy now looks as follows.

EB GUIDE Studio
Chapter 11. Tutorials

Page 195 of 336

Figure 11.3. Widget hierarchy

EB GUIDE Studio
Chapter 11. Tutorials

Page 196 of 336

Configuring the background

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Background rectangle, and go to the Properties component.

Step 2
Next to the width property, click the button.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property.

Step 6
Link the height property of the Background rectangle to the height property of the view.

Step 7
Link the x property of the Background rectangle to the x property of the view.

Step 8
Link the y property of the Background rectangle to the y property of the view.

The Background rectangle covers the exact size and position of the view.

Defining the maximum button width

A datapool item holds the value for the maximum width of the button. It can be changed during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click .

EB GUIDE Studio
Chapter 11. Tutorials

Page 197 of 336

A menu expands.

Step 2
In the menu, click Integer.

A new datapool item of type Integer is added.

Step 3
Rename the datapool item to Maximum width.

Step 4
In the Value text box, enter 400.

Configuring the button

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Button rectangle, and go to the Properties component.

Step 1.1
Enter 50 in the height text box.

Step 1.2
Enter 350 in the x text box.

Step 1.3
Enter 215 in the y text box.

Step 1.4
Select blue for the fillColor property.

The button is now colored blue.

Step 2
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select the Touch pressed wid-
get feature.

Step 4
Click Accept.

The related widget feature properties are added to the Button rectangle and displayed in the Properties
component.

Step 5
Next to the touchPressed property, click Edit.

EB GUIDE Studio
Chapter 11. Tutorials

Page 198 of 336

Step 6
Replace the existing EB GUIDE Script with the following code:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 if (v:this.width > dp:"Maximum width") // If the button has grown

 // beyond its maximum size...

 {

 // ...reset its dimensions to the default values.

 v:this.height = 50

 v:this.width = 100

 v:this.x = 350

 v:this.y = 215

 }

 else // Otherwise...

 {

 // ... increase button size...

 v:this.width += 80

 v:this.height += 40

 // ...and move the button to keep it centered.

 v:this.x -= 40

 v:this.y -= 20

 }

 false

 }

Step 7
Click Accept.

You configured the Button rectangle and wrote an EB GUIDE Script which changes the size of the Button
rectangle in run-time.

Configuring the button text

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click the Button text label, and go to the Properties component.

Step 2
Enter grow! in the text text box.

EB GUIDE Studio
Chapter 11. Tutorials

Page 199 of 336

Step 3
Link the width property of the Button text label to the width property of the Button rectangle.

Step 4
Link the height property of the Button text label to the height property of the Button rectangle.

Step 5
Enter 0 in the x text box.

Step 6
Enter 0 in the y text box.

Step 7
Next to the horizontalAlign property, click .

Now the Button text label and the Button rectangle are equal in size and position.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

Result:

The simulation starts the EB GUIDE model you created. It behaves as follows.

1. First, it displays a grey screen with a blue button in its center. The screen looks as follows.

EB GUIDE Studio
Chapter 11. Tutorials

Page 200 of 336

Figure 11.4. Result

2. Whenever you click the button, it increases in size but keeps its position at the center of the screen.

3. As soon as the button width reaches the value of the Maximum width datapool item, it shrinks back to
its original size and position.

11.3. Tutorial: Modeling a path gesture

NOTE Default window layout
All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device.

The following instructions guide you through the process of modeling a path gesture.

Approximate duration: 10 minutes

EB GUIDE Studio
Chapter 11. Tutorials

Page 201 of 336

Adding widgets and configuring default widget properties

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

■ The content area displays a view.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
Drag a label from the Toolbox into the rectangle.

The label is added as a child widget to the rectangle.

The Properties component displays the properties of the label.

Step 3
In the Properties component, enter 500 in the width text box.

Step 4
Select the rectangle.

The Properties component displays the properties of the rectangle.

Step 5
Enter 500 in the width text box.

Step 6
In the Properties component, go to fillColor, and select red.

You added two widgets and configured default widget properties.

Adding widget features to a rectangle

To enable the user to enter a shape starting on the widget, you add the widget feature Path gesture to the
rectangle. The shape is matched against a set of known shapes and, if a match is found, a gesture is recog-
nized.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the rectangle.

EB GUIDE Studio
Chapter 11. Tutorials

Page 202 of 336

The Properties component displays the properties of the rectangle.

Step 2
In the Properties component, go to Widget feature properties, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Gestures category, and select Path gestures.

The Touched widget feature is automatically selected, as it is required for the Gestures widget feature.

Step 4
Click Accept.

The related widget feature properties are added to the rectangle and displayed in the Properties component.

Step 5
For the Path gestures widget feature edit the following properties:

Step 5.1
Next to the onPath property, click Edit.

Step 5.2
Enter the following EB GUIDE Script:

 function(v:gestureId::int)

 {

 v:this->"Label 1".text = "recognized path gesture #"

 + f:int2string(v:gestureId);

 }

Step 5.3
Click Accept.

Step 5.4
Next to the onPathStart property, click Edit.

Step 5.5
Enter the following EB GUIDE Script:

 function()

 {

 v:this->"Label 1".text = "path gesture start";

 }

Step 5.6
Click Accept.

Step 5.7
Next to the onPathNotRecognized property, click Edit.

EB GUIDE Studio
Chapter 11. Tutorials

Page 203 of 336

Step 5.8
Enter the following EB GUIDE Script:

 function()

 {

 v:this->"Label 1".text = "shape not recognized";

 }

Step 5.9
Click Accept.

Step 6
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. To see a reaction, draw a shape with the mouse inside the rec-
tangle.

11.4. Tutorial: Creating a list with dynamic content
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

Instantiators allow creating lists dynamically during run-time. Based on a datapool item of a list type, an instan-
tiator displays all list elements in a pre-defined layout. If the content of the datapool item is modified, so is the
appearance of the instantiator.

The following instructions guide you through the process of creating a list with dynamic content. Each list
element consists of a labeled rectangle.

Approximate duration: 15 minutes.

Adding a datapool item

The following instructions guide you through the process of adding a datapool item of type String list.
The datapool item provides a value for every list element of the instantiator. If the content of the datapool
item is modified, so is the appearance of the instantiator.

Prerequisite:

■ The Main state machine contains an initial state and a view state.

EB GUIDE Studio
Chapter 11. Tutorials

Page 204 of 336

■ The initial state has a transition to the view state.

Step 1
To display content in your list, add a datapool item of type String list.

In the Datapool component, click .

A menu expands.

Step 2
In the menu, click String list.

A new datapool item of type String list is added.

Step 3
Rename the datapool item to MyStringList.

Step 4
Click the button.

An editor opens.

Step 4.1
Click Add.

A new entry is added to the table.

Step 4.2
Enter One in the Value text box.

Step 4.3
Add the values Two, Three, Four, and Five to the MyStringList datapool item.

Step 4.4
Click Accept.

You added a datapool item of type String list. The datapool item contains five entries.

The content of the list is displayed next to the Value property.

Adding widgets

Prerequisite:

■ You completed the previous instruction.

Step 1
To add widgets to your view, double-click the view state in the content area.

The view is displayed in the content area.

Step 2
In the Navigation component, expand the view state and the view.

EB GUIDE Studio
Chapter 11. Tutorials

Page 205 of 336

Step 3
Drag an instantiator from the Toolbox into the view. Rename the instantiator to MyInstantiator.

Step 4
Drag a rectangle from the Toolbox into the instantiator. Rename the rectangle to MyRectangle.

Step 5
Drag a label from the Toolbox into the rectangle. Rename the label to MyLabel.

The widget hierarchy now looks as follows.

Figure 11.5. Widget hierarchy with an instantiator

Configuring the instantiator

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the properties of MyInstantiator, select the instantiator and go to the Properties component.

EB GUIDE Studio
Chapter 11. Tutorials

Page 206 of 336

Step 2
Enter 300 in the width text box, and in the height text box.

Step 3
Enter 250 in the x text box.

Step 4
Enter 150 in the y text box.

Step 5
To calculate the length of the list dynamically, add a conditional script.

In the User-defined properties category, click .

A menu expands.

Step 5.1
In the menu, click Conditional script.

Step 5.2
Rename the property to calculateNumItems.

Step 5.3
Next to the calculateNumItems property click Edit.

A script editor opens in the content area.

Step 5.4
Add the MyStringList datapool item to the Trigger list.

Step 5.5
Enter the following On trigger script:

function(v:arg0::bool)

{

 v:this.numItems = length dp:MyStringList;

 false

}

You added a script which automatically changes the number of list entries depending on the content of
MyStringList.

Step 6
To arrange all labels within the instantiator, add a layout to it.

In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 6.1
Under Available widget features, expand the Layout category, and select the Box layout widget fea-
ture to arrange the labels side by side.

The related widget feature properties are added to the instantiator and displayed in the Properties com-
ponent.

EB GUIDE Studio
Chapter 11. Tutorials

Page 207 of 336

Step 6.2
Click Accept.

Step 6.3
Enter 5 in the gap text box to set a spacing of 5 px between each list element.

Step 6.4
Select vertical (=1) from the layoutDirection drop-down list box to arrange the labels among each other.

You configured the instantiator which defines the visual appearance of the list and adapts the number of list
items dynamically.

Configuring list element texts

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the label, select the label and go to the Properties component.

Step 2
Enter 0 in the x and y text box.

Step 3
Add a link from the label's width property to the rectangle's width property.

Step 3.1
Next to the width property, click the button.

A menu expands.

Step 3.2
In the menu, click Add link to widget property.

A dialog opens.

Step 3.3
In the dialog, go to the rectangle, and select its width property.

Step 3.4
Click Accept.

The dialog closes. The button is displayed next to the width property.

Step 4
Add a link from the label's height property to the rectangle's height property.

Step 5
Next to the horizontalAlign property, click .

You changed the appearance of the label. The label is now centered in the rectangle.

EB GUIDE Studio
Chapter 11. Tutorials

Page 208 of 336

Configuring list elements

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the rectangle, select the rectangle and go to the Properties component.

Step 2
To make sure that the list elements use the available width, add a link from the rectangle's width property to
the instantiator's width property.

Step 3
Enter 50 in the height text box.

Step 4
To define a unique position for each line of your list, add the Line index widget feature.

Step 4.1
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 4.2
Under Available widget features, expand the List management category, and select the Line index
widget feature.

The lineIndex property is added to the rectangle's properties.

Step 5
To fill the labels of the list with the content of MyStringList, add a conditional script.

Step 5.1
Next to the User-defined properties category, click .

A menu expands.

Step 5.2
In the menu, click Conditional script.

Step 5.3
Rename the property to setText.

Step 5.4
Next to the setText property, click Edit.

A script editor opens in the content area.

Step 5.5
Add the lineIndex property of the rectangle and the MyStringList datapool item to the Trigger list.

Step 5.6
Enter the following On Trigger script:

EB GUIDE Studio
Chapter 11. Tutorials

Page 209 of 336

 function(v:arg0::bool)

 {

 v:this->MyLabel.text=dp:MyStringList[v:this.lineIndex];

 false

 }

You changed the appearance of the rectangle. With the setText property, the labels of MyStringList are
filled automatically with the content of MyStringList.

Testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To start the simulation, click in the command area.

Result:

Since MyStringList contains five datapool items, five rectangles that are labeled from one to five are dis-
played in vertical arrangement.

EB GUIDE Studio
Chapter 11. Tutorials

Page 210 of 336

Figure 11.6. List created with an instantiator

11.5. Tutorial: Making an ellipse move across the
screen

NOTE Default window layout
All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

The following instructions guide you through the process of animating an ellipse so that it continually moves
across the screen when the simulation starts.

Approximate duration: Five minutes.

Adding widgets

In the following steps, you add three widgets to the view and organize the hierarchy of the widgets.

EB GUIDE Studio
Chapter 11. Tutorials

Page 211 of 336

Prerequisite:

■ The content area displays the Main state machine.

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state

Step 1
In the content area, double-click the view state.

The view is displayed in the content area.

Step 2
Drag an ellipse from the Toolbox into the view.

Step 3
Drag an animation from the Toolbox into the ellipse.

Step 4
In the Navigation component, click the animation, and press the F2 key. Rename the animation to MyAni-
mation.

Step 5
Drag a linear interpolation integer widget from the Toolbox into the Navigation component and drop it so
that it becomes a child widget of the animation.

Now, if you start the simulation, an ellipse is displayed in a view. The ellipse does not move yet.

Adding a user-defined property of type Conditional script

As a next step, you add a user-defined property to the ellipse. With the conditional script property, rendering
the ellipse during simulation starts the animation.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the ellipse.

Step 2
In the Properties component, go to the User-defined properties category, and click .

A menu expands.

Step 3
In the menu, click Conditional script.

A user-defined property of type Conditional script is added to the ellipse.

EB GUIDE Studio
Chapter 11. Tutorials

Page 212 of 336

Step 4
Rename the property to startAnimation.

Step 5
Next to the startAnimation property, click Edit.

A script editor opens in the content area.

Step 6
Enter the following EB GUIDE Script:

 function(v:arg0::bool)

 {

 f:animation_play(v:this->MyAnimation)

 }

Making the animation visible

The following instructions guide you through the process of making the animation visible.

Prerequisite:

■ You completed the previous instruction.

Step 1
Go to the Animation editor and next to Animation properties click .

A menu expands.

Step 2
Under Ellipse 1 select the x property and then the Linear interpolation curve.

Step 3
Click Accept.

The button is displayed next to the target property.

Step 4
Link the end property to the view's width property.

With these settings, when the animation starts, the x property of the ellipse changes from zero to the width of
the view. Thus the ellipse moves from the left boundary to the right boundary of the view.

Step 5
To make the animation run in infinite repetitions, enter 0 in the repeat property.

Step 6
Save the project.

EB GUIDE Studio
Chapter 11. Tutorials

Page 213 of 336

Step 7
To start the simulation, click in the command area.

Result:

The ellipse continually moves from the left side of the view to the right side of the view.

11.6. Tutorial: Adding a language-dependent text
to a datapool item

NOTE Default window layout
All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

EB GUIDE offers the possibility to display texts in the user's preferred language. The following instructions
show you how to model a label that changes with an English, French, and German user interface.

Approximate duration: 15 minutes

NOTE Prerequisites to language dependency
To add language support to a datapool item, do the following:

► If its Value property is linked to another datapool item or widget property, remove the
link.

► If its Value property is a scripted value, convert the property to a plain value.

Linking a widget property to a datapool item

The following instructions guide you through the process of linking the label's text property to a datapool
item. In run-time the displayed text is provided by the datapool item.

Prerequisite:

■ Three languages are added to the EB GUIDE model: English, German, and French.The name of Lan-
guage 1 is set to German and the name of Language 2 is set to French.

■ The content area displays the Main state machine.

■ The Main state machine contains an initial state and a view state.

EB GUIDE Studio
Chapter 11. Tutorials

Page 214 of 336

■ The content area displays the view.

■ The initial state has a transition to the view state.

■ The view state contains a label.

Step 1
Click the label.

Step 2
In the Properties component, go to the text property, and click the button next to the property.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter Welcome_text in the text box.

Step 5
Click Add datapool item.

Step 6
Click Accept.

The datapool item Welcome_text is added.

In the content area, the label no longer displays any text.

Enter language-dependent text to the datapool item

The following instructions guide you through the process of adding language-dependent text to the datapool
item. For every language the Value property has a different text.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click the Welcome_text datapool item.

Step 2
Click the button.

Step 3
In the menu, click Add language support.

In the Properties component, the language properties are displayed.

Step 4
In the Datapool component, in the Value text box, enter Welcome.

EB GUIDE Studio
Chapter 11. Tutorials

Page 215 of 336

In the content area, the label displays Welcome.

Step 5
Go to the Properties component.

Step 6
In the German text box, enter Willkommen.

In the Language box in the upper left corner, change the language to German.

In the content area, the label displays Willkommen.

Step 7
In the French text box, enter Bienvenue.

In the Language box in the upper left corner, change the language to French.

In the content area, the label displays Bienvenue.

You have added language support for English, German and French and defined a language-dependent text
label.

Changing the language during run-time

The following instructions guide you through the process of creating a script for changing the language dur-
ing run-time. Each time, the user clicks the label, the display language changes.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Datapool component, click .

A menu expands.

Step 2
In the menu, click Integer.

A datapool item of type Integer is added.

Step 3
Rename the datapool item to SelectedLanguage.

Step 4
In the Navigation component, click the Label 1 label.

Step 5
In the Properties component, go to the Widget feature properties and click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE Studio
Chapter 11. Tutorials

Page 216 of 336

Step 6
Under Available widget features, expand the Input handling category, and select the Touch pressed wid-
get feature.

Step 7
Click Accept.

The related widget feature properties are added to the label and displayed in the Properties component.

Step 8
Next to the touchPressed property, click Edit.

Step 9
Replace the existing EB GUIDE Script with the following code:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

{

 if (dp:SelectedLanguage == 0) // Standard selected

 {

 f:language(l:German)

 dp:SelectedLanguage = 1

 }

 else if (dp:SelectedLanguage == 1) // German selected

 {

 f:language(l:French)

 dp:SelectedLanguage = 2

 }

 else if (dp:SelectedLanguage == 2) // French selected

 {

 f:language(l:Standard)

 dp:SelectedLanguage = 0

 }

 false

}

Step 10
Click Accept.

You configured the label and wrote an EB GUIDE Script which changes the language of the label during run-
time.

Result:

You added a datapool item of type String to the EB GUIDE model. The datapool item has different values
for languages. In English the value is Welcome. In German the value is Willkommen. In French the value is
Bienvenue. The datapool item is linked to the text property of the label. Every time you change the language
of the EB GUIDE model the text of the label changes too.

EB GUIDE Studio
Chapter 11. Tutorials

Page 217 of 336

11.7. Tutorial: Working with a 3D graphic
NOTE Default window layout

All instructions and screenshots of this user manual use the default window layout. If you
want to follow the instructions, we recommend to set the EB GUIDE Studio window to default
layout by selecting Layout > Reset to default layout.

EB GUIDE Studio offers the possibility to use 3D graphics in your EB GUIDE model.

The following instructions guide you through the process of adding a 3D graphic to your EB GUIDE model.
The instructions show you how to import a 3D graphic and how to modify the appearance of the imported 3D
graphic using widget features. For best results, work through the following steps in order presented.

NOTE 3D graphic
To create a 3D graphic file, use third-party 3D modeling software.

Only the OpenGL ES version 2.0 or higher and DirectX 11 renderers can display 3D graph-
ics. Make sure that your graphic driver is compatible to the version of the renderer. The
supported 3D graphic formats are COLLADA (.dae) and Filmbox (.fbx). For best results,
use the Filmbox format.

To be able to apply textures to a mesh, a 3D object needs to have texture coordinates. To
add texture coordinates, use third-party 3D modeling software.

Approximate duration: 15 minutes.

Importing a 3D graphic

The following instructions guide you through the process of importing a 3D graphic file to EB GUIDE Studio
project.

Prerequisite:

■ The content area displays the Main state machine.

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

■ A 3D graphic file is available. The file contains a camera, a light source, and one object containing a mesh
and at least one material.

Step 1
In the content area, double-click the view state.

EB GUIDE Studio
Chapter 11. Tutorials

Page 218 of 336

The view is displayed in the content area.

Step 2
Drag a scene graph from the Toolbox into the view.

The view displays the empty bounding box.

Step 3
Rename the scene graph to My3DGraphic.

Step 4
In the Properties component, click Import file.

A dialog opens.

Step 5
Navigate to the directory where the 3D graphic file is stored.

Step 6
Select the 3D graphic file.

Step 7
Click Open.

The import starts. The Import successful dialog is displayed. Here you have the possibility to check the im-
port log file.

Step 8
Click OK.

The view displays the 3D graphic. The Navigation component displays the imported widget tree with the
scene graph as a parent node. My3DGraphic contains a RootNode that has at least one mesh with materi-
al, camera and several other child widgets depending on the content of your 3D graphic file.

Adding widgets

The following instructions guide you through the process of adding an additional light source to your 3D
graphic.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, expand RootNode.

Step 2
Drag a directional light from the Toolbox to RootNode.

You added a directional light to My3DGraphic. You can manipulate and transform this directional light with
the transformation properties of the RootNode.

EB GUIDE Studio
Chapter 11. Tutorials

Page 219 of 336

Step 3
To add the light source and place it with default widget properties different from the RootNode scene graph,
do the following:

Step 3.1
Drag a scene graph node from the Toolbox to RootNode.

Step 3.2
Rename the scene graph node to MyLight.

Step 3.3
Drag a directional light from the Toolbox to MyLight.

You added a directional light to My3DGraphic. To change the placing of the directional light, change the
properties of MyLight.

Changing meshes

Prerequisite:

■ You completed the previous instruction.

■ The $GUIDE_PROJECT_PATH/<project name>/resources/<3D graphic name> directory con-
tains an additional .ebmesh file.

Step 1
In the Navigation component, click Mesh 1, and go to the Properties component.

Step 2
From the mesh combo box select the .ebmesh file from the resource folder mentioned above.

The view displays the scene graph with the new mesh.

Step 3
Alternatively, drag an .ebmesh file from the Assets component into the mesh drop-down list box.

The view displays the scene graph with the new mesh.

Changing textures

The following instructions guide you through the process of adding and modifying textures of your 3D graph-
ic.

Prerequisite:

■ You completed the previous instruction.

EB GUIDE Studio
Chapter 11. Tutorials

Page 220 of 336

■ The $GUIDE_PROJECT_PATH/<project name>/resources/<3D graphic name> directory con-
tains a .png or .jpg image file.

Step 1
In the Navigation component, click the material, and go to the Properties component.

Step 2
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the 3D category, and select a texture widget feature, for example
Diffuse texture.

Step 4
Click Accept.

The related widget feature properties are added to the material and displayed in the Properties component.

Step 5
In the Properties component, select an image from the diffuseTexture combo box.

The view displays a scene graph with the new texture.

NOTE Usage of 3D widget features
These instructions are valid for the following widget features from the category 3D:

► Ambient texture

► Diffuse texture

► Emissive texture

► Light map texture

► Normal map texture

► Opaque texture

► Reflection texture

► Specular texture

Displaying 3D object several times

The following instructions guide you through the process of adding an additional camera to be able to display
the 3D object of your 3D graphic several times. You will be able to have different points of view of the same
object.

EB GUIDE Studio
Chapter 11. Tutorials

Page 221 of 336

Prerequisite:

■ You completed the previous instruction.

Step 1
In the Navigation component, click My3DGraphic and go to the Properties component.

Step 2
Enter 800 in the width text box and 480 in the height text box.

The My3DGraphic scene graph has the size of the view.

Step 3
In the Navigation component, expand RootNode and Camera001.

Step 4
Click Camera 1 and go to the Properties component.

Step 5
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 6
Under Available widget features, expand the 3D category, and select Camera viewport.

Step 7
Click Accept.

The related widget feature properties are added to Camera 1 and displayed in the Properties component.

Step 8
Drag a camera from the Toolbox to the scene graph node Camera001.

You added a second camera.

Step 9
Click Camera 2 and go to the Properties component.

Step 10
In the nearPlane, farPlane and fieldOfView text boxes enter the same values that Camera 1 has.

Both Camera 1 and Camera 2 have the same viewing position.

Step 11
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 12
Under Available widget features, expand the 3D category, and select Camera viewport.

Step 13
Click Accept.

The related widget feature properties are added to Camera 2 and displayed in the Properties component.

EB GUIDE Studio
Chapter 11. Tutorials

Page 222 of 336

Step 14
In the Properties component, enter 100 in viewportX and viewportY text boxes.

In the view, the 3D object is displayed two times with different x-coordinate and y-coordinate.

EB GUIDE Studio
Chapter 12. References

Page 223 of 336

12. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

12.1. Android events
Android events belong to the SystemNotifications event group and have event group ID 13.

Table 12.1. Android events

Event ID Name Description

1 RendererEnabled Is sent by the application when Android
life cycle management stops or starts the
renderer

Parameters:

► enabled: If true, the renderer is en-
abled. If false, the renderer is set to
sleep mode.

2 setKeyboardVisibility Is sent by the EB GUIDE model if a virtual
keyboard is intended to be shown

Parameters:

► visibility: If true, a virtual key-
board is made visible. If false, it is in-
visible.

3 onKeyboardVisibilityChanged Is sent by the application if a virtual key-
board is shown

Parameters:

► visibility: If true, a virtual key-
board is visible. If false, it is invisible.

4 onLayoutChanged Is sent by the application when the visible
area of the screen changes

Parameters (in pixels):

► x: The x-coordinate of the top left cor-
ner of the visible screen area

EB GUIDE Studio
Chapter 12. References

Page 224 of 336

Event ID Name Description

► y: The y-coordinate of the top left cor-
ner of the visible screen area

► width: The width of the visible
screen area

► height: The height of the visible
screen area

12.2. Datapool items
Table 12.2. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

12.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

12.3.1. Mesh

Mesh defines the shape of the 3D object.

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store meshes in a list. For details about lists, see section 12.3.9, “List”.

12.3.2. Boolean

Boolean properties can have the values true and false.

Available operations are as follows:

EB GUIDE Studio
Chapter 12. References

Page 225 of 336

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

It is possible to store boolean properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.3. Color

Colors are stored in the RGBA8888 format.

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

It is possible to store color properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.4. Conditional script

Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections.

► The Trigger combo box contains a list of events and datapool items that trigger the execution of the On
trigger script.

► The On trigger script is called on initialization, after an event trigger, or after a value update of a datapool
item..

The parameter of the On trigger script indicates the cause for the execution of the script.

The return value of the On trigger script controls change notifications for the property.

If true, it triggers a change notification.

EB GUIDE Studio
Chapter 12. References

Page 226 of 336

If false, it does not trigger a change notification.

12.3.5. Float

Float-point number data type represents a single-precision 32-bit IEEE 754 value.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.6. Font

To add a font to an EB GUIDE project, copy the font file in the following directory: $GUIDE_PROJECT_PATH/
<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.7. Image

EB GUIDE Studio
Chapter 12. References

Page 227 of 336

To add an image to an EB GUIDE project, copy the image file in the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.8. Integer

EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 12.3.9, “List”.

12.3.9. List

EB GUIDE supports a list of values with the same data type.

The following list types are available:

EB GUIDE Studio
Chapter 12. References

Page 228 of 336

► Mesh list

► Boolean list

► Color list

► Float list

► Font list

► Image list

► Integer list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

► length: (length)

► element accessor: ([])

12.3.10. String

EB GUIDE supports character strings, for example Hello world.

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=Aa=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 12.3.9, “List”.

EB GUIDE Studio
Chapter 12. References

Page 229 of 336

12.4. EB GUIDE Script

12.4.1. EB GUIDE Script keywords

The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Keyword Description

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

l: A language follows.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

function Declares a function

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows.

EB GUIDE Studio
Chapter 12. References

Page 230 of 336

Keyword Description

while Repeats a statement as long as the condition is true

12.4.2. EB GUIDE Script operator precedence

The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 12.3. EB GUIDE Script operator precedence

Operator Associativity

(()), ({}) none

([]) none

(->) left

(.) none

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

(;) left

12.4.3. EB GUIDE Script standard library

The following chapter provides a description of all EB GUIDE Script functions.

EB GUIDE Studio
Chapter 12. References

Page 231 of 336

12.4.3.1. EB GUIDE Script functions A

12.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 12.4. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

12.4.3.1.2. absf

The function returns the absolute value of the float number x.

Table 12.5. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

12.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

Table 12.6. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

12.4.3.1.4. animation_before

The function checks if a running animation has passed a given point in time.

Table 12.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has not yet passed the point in time.

EB GUIDE Studio
Chapter 12. References

Page 232 of 336

12.4.3.1.5. animation_beyond

The function checks if a running animation has passed a given point in time.

Table 12.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

12.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

Table 12.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

12.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 12.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

12.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 12.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

EB GUIDE Studio
Chapter 12. References

Page 233 of 336

12.4.3.1.9. animation_pause

The function pauses an animation.

Table 12.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

12.4.3.1.10. animation_play

The function starts or continues an animation.

Table 12.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

12.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 12.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

12.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 12.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

EB GUIDE Studio
Chapter 12. References

Page 234 of 336

12.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

Table 12.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

12.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

Table 12.17. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

12.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 12.18. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

12.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 12.19. Parameters of atan2i

Parameter Type Description

y integer Argument y

EB GUIDE Studio
Chapter 12. References

Page 235 of 336

Parameter Type Description

x integer Argument x

<return> float The return value

12.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 12.20. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

<return> float The return value

12.4.3.2. EB GUIDE Script functions C - H

12.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 12.21. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

12.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 12.22. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE Studio
Chapter 12. References

Page 236 of 336

12.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 12.23. Parameters of character2unicode

Parameter Type Description

str string The input string

<return> integer The character as Unicode

0 in case of errors

12.4.3.2.4. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 12.24. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

12.4.3.2.5. color2string

The function converts a color to eight hexadecimal values.

Table 12.25. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color chan-
nels red, green, blue and alpha.

For example, opaque pure red is converted to #ff0000ff, semi-transparent pure green
is converted to #00ff007f.

12.4.3.2.6. cosf

The function returns the cosine of x, where x is given in radians.

EB GUIDE Studio
Chapter 12. References

Page 237 of 336

Table 12.26. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

12.4.3.2.7. deg2rad

The function converts an angle from degrees to radians.

Table 12.27. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

<return> float The return value

12.4.3.2.8. expf

The function returns the value of e (the base of natural logarithms) raised to the power of x.

Table 12.28. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

12.4.3.2.9. float2string

The function converts simple float to string.

Table 12.29. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

12.4.3.2.10. floor

The function returns the largest integral value not greater than the parameter value.

EB GUIDE Studio
Chapter 12. References

Page 238 of 336

Table 12.30. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

12.4.3.2.11. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 12.31. Parameters of focusNext

Parameter Type Description

<return> void

12.4.3.2.12. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 12.32. Parameters of focusPrevious

Parameter Type Description

<return> void

12.4.3.2.13. format_float

The function formats a float value.

Table 12.33. Parameters of format_float

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the num-
ber of significant digits or the number of digits after the dec-
imal-point character .

EB GUIDE Studio
Chapter 12. References

Page 239 of 336

Parameter Type Description

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

useDotAsDelim-

iter

boolean Defines the delimiter sign.

Possible values:

► true: Use a dot as delimiter.

► false: Use a comma as delimiter.

value float The number to format

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_float are f, a, g and e, and not more than one
type character is allowed.

12.4.3.2.14. format_int

The function formats an integer value.

Table 12.34. Parameters of format_int

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the mini-
mum number of digits that are printed.

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

value int The number to format

EB GUIDE Studio
Chapter 12. References

Page 240 of 336

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_int are d, i, o, x and u, and not more than one
type character is allowed.

12.4.3.2.15. getLineCount

The function returns the number of lines of a text for a widget.

Table 12.35. Parameters of getLineCount

Parameter Type Description

widget widget The widget to evaluate

<return> integer The number of lines

12.4.3.2.16. getTextHeight

The function returns the height of a text with regard to its font resource.

Table 12.36. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

If the size of the font is 0 or negative, the function returns 0.

12.4.3.2.17. getTextLength

The function returns the number of characters in a text.

Table 12.37. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

EB GUIDE Studio
Chapter 12. References

Page 241 of 336

NOTE Escape sequences
EB GUIDE Script does not resolve escape sequences like \n and counts every character.
For example, for the text Label\n the getTextLength function returns 7.

12.4.3.2.18. getTextWidth

The function returns the width of a text with regard to its font resource.

Table 12.38. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

If the size of the font is 0 or negative, the function returns 0.

12.4.3.2.19. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 12.39. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

12.4.3.2.20. hsba2color

The function converts an HSB/HSV color to a GTF color.

Table 12.40. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

EB GUIDE Studio
Chapter 12. References

Page 242 of 336

Parameter Type Description

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting GTF color with the alpha value applied

12.4.3.3. EB GUIDE Script functions I - R

12.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 12.41. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

12.4.3.3.2. int2string

The function converts a simple integer to string.

Table 12.42. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

12.4.3.3.3. isDynamicStateMachineActive

The function checks if the state with the dynamic state machine list is active.

Table 12.43. Parameters of isDynamicStateMachineActive

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

EB GUIDE Studio
Chapter 12. References

Page 243 of 336

12.4.3.3.4. language

The function switches the language of all datapool items. This operation is performed asynchronously.

Table 12.44. Parameters of language

Parameter Type Description

language languageType The language to switch to, for example
f:language(l:German)

<return> void

12.4.3.3.5. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 12.45. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

12.4.3.3.6. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 12.46. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

12.4.3.3.7. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 12.47. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

EB GUIDE Studio
Chapter 12. References

Page 244 of 336

12.4.3.3.8. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 12.48. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted month

12.4.3.3.9. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 12.49. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

12.4.3.3.10. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 12.50. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

12.4.3.3.11. localtime_year

The function extracts the year from the local time of a system time value.

Table 12.51. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

12.4.3.3.12. log10f

The function returns the base 10 logarithm of x.

EB GUIDE Studio
Chapter 12. References

Page 245 of 336

Table 12.52. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.3.13. logf

The function returns the natural logarithm of x.

Table 12.53. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.3.14. nearbyint

The function rounds to nearest integer.

Table 12.54. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

12.4.3.3.15. popDynamicStateMachine

The function removes the dynamic state machine on the top of the priority queue.

Table 12.55. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

12.4.3.3.16. powf

The function returns the value of x raised to the power of y.

EB GUIDE Studio
Chapter 12. References

Page 246 of 336

Table 12.56. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

12.4.3.3.17. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 12.57. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

12.4.3.3.18. rad2deg

The function converts an angle form radians to degree.

Table 12.58. Parameters of rad2deg

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.3.19. rand

The function gets a random value between 0 and 231-1.

Table 12.59. Parameters of rand

Parameter Type Description

<return> integer A random number between 0 and 231-1

12.4.3.3.20. shutdown

The function requests the framework to shutdown the program.

EB GUIDE Studio
Chapter 12. References

Page 247 of 336

12.4.3.3.21. rgba2color

The function converts from RGB color space to GTF color.

Table 12.60. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to GTF color, with
the alpha value applied

12.4.3.3.22. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 12.61. Parameters of round

Parameter Type Description

value float The value to round

<return> integer The rounded value

12.4.3.4. EB GUIDE Script functions S - W

12.4.3.4.1. seed_rand

The function sets the seed of the random number generator.

Table 12.62. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

12.4.3.4.2. sinf

The function returns the sine of x, where x is given in radians.

EB GUIDE Studio
Chapter 12. References

Page 248 of 336

Table 12.63. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.4.3. skin

The function switches the skin of all datapool items. This operation is performed asynchronously.

Table 12.64. Parameters of skin

Parameter Type Description

skin skinType The skin to switch to, for example f:skin(s:Standard)

<return> void

12.4.3.4.4. sqrtf

The function returns the non-negative square root of x.

Table 12.65. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.4.5. string2float

The function converts the initial part of a string to float.

The expected form of the initial part of the string is as follows:

1. An optional leading white space

2. An optional plus ('+') or minus ('-') sign

3. One of the following:

► A decimal number

► A hexadecimal number

► An infinity

► An NAN (not-a-number)

EB GUIDE Studio
Chapter 12. References

Page 249 of 336

Table 12.66. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

12.4.3.4.6. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 12.67. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

12.4.3.4.7. string2string

The function formats strings.

Table 12.68. Parameters of string2string

Parameter Type Description

str string The string to format

len integer The maximum length of the string

<return> string The language string

12.4.3.4.8. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns "abc".

► substring("abc", 0, -2) returns "ab".

Table 12.69. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

EB GUIDE Studio
Chapter 12. References

Page 250 of 336

Parameter Type Description

endIndex integer The first character index that is not part of the result

<return> string The language string

12.4.3.4.9. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 12.70. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

12.4.3.4.10. system_time_ms

The function gets the current system time in milliseconds.

Table 12.71. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

12.4.3.4.11. tanf

The function returns the tangent of x, where x is given in radians.

Table 12.72. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

12.4.3.4.12. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 12.73. Parameters of trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

EB GUIDE Studio
Chapter 12. References

Page 251 of 336

12.4.3.4.13. trace_string

The function writes a string to the trace log and the connection log.

Table 12.74. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

12.4.3.4.14. transformToScreenX

The function takes a widget and a local coordinate and returns x-position in the screen-relative world coordinate
system.

Table 12.75. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The x-position of the screen coordinate

12.4.3.4.15. transformToScreenY

The function takes a widget and a local coordinate and returns Y position of a position in the screen-relative
world coordinate system.

Table 12.76. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The y-position of the screen coordinate

12.4.3.4.16. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x-position
in the widget-relative local coordinate system.

EB GUIDE Studio
Chapter 12. References

Page 252 of 336

Table 12.77. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The x-position of the local coordinate

12.4.3.4.17. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y-position
in the widget-relative local coordinate system.

Table 12.78. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The y-position of the local coordinate

12.4.3.4.18. trunc

The function rounds to the nearest integer value, always towards zero.

Table 12.79. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

12.4.3.4.19. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 12.80. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

EB GUIDE Studio
Chapter 12. References

Page 253 of 336

Parameter Type Description

<return> integer The number of child widgets

12.5. Events
Table 12.81. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

12.6. model.json configuration file
The model.json is an EB GUIDE TF configuration file that contains configuration items which are relevant
for a single EB GUIDE model.

The model.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

NOTE JSON object notation
If you configure model.json in EB GUIDE Studio, use the JSON object notation.

For an example, see section 12.6.1, “Example model.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

Table 12.82. Common

Configuration item Type Description Default value

gtf.eventsystem.maxQueue integer Maximum size of the
event queues

0

gtf.model.traces boolean Enables the tracing of
the f:trace_string
script function

true

gtf.model.identifier string Unique identifier of
the EB GUIDE mod-

empty

http://www.json.org

EB GUIDE Studio
Chapter 12. References

Page 254 of 336

Configuration item Type Description Default value

el (equal to the EB
GUIDE Studio project
UUID)

gtf.model.identifier.short integer Short identifier of the
EB GUIDE model

0xdeadbeaf

Table 12.83. Files and paths

Configuration item Type Description Default value

gtf.model.path string Path to the EB GUIDE
model

None

gtf.model.config string Full path to the EB
GUIDE model configu-
ration

<gtf.model.path>/

model.json

gtf.datapool.descriptionFile string Name of the datapool
description file

datapool.gtf

gtf.model.files.sm string Name of the state ma-
chine description file

model.bin

gtf.model.files.rm string Name of the resources
description file

resources.bin

gtf.model.files.views string Name of the view de-
scription file

views.bin

gtf.model.files.types string Name of the type de-
scription file

types.bin

gtf.model.pluginstoload string list Names of EB GUIDE
model plugins to load

empty string list

gtf.eventsystem.mapFile string Name of the event
system mapping file

eventMap.gtf

The option gtf.model.coreNames is a string list that contains the names of all configured cores. The fol-
lowing table contains configuration items for every core.

Table 12.84. Cores

Configuration item Type Description Default value

gtf.model.cores.<corename>.own-

Thread

boolean Specifies if the core
uses an own thread to
run

false

gtf.model.cores.<corename>.id integer Specifies the core con-
text identifier

0

EB GUIDE Studio
Chapter 12. References

Page 255 of 336

The option gtf.model.sceneNames is a string list that contains the names of all configured scenes. For
every scene, the configuration items in the following table are found.

Table 12.85. Scenes

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.visi-

ble

boolean Determines the visibili-
ty of the scene

true

gtf.model.scenes.<scenename>.width integer Width of the scene 800

gtf.model.scenes.<scenename>.-

height

integer Height of the scene 480

gtf.model.scenes.<scenename>.x integer Coordinates of the
scene's starting point

0

gtf.model.scenes.<scenename>.y integer Coordinates of the
scene's starting point

0

gtf.model.scenes.<scenename>.pro-

jectName

string Name of the working
project

gtf.model.scenes.<scenename>.win-

dowCaption

string Displayed window
name text

gtf.model.scenes.<scenename>.-

sceneId

integer Identifier for the scene 0

gtf.model.scenes.<scenename>.maxF-

PS

integer The redraw rate (FPS
= Frames per second).
Set to 0 for an unlimit-
ed redraw rate.

60

gtf.model.scenes.<scenename>.-

hwLayerId

integer Specifies the core con-
text identifier

0

gtf.model.scenes.<scenename>.col-

orMode

integer Specifies the color
mode:

► 1: 32-bit (RG-
BA8888)

► 2: 16-bit
(RGB565)

► 3: 24-bit
(RGB888)

► 4: 32-bit sRGB

► 5: 32-bit sRGB
(Emulated)

1

EB GUIDE Studio
Chapter 12. References

Page 256 of 336

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.mul-

tisampling

integer Specifies the multi-
sampling of the scene

► 0: no multisam-
pling

► 1: 2x multisam-
pling

► 2: 4x multisam-
pling

0

gtf.model.scenes.<scenename>.en-

ableRemoteFramebuffer

boolean If true, the transfer of
the off-screen buffer to
the simulation window
is enabled

false

gtf.model.scenes.<scenename>.-

showWindowFrame

boolean Determines if the ren-
derer window frame
should be displayed

true

gtf.model.scenes.<scenename>.-

showWindow

boolean If true, an additional
window for simulation
is opened on Windows
based systems

true

gtf.model.scenes.<scenename>.dis-

ableVsync

boolean If true, the vertical
synchronization for the
renderer is disabled.

false

gtf.model.scenes.<scenename>.-

showFPS

integer Possible values:

► 0: Do not show
FPS

► 1: Show FPS on
the screen

► 2: Show FPS on
the console

► 3: Show FPS on
the screen and on
the console

0

gtf.model.scenes.<scenename>.ren-

derer

string Name of the ren-
derer to use: Di-
rectXRenderer

EB GUIDE Studio
Chapter 12. References

Page 257 of 336

Configuration item Type Description Default value

OpenGLRenderer or
OpenGL3Renderer

Table 12.86. Rendering common

Configuration item Type Description Default value

gtf.model.fontCache.width integer Width of the font cache
atlas texture

512

gtf.model.fontCache.height integer Height of the font
cache atlas texture

512

gtf.model.fontCache.age integer Maximum allowed
age before the refresh
operation of the font
cache has to be done

100

gtf.model.traversalStackSize integer The renderers traver-
sal stack size in bytes

32768

The configuration items in the following table belong together. This means that the renderer expects that the
same amount of items is in all three lists. The entry with an index in one list belongs to the entries with the
same index in other lists.

Table 12.87. Renderer display extensions

Configuration item Type Description Default value

gtf.model.displayId integer list Identifiers of the
scenes

gtf.model.maxCacheSize integer list Maximum texture
caches for the scenes

gtf.model.driverName string list OS specific driver
names for the scenes,
e.g. /dev/fb0

The configuration items in the following table are used to configure the TextEngine component. TextEngine
is based on the FreeType third-party library. The following parameters are passed to the FreeType imple-
mentation. For more information about FreeType, see https://www.freetype.org/freetype2/docs/reference/ft2-
cache_subsystem.html.

Due to the way EB GUIDE TF handles font sizes, ft_size objects are not cached separately from ft_face
objects. Consider that the values for max_sizes can be limited by the hardware of your target platform.

https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html
https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html

EB GUIDE Studio
Chapter 12. References

Page 258 of 336

Table 12.88. TextEngine configuration items

Configuration item Type Description Default value

gtf.model.textengine.replacementG-

lyph

integer Unicode character
that should be used
in case the dedicated
font character is not
found in the current
font

0xfffd

gtf.model.textengine.maxFaces integer Maximum amount of
cached font faces

0

gtf.model.textengine.maxSizes integer Maximum amount of
cached font sizes

0

gtf.model.textengine.maxBytes integer Maximum amount
of memory in bytes
that can be used for
caches

0

gtf.model.textengine.enablePlain-

FileStream

boolean Determines the font
access configuration.
If true, the plain file
I/O access is used.
If false, the ROM-
mapped file access is
used.

false

NOTE Configuration items for bitmap fonts
For .fnt bitmap fonts you can use only the replacementGlyph configuration item. You
cannot use other configuration items in table 12.88, “TextEngine configuration items” for
bitmap fonts.

NOTE ROM-mapped file approach vs. plain file I/O approach
The ROM-mapped file approach in general provides higher performance. But on some sys-
tems, for example QNX, it consumes more memory than the plain file I/O approach. Plain
file I/O approach in general consumes less memory than the ROM-mapped file approach.
But it can lead to lower performance.

The option gtf.model.touchDevicesNames is a string list containing the names of all configured touch
devices. For every touch device the configuration items listed in the following table are available.

EB GUIDE Studio
Chapter 12. References

Page 259 of 336

Table 12.89. Touch devices

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.-

touchscreenType

integer Defines the touch de-
vice type:

► 0: Galaxy

► 1: imx WVGA

► 2: Mouse

► 3: General

► 4: Lil-
liput_889GL

► 5: GeneralMul-
titouch

► 6: Lilliput
with automat-

ic calibra-

tion

► 7: Generic-
TouchConfigu-

ration

3

gtf.mod-

el.touchDevices.<deviceName>.dis-

playManagerId

integer Specifies the scene ID
for which the device is
valid

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchId

integer Specifies the ID of the
device

0

gtf.mod-

el.touchDevices.<deviceName>.min-

imalDistanceToMove

integer Threshold for react-
ing on touch position
changes

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchMoveRepeatTimeout

integer Delay between touch
position change notifi-
cations

0

gtf.mod-

el.touchDevices.<deviceName>.width

integer Width of the touchable
device area

0

gtf.mod-

el.touchDevices.<deviceName>.-

height

integer Height of the touch-
able device area

0

EB GUIDE Studio
Chapter 12. References

Page 260 of 336

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.x_-

high

integer Maximum horizontal
resolution extend of
the touchable device
area

0

gtf.mod-

el.touchDevices.<deviceName>.y_-

high

integer Maximum vertical res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.x_low

integer Minimal horizontal res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.y_low

integer Minimal vertical res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.devi-

cePath

string Name of the driver
used for touch, e.g. /
dev/input0

12.6.1. Example model.json in EB GUIDE Studio

Example 12.1.
model.json in EB GUIDE Studio

{

 "gtf":{

 "datapool":{

 "descriptionFile":"datapool.gtf"

 },

 "eventsystem":{

 "maxQueue":0,

 "mapFile":"eventMap.gtf"

 },

 "model":{

 "coreNames":[

 "<core_1>"

],

 "cores":{

 "<core_1>":{

 "ownThread":false,

EB GUIDE Studio
Chapter 12. References

Page 261 of 336

 "id":0

 }

 },

 "touchDevicesNames":[

 "<device_1>"

],

 "touchDevices":{

 "<device_1>":{

 "touchscreenType":3,

 "displayManagerId":0,

 "touchId":0,

 "minimalDistanceToMove":0,

 "touchMoveRepeatTimeout":0,

 "width":0,

 "height":0,

 "x_high":0,

 "y_high":0,

 "x_low":0,

 "y_low":0,

 "devicePath":""

 }

 },

 "displayId":[

],

 "driverName":[

],

 "fontCache":{

 "width":512,

 "height":512,

 "age":100

 },

 "maxCacheSize":[

],

 "sceneNames":[

 "<scene_1>"

],

 "scenes":{

 "<scene_1>":{

 "visible":true,

 "width":800,

 "height":480,

 "x":0,

 "y":0,

 "projectName":"<project_x>",

EB GUIDE Studio
Chapter 12. References

Page 262 of 336

 "windowCaption":"<Displayed window name text>",

 "sceneId":0,

 "maxFPS":60,

 "hwLayerId":0,

 "colorMode":1,

 "multisampling":0,

 "enableRemoteFramebuffer":false,

 "showWindowFrame":true,

 "showWindow":true,

 "disableVsync":false,

 "showFPS":0,

 "renderer":"DirectXRenderer"

 }

 },

 "traces":true,

 "traversalStackSize":32768,

 "identifier":"",

 "path":"<binary_folder>",

 "config":"<gtf.model.path>/model.json",

 "files":{

 "sm":"model.bin",

 "rm":"resources.bin",

 "views":"views.bin",

 "types":"types.bin"

 },

 "pluginstoload":[

]

 }

 }

}

12.7. platform.json configuration file
The platform.json is an EB GUIDE TF configuration file which contains common and platform dependent
items.

The platform.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

EB GUIDE Studio
Chapter 12. References

Page 263 of 336

NOTE JSON object notation
If you configure platform.json within EB GUIDE Studio, use the JSON object notation.

For an example, see section 12.7.1, “Example platform.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

Table 12.90. Platform configuration

Configuration item Type Description Default value

gtf.servicemapper.port integer Connection port for
the services (e.g. EB
GUIDE Monitor)

60000

gtf.core.pluginstoload string list List of core plugins
that should be loaded
(relative to binary fold-
er or absolute path)

None

gtf.launcher.editmode boolean Defines if EB GUIDE
TF is running in EB
GUIDE Studio. This is
a read-only item.

false

gtf.platform.config string Full path to the plat-
form.json file. This
is a read-only item.

<binary_fold-

er>/platform.json

gtf.framework.path string Path to the GtfS-
tartup executable.
This is a read-only
item.

<binary_folder>

gtf.diagnostic.memory.interval integer Specifies the time in-
terval for the memory
diagnostic. If value is 0
the diagnostic is deac-
tivated.

0

gtf.ipc.role string The role of the IPC
node. Possible val-
ues are server or
client

server

gtf.ipc.discovery.network string The IPv4 network ad-
dress which will be
used for the serv-
er-client discovery

255.255.255.255

http://www.json.org

EB GUIDE Studio
Chapter 12. References

Page 264 of 336

Configuration item Type Description Default value

mechanism. In case of
direct connection, this
represents the servers'
network address.

gtf.ipc.discovery.port integer The network port
which will be used for
the server-client dis-
covery mechanism.
In case of direct con-
nection, this has to
be equal to the item
gtf.servicemap-

per.port from the
server configuration.

4711

gtf.ipc.datapool.config string The configuration
file containing the
datapool items that
should be part of IPC
communication

ipc_datapool.gtf

gtf.ipc.discovery.mode string The discovery mode
used for connecting
the server and the
clients. Possible op-
tions are: "broad-
cast", "multicast"
and "direct".

broadcast

gtf.ipc.client.timeout integer Retry period of the
client connection to the
server, expressed in
milliseconds.

5000

12.7.1. Example platform.json in EB GUIDE Studio

Example 12.2.
platform.json in EB GUIDE Studio

{

EB GUIDE Studio
Chapter 12. References

Page 265 of 336

 "gtf":{

 "core":{

 "pluginstoload":[

 "TfRuntime",

 "TfService",

 "TfGui",

 "TfGUIOpenGLES20",

 "TfGUIOpenGLES3",

 "TfGUIDirectX11"

]

 },

 "servicemapper":{

 "port":60000

 },

 "launcher":{

 "editmode":true

 },

 "platform":{

 "config":"<binary_folder>/platform.json"

 },

 "framework":{

 "path":"<binary_folder>"

 },

 "diagnostic":{

 "memory":{

 "interval":0

 }

 },

 "ipc":{

 "role":"server",

 "discovery":{

 "network":"255.255.255.255",

 "port":4711,

 "mode":"broadcast"

 },

 "client":{

 "timeout":5000

 },

 "datapool": {

 "config": "ipc_datapool.gtf"

 }

 }

 }

}

EB GUIDE Studio
Chapter 12. References

Page 266 of 336

12.8. Scenes
Table 12.91. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x-offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y-offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 32-bit (=1): RGBA8888

► 16-bit (=2): RGB565

► 24-bit (=3): RGB888

► 32-bit sRGB (=4):

This value uses GPU hardware support.

Use this value, if you want to have sRGB support for an image wid-
get or for the Diffuse texture widget feature.

► 32-bit sRGB (Emulated) (=5):

Use this value only if 32-bit sRGB does not yield correct results.

multisampling Possible values:

► Off (= 0): no multisampling

EB GUIDE Studio
Chapter 12. References

Page 267 of 336

Property name Description

► 2x (=1): 2x multisampling

► 4x (=2): 4x multisampling

Also see “Settings for multisampling”.

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► Off (=0): Do not show FPS

► On screen (=1): Show FPS on the screen

► Console (=2): Show FPS on the console

► Console & on screen (=3): Show FPS on the screen and on
the console

Renderer Defines a renderer for the scene.

Possible values:

► DirectXRenderer

► OpenGLRenderer

► OpenGL3Renderer

EB GUIDE Studio
Chapter 12. References

Page 268 of 336

TIP Settings for multisampling
The higher the resolution for multisampling is the better the quality of the rendering result.
However, be aware that multisampling decreases the rendering performance, especially on
a target device. At small displays with high resolution the multisampling has almost no effect.

Start with no multisampling and, if the performance is good, try the settings 2x or 4x multi-
sampling. If there is no big difference with higher multisampling, use a lower setting.

TIP Settings for multisampling are hardware-dependent
If the required multisampling settings are not possible from hardware side, information about
it is available in the logfile.

12.9. Touch screen types supported by EB GUIDE
GTF
The supported types depend on the target device.

Table 12.92. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

5 General platform-dependent multitouch
touch-screen interface

Linux

12.10. Widgets

12.10.1. View

EB GUIDE Studio
Chapter 12. References

Page 269 of 336

Table 12.93. Properties of a view

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget

y The y-coordinate of the widget

View templates have additional properties for view transition animations. An entry animation is executed when
the view in entered.

Table 12.94. Properties of an entry animation

Property name Description

Entry animation If true, instances of the view template have an entry animation.

Transition type The type of the entry animation, for example Move in from left, Fade in from
center or Show view immediately.

Duration The duration of the entry animation in milliseconds

Delay The delay of the entry animation in milliseconds

Play after exit an-

imation

If true, the start time of the entry animation depends on the duration of a previ-
ous exit animation.

An exit animation is executed when the view is exited.

Table 12.95. Properties of an exit animation

Property name Description

Exit animation If true, instances of the view template have an exit animation.

Transition type The type of the exit animation, for example Move out to top, Fade out to cen-
ter or Hide view immediately.

Duration The duration of the exit animation in milliseconds

Delay The delay of the exit animation in milliseconds

12.10.2. Basic widgets
There are eight basic widgets.

► Alpha mask

EB GUIDE Studio
Chapter 12. References

Page 270 of 336

► Animation

► Container

► Ellipse

► Image

► Instantiator

► Label

► Rectangle

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

12.10.2.1. Alpha mask

An alpha mask is a container widget that controls the alpha channel, i.e. the opacity, of its child widgets with
an image.

Table 12.96. Properties of the alpha mask

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

enabled If true, the alpha mask is applied to the child widgets

image The image that controls the alpha channel, i.e. the opacity of the child widgets

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

scaleMode The scale mode of the image. Possible values:

EB GUIDE Studio
Chapter 12. References

Page 271 of 336

Property name Description

► original size (=0)

► fit to size (=1)

► keep aspect ratio (=2)

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. DirectX 11
and OpenGL ES version 2.0 or higher support .png files and .jpg files. RGB images are
converted to grayscale images before being used as alpha masks. Grayscale images are
used as is. The alpha channel in the image is ignored.

You cannot use the alpha mask with 9-patch images.

12.10.2.2. Animation

An animation defines the movement of a widget along a view. To define the appearance of an animation, add
curves in the Animation editor.

Table 12.97. Properties of the animation

Property name Description

enabled Defines if the animation is executed

repeat The number of repetitions, 0 for infinite number

alternating If true, the animation is executed repeatedly back and forth / bidirectional.

If false, the animation is executed repeatedly only in one direction / unidirection-
al.

The number of repetitions is defined in the repeat property.

scale The factor by which the animation time is multiplied

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards)

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

EB GUIDE Studio
Chapter 12. References

Page 272 of 336

Property name Description

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

12.10.2.2.1. Constant curves

A constant curve sets a target value after a defined delay. Constant curves are available for integer, boolean,
float, and color types.

Table 12.98. Properties of constant curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

value The resulting constant value

target The target property the resulting value is assigned to

12.10.2.2.2. Fast start curves

A fast start curve periodically sets a value that increases fast in the beginning but loses speed constantly until
the end. Fast start curves are available for integer, float, and color types.

Table 12.99. Properties of fast start curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

EB GUIDE Studio
Chapter 12. References

Page 273 of 336

Property name Description

start The initial value

end The final value

target The target property the resulting value is assigned to

12.10.2.2.3. Slow start curves

A slow start curve periodically sets a value that increases slowly in the beginning but rises constantly until the
end. Slow start curves are available for integer, float, and color types.

Table 12.100. Properties of slow start curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

start The initial value

end The final value

target The target property the resulting value is assigned to

12.10.2.2.4. Quadratic curves

A quadratic curve periodically sets a value using a quadratic function curve. Quadratic curves are available
for integer, float, and color types.

Table 12.101. Properties of quadratic curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

acceleration The acceleration of the curve

EB GUIDE Studio
Chapter 12. References

Page 274 of 336

Property name Description

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

12.10.2.2.5. Sinus curves

A sinus curve periodically sets a value using a sinus function curve. Sinus curves are available for integer,
float, and color types.

Table 12.102. Properties of sinus curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

frequency The frequency of the curve in hertz

phase The angular phase translation in radians

target The target property the resulting value is assigned to

12.10.2.2.6. Script curves

A script curve sets a value using a curve that is described by EB GUIDE Script. Script curves are available
for integer, boolean, float, and color types.

Table 12.103. Properties of script curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

EB GUIDE Studio
Chapter 12. References

Page 275 of 336

Property name Description

relative Defines if update values are applied on the initial value

curve The resulting curve function

target The target property the resulting value is assigned to

12.10.2.2.7. Linear curves

A linear curve periodically sets a value using a linear progression curve. Linear curves are available for integer,
float, and color types.

Table 12.104. Properties of linear curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

12.10.2.2.8. Linear interpolation curves

A linear interpolation curve widget periodically sets a value using a linear interpolation curve. Linear interpola-
tion curves are available for integer, float, and color types.

NOTE Linear key value interpolation curves
During import of a 3D graphic file, if the imported 3D scene has animations, linear key value
interpolation integer curve and linear key value interpolation float curve are created. The
underlying key-value pairs of these curves cannot be modified in EB GUIDE Studio.

Table 12.105. Properties of linear interpolation curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

EB GUIDE Studio
Chapter 12. References

Page 276 of 336

Property name Description

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

target The target property the resulting value is assigned to

12.10.2.3. Container

A container holds several widgets as child widgets and thus groups the widgets.

Table 12.106. Properties of the container

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

12.10.2.4. Ellipse

An ellipse draws a colored ellipse with the dimensions and coordinates of the widget into a view. The widget
can also be used to draw a sector or an arc.

Table 12.107. Properties of the ellipse

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the ellipse

arcWidth The width of the arc of the ellipse

centralAngle The angle in degrees which defines a sector of the ellipse

sectorRotation The angle in degrees which describes the rotation of the ellipse's sector

EB GUIDE Studio
Chapter 12. References

Page 277 of 336

12.10.2.5. Image

An image places a picture into a view.

Table 12.108. Properties of the image

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

image The image the widget displays

sRGB If this property is enabled, the image that is selected in image, is rendered using
sRGB color space.

Note that to use sRGB functionality, in the project center under Configure >
Profiles for the colorMode property select 32-bit sRGB (=4) or 32-bit
sRGB (Emulated) (=5).

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. DirectX 11 and
OpenGL ES version 2.0 or higher support .png files and .jpg files.

12.10.2.6. Instantiator

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables
with dynamic or static content. The child widgets of an instantiator serve as line templates for the list or table
which is created during run-time. By default the instantiator only instantiates the first line template.

Table 12.109. Properties of the instantiator

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

EB GUIDE Studio
Chapter 12. References

Page 278 of 336

Property name Description

y The y-coordinate of the widget relative to its parent widget

numItems The number of instantiated child widgets. If numItems is 0, no child widgets are
created.

lineMapping Defines which child widget is the line template for which line, i.e. defines the or-
der of instantiation

12.10.2.7. Label

A label places text into a view.

Table 12.110. Properties of the label

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

text The text the label displays. If the text does not fit into the widget area it is trun-
cated at the end by default.

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

12.10.2.8. Rectangle

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 12.111. Properties of the rectangle

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

EB GUIDE Studio
Chapter 12. References

Page 279 of 336

Property name Description

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

12.10.3. 3D widgets

12.10.3.1. Ambient light

An ambient light is a light that uniformly illuminates the scene. An ambient light affects the ambient color
property of material widgets.

Table 12.112. Properties of the ambient light

Property name Description

enabled If true, the widget is enabled

color The color of the light

intensity The intensity of the light, with 0.0 as no ambient light

12.10.3.2. Camera

A camera defines the view of the scene from a particular point of view. Use several cameras to show the scene
from different points of view.

Table 12.113. Properties of the camera

Property name Description

enabled If true, the widget is enabled

nearPlane The nearest distance from the camera in view direction at which the scene be-
comes visible

farPlane The farthest distance from the camera in view direction up to which the scene is
visible

fieldOfView The camera's vertical viewing angle in degrees

projectionType Defines the projection type of the camera. The objects are rendered either with
perspective (=0) or orthographic (=1) projection.

Note: If the projection type is orthographic, the viewing volume is calculated by
using the fieldOfView angle.

EB GUIDE Studio
Chapter 12. References

Page 280 of 336

12.10.3.3. Directional light

A directional light illuminates the scene from one direction.

Table 12.114. Properties of the directional light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with 0.0 as no directional light

12.10.3.4. Material

A material defines the visual appearance of the mesh surface using the Phong reflection model.

Table 12.115. Properties of the material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If no am-
bient light is added to the parent scene graph, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

shininess The shininess factor

specular The color that an object with a shiny surface reflects

opacity The opacity value

Note that only values between 0 and 1, as for example 0.3, are valid.

12.10.3.5. Mesh

A mesh defines the shape of the 3D object.

Table 12.116. Properties of the mesh

Property name Description

visible If true, the widget and its child widgets are visible

mesh The automatically created mesh file *.ebmesh

culling Defines whether no triangles (0), only front-facing triangles (1), or only back-fac-
ing triangles (2) are culled from the mesh

EB GUIDE Studio
Chapter 12. References

Page 281 of 336

12.10.3.6. PBR GGX material

A PBR GGX material defines the visual appearance of the mesh surface using the physically correct Cook-
Torrance model.

Table 12.117. Properties of the PBR GGX material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

specular The color that an object with a shiny surface reflects

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

roughness The value for the surface quality of being rough

This value controls the surface’s microstructure.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid, as for example 0.3.

Figure 12.1. Example for a physically-based material

EB GUIDE Studio
Chapter 12. References

Page 282 of 336

12.10.3.7. PBR Phong material

A PBR Phong material defines the visual appearance of the surface of the mesh using the physically correct
Phong reflection model.

Table 12.118. Properties of the PBR Phong material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

shininess The shininess factor

specular The color that an object with a shiny surface reflects

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid , as for example 0.3.

Figure 12.2. Example for a non-normalized material (left) and a normalized material (right)

12.10.3.8. Point light

A point light adds a light to the scene that emits light in all directions like a light bulb.

Table 12.119. Properties of the point light

Property name Description

enabled If true, the widget is enabled

EB GUIDE Studio
Chapter 12. References

Page 283 of 336

Property name Description

color The light's color

intensity The intensity of the light, with 0.0 as no point light

attenuationConstant The constant factor by which the light weakens with increasing distance

attenuationLinear The linear factor by which the light weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light weakens with increasing distance

12.10.3.9. Scene graph

A scene graph places a 3D object into a view.

Table 12.120. Properties of the scene graph

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

12.10.3.10. Scene graph node

A scene graph node is a child node and is added to the scene graph or to another scene graph node. You
use scene graph nodes to place 3D widgets in the 3D scene with transformation properties. You can add the
following 3D widgets to the scene graph node:

► Camera

► Directional light

► Mesh

► Point light

► Spot light

Table 12.121. Properties of the scene graph node

Property name Description

visible If true, the widget and its child widgets are visible

EB GUIDE Studio
Chapter 12. References

Page 284 of 336

Property name Description

rotationX The rotation around the x-axis

rotationY The rotation around the y-axis

rotationZ The rotation around the z-axis

scalingX The scaling along the x-axis

scalingY The scaling along the y-axis

scalingZ The scaling along the z-axis

translationX The translation along the x-axis

translationY The translation along the y-axis

translationZ The translation along the z-axis

12.10.3.11. Spot light

A spot light adds a light which restricts illumination to a cone of influence.

Table 12.122. Properties of the spot light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with 0.0 as no spot light

attenuationConstant The constant factor by which the light weakens with increasing distance

attenuationLinear The linear factor by which the light weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light weakens with increasing distance

coneAngleInner The light's inner cone angle

coneAngleOuter The light's outer cone angle

12.11. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

EB GUIDE Studio
Chapter 12. References

Page 285 of 336

12.11.1. Common

12.11.1.1. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. Only the content of one
child widget is visible at a time.

Table 12.123. Properties of the Child visibility selection widget feature

Property name Description

containerIndex The index of the child widgets of the parent widget

containerMapping If a mapping is set, each child of the container is re-addressed by its appropriate
value in containerMapping.

If a mapping is not set, undefined, or if the length does not match the number
of child widgets in the container, the mapping is not used. Instead, the order of
widgets in the widget tree is used as their index. The topmost child has index 0,
next index 1 etc.

12.11.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 12.124. Properties of the Enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

12.11.1.3. Focused

The Focused widget feature enables a widget to have input focus.

Table 12.125. Properties of the Focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► not focusable (=0)

► only by touch (=1)

► only by key (=2)

EB GUIDE Studio
Chapter 12. References

Page 286 of 336

Property name Description

► focusable (=3)

focused If true, the widget has focus

12.11.1.4. Multiple lines

The Multiple lines widget feature enables line breaks.

Restrictions:

► The Multiple lines widget feature is only available for the label widget.

Table 12.126. Properties of the Multiple lines widget feature

Property name Description

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

When the line gap is too small (high negative value), it has no effect anymore
and the text is rendered in one line. This occurs for example, when the font style
is set to PT_Sans_Narrow, size is set to 30 and the line gap is defined as
-50.

maxLineCount The maximum number of visible lines. 0 = no limitation

TIP Number of lines used
With the script function getLineCount, you can obtain the number of lines of the text.

For more information on this, see section 12.4.3.2.15, “getLineCount”.

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

12.11.1.5. Pressed

The Pressed widget feature defines that a widget can be pressed.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 287 of 336

► Adding the Pressed widget feature automatically adds the Focused widget feature.

Table 12.127. Properties of the Pressed widget feature

Property name Description

pressed If true, a key is pressed while the widget is focused

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

12.11.1.6. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 12.128. Properties of the Selected widget feature

Property name Description

selected If true, the widget is selected

12.11.1.7. Selection group

The Selection group widget feature is used to model a list of radio buttons. In the list, every radio button has
the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an application that sets the but-
tonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding a con-
dition that sets the button value.

Restrictions:

► Adding the Selection group widget feature automatically adds the Selected widget feature.

Table 12.129. Properties of the Selection group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is se-
lected.

EB GUIDE Studio
Chapter 12. References

Page 288 of 336

12.11.1.8. Spinning

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 12.130. Properties of the Spinning widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction The reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the current-
Value property

valueWrapAround Possible values:

► true: The currentValue property continues at the inverse border, if min-
Value or maxValue is exceeded.

► false: The currentValue property does not decrease/increase, if min-
Value or maxValue is exceeded.

12.11.1.9. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area. The widget feature enables a different truncation than the default setting trailing.

Restrictions:

► The Text truncation widget feature is only available for the label widget.

Table 12.131. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, the truncationPolicy property defines the position of
the truncation. Possible values:

► leading (=0): Text is replaced at the beginning of the text

► trailing (=1): Text is replaced at the end of the text

EB GUIDE Studio
Chapter 12. References

Page 289 of 336

Property name Description

For multi-line texts, the truncationPolicy property defines where text is re-
placed. Possible values:

► leading (=0): Lines at the beginning are replaced and text of the first vis-
ible line is truncated at the beginning of the text.

► trailing (=1) Lines at the end are replaced and text of the last visible
line is truncated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

12.11.1.10. Touched

The Touched widget feature enables a widget to react to touch input.

Table 12.132. Properties of the Touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react (=0): Press first, then the widget reacts. Notifica-
tions of moving and releasing are only active within the widget area.

► Press and grab (=1): Press to grab the contact. The contact remains
grabbed even if it moves away from the widget area.

► Press then react on contact (=3): Even if the contact enters the
pressed state outside the widget boundaries, the subsequent move and re-
lease events are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

► Whole area (=0): To identify the touched widget, the renderer evaluates
the widget's clipping rectangle.

► Visible pixels (=1): To identify the touched widget, the renderer eval-
uates the widget the touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Note that the Visible pixels value has no effect on labels.

EB GUIDE Studio
Chapter 12. References

Page 290 of 336

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation
If performance is an important issue in your project, set the touchBehavior property to
Whole area (=0). EB GUIDE GTF evaluates Whole area (=0) faster than Visible
pixels (=1).

12.11.2. Effect

12.11.2.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Restrictions:

► The widget feature is available for rectangles.

Table 12.133. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

12.11.2.2. Coloration

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 12.3.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

EB GUIDE Studio
Chapter 12. References

Page 291 of 336

Table 12.134. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The color used for the coloration

12.11.2.3. Stroke

The Stroke widget feature activates a configurable text outline, i.e. a label border.

Restrictions:

► The widget feature is available for labels.

Table 12.135. Properties of the Stroke widget feature

Property name Description

strokeEnabled If true, stroke is used

strokeThickness The thickness of the outline in pixels

strokeColor The color that is used to render the outline

12.11.3. Focus
The Focus widget feature category provides the widget features relating to focus management.

12.11.3.1. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. The Auto
focus widget feature checks the widget subtree for child widgets with the focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Restrictions:

► The widget feature Auto focus automatically adds the Focused widget feature.

Table 12.136. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrev The condition on which the focus index is decremented

EB GUIDE Studio
Chapter 12. References

Page 292 of 336

Property name Description

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

12.11.3.2. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Restrictions:

► The widget feature User-defined focus automatically adds the Focused widget feature.

Table 12.137. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder The focusOrder property makes it possible to skip child widgets when assign-
ing focus. The ID of a child widget corresponds to its position in the subtree.
Child widgets that are not focusable are skipped by default. Order in which the
child widgets are focused:

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, otherwise widgets are
ignored for focus handling. Example: focusOrder=1|0|2 means the second wid-
get receives focus first, then the first widget receives focus, and finally the third
widget.

focusPrev The trigger that assigns the focus to the previous child

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy level (=0)

► wrap within hierarchy level (=1)

EB GUIDE Studio
Chapter 12. References

Page 293 of 336

Property name Description

► step up in hierarchy (=2)

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

12.11.4. Gestures

12.11.4.1. Flick gesture

A quick brush of a contact over a surface

Restrictions:

► Adding the Flick gesture widget feature automatically adds the Gestures and Touched widget features.

Table 12.138. Properties of the Flick gesture widget feature

Property name Description

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: x-part of the direction vector of the gesture

► directionY: y-part of the direction vector of the gesture

flickMaxTime The maximal time in milliseconds the contact may stay in place for the gesture to
be recognized as a flick gesture

flickMinLength The minimal distance in pixels a contact has to move on the surface to be recog-
nized as a flick gesture

12.11.4.2. Hold gesture

A hold gesture without movement

Restrictions:

► Adding the Hold gesture widget feature automatically adds the Gestures and Touched widget features.

EB GUIDE Studio
Chapter 12. References

Page 294 of 336

► The Hold gesture widget feature does not trigger the Touch lost widget feature.

Table 12.139. Properties of the Hold gesture widget feature

Property name Description

onGestureHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when holdDuration is expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

holdDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a hold gesture

12.11.4.3. Long hold gesture

A long hold gesture without movement

Restrictions:

► Adding the Long hold gesture widget feature automatically adds the Gestures and Touched widget
features.

► The Long hold gesture widget feature does not trigger the Touch lost widget feature.

Table 12.140. Properties of the Long hold gesture widget feature

Property name Description

onGestureLongHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when longHoldDuration has expired and the
contact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

longHoldDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a long hold gesture

12.11.4.4. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

EB GUIDE Studio
Chapter 12. References

Page 295 of 336

Restrictions:

► Adding the Path gesture widget feature automatically adds the Gestures and Touched widget features.

Table 12.141. Properties of the Path gesture widget feature

Property name Description

onPath The reaction that is triggered when the entered shape matches. The reaction is
only triggered if onPathStart has been triggered already. Reaction argument:

► gestureId: ID of the path that was matched

onPathStart The reaction that is triggered once a contact moves beyond the minimal box
(pathMinXBox, pathMinYBox.)

onPathNotRecognized The reaction that triggered when the entered shape does not match. The reac-
tion is only triggered if onPathStart has been triggered already.

pathMinXBox The x-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

pathMinYBox The y-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

12.11.4.4.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 12.142. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

EB GUIDE Studio
Chapter 12. References

Page 296 of 336

ID Shape Description

3 Horizontal line right to left

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

12.11.4.5. Pinch gesture

Two contacts that move closer together or further apart

Restrictions:

► Adding the Pinch gesture widget feature automatically adds the Gestures and Touched widget features.

Table 12.143. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart The reaction that is triggered once the start of the gesture is recog-
nized. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

EB GUIDE Studio
Chapter 12. References

Page 297 of 336

Property name Description

onGesturePinchUpdate The reaction that is triggered when the pinch ratio or center point
change. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

onGesturePinchEnd The reaction that is triggered once the gesture is finished. Reaction ar-
guments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

pinchThreshold The minimal distance in pixels each contact has to move from its initial
position for the gesture to be recognized

12.11.4.6. Rotate gesture

Two contacts that move along a circle

Restrictions:

► Adding the Rotate gesture widget feature automatically adds the Gestures and Touched widget features.

Table 12.144. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart The reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate The reaction that is triggered when the recognized angle or center point
changes

onGestureRotateEnd The reaction that is triggered once the gesture is finished

rotateThreshold The minimal distance in pixels each contact has to move from its initial
position for the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUp-
date:

EB GUIDE Studio
Chapter 12. References

Page 298 of 336

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: x-coordinate of the current center point between the two contacts

► centerY: y-coordinate of the current center point between the two contacts

12.11.5. Input handling

12.11.5.1. Gestures

The Gestures widget feature enables the widget to react on touch gestures.

Restrictions:

► Adding the Gestures widget feature automatically adds the Touched widget feature.

► The Gestures widget feature has no additional properties.

12.11.5.2. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Restrictions:

► Adding the Key pressed widget feature automatically adds the Pressed and Focused widget features.

Table 12.145. Properties of the Key pressed widget feature

Property name Description

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: The ID of the key that is processed

12.11.5.3. Key released

The Key released widget feature enables a widget to react on a key being released.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 299 of 336

► Adding the Key released widget feature automatically adds the Pressed and Focused widget features.

Table 12.146. Properties of the Key released widget feature

Property name Description

keyShortReleased The widget's reaction on a key being released

Reaction argument:

► keyId: The ID of the key that is processed

12.11.5.4. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Restrictions:

► Adding the Key status changed widget feature automatically adds the Pressed and Focused widget
features.

Table 12.147. Properties of the Key status changed widget feature

Property name Description

keyStatusChanged The widget's reaction on a key being pressed or released

Reaction arguments:

► keyId: The ID of the key that is processed

► status: The numeric ID of the status change

12.11.5.5. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Restrictions:

► Adding the Key unicode widget feature automatically adds the Pressed and Focused widget features.

Table 12.148. Properties of the Key unicode widget feature

Property name Description

keyUnicode The widget's reaction on a Unicode key input

Reaction argument:

EB GUIDE Studio
Chapter 12. References

Page 300 of 336

Property name Description

► keyId: The ID of the key that is processed

12.11.5.6. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Restrictions:

► Adding the Move in widget feature automatically adds the Touched widget feature.

Table 12.149. Properties of the Move in widget feature

Property name Description

moveIn The widget's reaction on a movement into its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.7. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Restrictions:

► Adding the Move out widget feature automatically adds the Touched widget feature.

Table 12.150. Properties of the Move out widget feature

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

EB GUIDE Studio
Chapter 12. References

Page 301 of 336

12.11.5.8. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Restrictions:

► Adding the Move over widget feature automatically adds the Touched widget feature.

Table 12.151. Properties of the Move over widget feature

Property name Description

moveOver The widget's reaction on a movement within its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.9. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Restrictions:

► Adding the Moveable widget feature automatically adds the Touched and Touch moved widget features.

Table 12.152. Properties of the Moveable widget feature

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► horizontal (=0)

► vertical (=1)

► free (=2)

12.11.5.10. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 302 of 336

► Adding the Rotary widget feature automatically adds the Focused widget feature.

Table 12.153. Properties of the Rotary widget feature

Property name Description

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts on an incoming
rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming
event is sent

12.11.5.11. Touch lost

The Touch lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Restrictions:

► Adding the Touch lost widget feature automatically adds the Touched widget feature.

Table 12.154. Properties of the Touch lost widget feature

Property name Description

onTouchGrabLost The widget's reaction on a lost touch contact

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.12. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 303 of 336

► Adding the Touch move widget feature automatically adds the Touched widget feature.

Table 12.155. Properties of the Touch move widget feature

Property name Description

touchMoved The widget's reaction on being touched and moved

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.13. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

Restrictions:

► Adding the Touch pressed widget feature automatically adds the Touched widget feature.

Table 12.156. Properties of the Touch pressed widget feature

Property name Description

touchPressed The widget's reaction on being pressed

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.14. Touch released

The Touch released widget feature enables a widget to react on being released.

Restrictions:

► Adding the Touch released widget feature automatically adds the Touched widget feature.

EB GUIDE Studio
Chapter 12. References

Page 304 of 336

Table 12.157. Properties of the Touch released widget feature

Property name Description

touchShortReleased The widget's reaction on being released

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

12.11.5.15. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Restrictions:

► Adding the Touch status changed widget feature automatically adds the Touched widget feature.

Table 12.158. Properties of the Touch status changed widget feature

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► touchStatus: The ID of the type of touch

Possible values:

► 0: new contact

► 1: touch press

► 2: touch move

► 3: touch released

► 4: movement without touch

► 5: touch gone

► 6: any status change

EB GUIDE Studio
Chapter 12. References

Page 305 of 336

Property name Description

► fingerId: The ID of the contact that moves across the widget

12.11.6. Layout

12.11.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Restrictions:

► The Absolute layout widget feature excludes the following widget features:

► Box layout

► Flow layout

► Grid layout

► List layout

Table 12.159. Properties of the Absolute layout widget feature

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for the child widgets.
Each list element is mapped to a child widget.

itemTopOffset An integer list that stores the offset from the top border for the child widgets.
Each list element is mapped to a child widget.

itemRightOffset An integer list that stores the offset from the right border for the child widgets.
Each list element is mapped to a child widget.

itemBottomOffset An integer list that stores the offset from the bottom border for the child widgets.
Each list element is mapped to a child widget.

12.11.6.2. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 306 of 336

► The Box layout widget feature excludes the following widget features:

► Absolute layout

► Flow layout

► Grid layout

► List layout

Table 12.160. Properties of the Box layout widget feature

Property name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

12.11.6.3. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Flow layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Grid layout

► List layout

Table 12.161. Properties of the Flow layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

layoutDirection The direction in which the list elements i.e. the child widgets are posi-
tioned. Possible values:

► horizontal (=0)

► vertical (=1)

EB GUIDE Studio
Chapter 12. References

Page 307 of 336

Property name Description

horizontalChildAlign The horizontal alignment of child widgets. Possible values:

► leading (=0): The child widget is placed in the center.

► center (=1): The child widget is placed at the top.

► trailing (=2): The child widget is placed at the bottom.

verticalChildAlign The vertical alignment of child widgets. Possible values:

► center (=0): The child widget is placed in the center.

► top (=1): The child widget is placed at the top

► bottom (=2): The child widget is placed at the bottom.

12.11.6.4. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Grid layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► List layout

Table 12.162. Properties of the Grid layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

numRows Defines the number of rows

numColumns Defines the number of columns

12.11.6.5. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout, Ab-
solute layout, Box layout, or Grid layout widget feature.

EB GUIDE Studio
Chapter 12. References

Page 308 of 336

Table 12.163. Properties of the Layout margins widget feature

Property name Description

leftMargin The margin of the left border

topMargin The margin of the top border

rightMargin The margin of the right border

bottomMargin The margin of the bottom border

12.11.6.6. List layout

The List layout widget feature defines position and size of each child widget.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, see section 12.11.7.2, “List index”.

Restrictions:

► The List layout widget feature is intended to be used with instantiator.

► The List layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► Grid layout

Table 12.164. Properties of the List layout widget feature

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

scrollOffset The amount of pixels to scroll the list

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is
translated to scrollIndex. The remaining offset is written to the scrollOff-
set property.

firstListIndex The list index of the first visible list element, defined by the widget feature

EB GUIDE Studio
Chapter 12. References

Page 309 of 336

Property name Description

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at
the list elements given in the scrollIndex property.

scrollValue The current scroll value

scrollValueMax The maximum scroll value, which is mapped to the end of the list

scrollValueMin The minimum scroll value, which is mapped to the beginning of the list

bounceValue The bounceValue property is zero as long as the scrollOffset property re-
sults in a position inside the valid scroll range. It has a positive value if the scroll
position exceeds the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to scrollOffset,
the scroll position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll
range. scrollOffset is truncated if the user tries to scroll further.

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

listLength The number of list elements

wrapAround Possible values:

► true: The scrollValue property continues at the inverse border, if scrol-
lValueMin or scrollValueMax is exceeded.

► false: The scrollValue property does not decrease/increase, if scroll-
ValueMin or scrollValueMax is exceeded.

12.11.6.7. Scale mode

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

Restrictions:

► The Scale mode widget feature is only available for the widget image.

Table 12.165. Properties of the Scale mode widget feature

Property name Description

scaleMode The scale mode of the image. Possible values:

► 0 = original size

► 1 = fit to size

► 2 = keep aspect ratio

EB GUIDE Studio
Chapter 12. References

Page 310 of 336

12.11.7. List management

12.11.7.1. Line index

The Line index widget feature defines the unique position for each line of your list or table.

Restrictions:

► The Line index widget feature is intended to be used in combination with instantiators.

Table 12.166. Properties of the Line index widget feature

Property name Description

lineIndex The index of the current line in a table

12.11.7.2. List index

The List index widget feature defines the unique position of a widget in a list.

Restrictions:

► The List index widget feature is intended to be used in combination with the List layout widget feature.

Table 12.167. Properties of the List index widget feature

Property name Description

listIndex The index of the current widget in a list

12.11.7.3. Template index

The Template index widget feature defines the unique position of the used line template.

Restrictions:

► The Template index widget feature is intended to be used in combination with instantiators.

Table 12.168. Properties of the Template index widget feature

Property name Description

lineTemplateIndex The index of the used line template

12.11.7.4. Viewport

EB GUIDE Studio
Chapter 12. References

Page 311 of 336

The Viewport widget feature clips oversized elements at the widget borders.

Restrictions:

► The Viewport widget feature is intended to be used in combination with containers or lists.

► The Viewport widget feature takes effect on the following model elements:

► Child widgets of the widget you added Viewport to are clipped inside the dimensions of the widget.

► The widget you added Viewport is clipped inside the dimensions of its parent view.

Table 12.169. Properties of the Viewport widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

12.11.8. 3D
Widget features in the 3D category are only available for 3D widgets.

12.11.8.1. Camera viewport

The Camera viewport widget feature defines the camera's drawing region within the scene graph.

Restrictions:

► The Camera viewport widget feature is available for camera.

Table 12.170. Properties of the Camera viewport widget feature

Property name Description

viewportX The x-origin of the viewport within the scene graph

viewportY The y-origin of the viewport within the scene graph

viewportWidth The viewport's width in pixels

viewportHeight The viewport's height in pixels

12.11.8.2. Ambient texture

The Ambient texture widget feature adds extended configuration values to a material.

Restrictions:

EB GUIDE Studio
Chapter 12. References

Page 312 of 336

► The Ambient texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 12.171. Properties of the Ambient texture widget feature

Property name Description

ambientTexture The file name of the texture

ambientTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.3. Diffuse texture

The Diffuse texture widget feature adds extended configuration values to a material.

Restrictions:

► The Diffuse texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 12.172. Properties of the Diffuse texture widget feature

Property name Description

diffuseTexture The file name of the texture

diffuseTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE Studio
Chapter 12. References

Page 313 of 336

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in diffuseTex-
ture, is rendered using sRGB color space.

Note that to use sRGB functionality, in the project center under Con-
figure > Profiles for the colorMode property select 32-bit sRGB
(=4) or 32-bit sRGB (Emulated) (=5).

12.11.8.4. Emissive texture

The Emissive texture widget feature adds extended configuration values to a material.

Restrictions:

► The Emissive texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 12.173. Properties of the Emissive texture widget feature

Property name Description

emissiveTexture The file name of the texture

emissiveTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE Studio
Chapter 12. References

Page 314 of 336

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.5. Light map texture

The Light map texture widget feature adds extended configuration values to a material.

Restrictions:

► The Light map texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 12.174. Properties of the Light map texture widget feature

Property name Description

lightMapTexture The file name of the texture

lightMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE Studio
Chapter 12. References

Page 315 of 336

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.6. Normal map texture

The Normal map widget feature adds extended configuration values to a material.

Restrictions:

► The Normal map texture widget feature is available for material, PBR Phong material, and PBR GGX
material.

Table 12.175. Properties of the Normal map widget feature

Property name Description

normalMapTexture The file name of the texture

normalMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapTextureAddress-

ModeV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

EB GUIDE Studio
Chapter 12. References

Page 316 of 336

Property name Description

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.7. Opaque texture

The Opaque texture widget feature adds extended configuration values to a material.

Restrictions:

► The Opaque texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 12.176. Properties of the Opaque texture widget feature

Property name Description

opaqueTexture The file name of the texture

opaqueTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

opaqueTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

opaqueFilterMode The filter mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.8. Reflection texture

EB GUIDE Studio
Chapter 12. References

Page 317 of 336

The Reflection texture widget feature adds extended configuration values to a material.

Restrictions:

► The Reflection texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 12.177. Properties of the Reflection texture widget feature

Property name Description

reflectionTopTexture The file name of the texture

reflectionBottomTexture The file name of the texture

reflectionLeftTexture The file name of the texture

reflectionRightTexture The file name of the texture

reflectionFrontTexture The file name of the texture

reflectionBackTexture The file name of the texture

reflectionFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

NOTE Reflection texture widget feature
EB GUIDE Studio displays the Reflection texture widget feature, only when an image file
is selected for all of the following properties:

► reflectionTopTexture

► reflectionBottomTexture

► reflectionLeftTexture

► reflectionRightTexture

► reflectionFrontTexture

► reflectionBackTexture

The image files must have the same size.

12.11.8.9. Specular texture

EB GUIDE Studio
Chapter 12. References

Page 318 of 336

The Specular texture widget feature adds extended configuration values to a material.

Restrictions:

► The Specular texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 12.178. Properties of the Specular texture widget feature

Property name Description

specularTexture The file name of the texture

specularTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

12.11.8.10. Tone mapping

The Tone mapping widget feature enables tone mapping, i.e. the technique to map a luminance value to a
limited range, for the scene graph.

Restrictions:

► The Tone mapping widget feature is available for the scene graph.1Photographic tone reproduction for digital images Reinhard, Erik et al. in "Proceedings of the 29th annual conference on Computer
graphics and interactive techniques" 2002, Pages 267-276

EB GUIDE Studio
Chapter 12. References

Page 319 of 336

Note that the Tone mapping widget feature implements the global tone mapping operator described by Erik
Reinhard et al. 1

Table 12.179. Properties of the Tone mapping widget feature

Property name Description

pureWhiteLuminance The smallest luminance value that is mapped to pure white. Note that
only values bigger or equal to 0 are valid.

Figure 12.3. Example for image without tone mapping (left) and with tone mapping (right)

12.11.9. Transformation
The widget features of the category Transformation modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

6. Rotation around x-axis

12.11.9.1. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

EB GUIDE Studio
Chapter 12. References

Page 320 of 336

Restrictions:

► Adding the Pivot widget feature automatically adds the Rotation, Scaling and Shearing widget features.

Table 12.180. Properties of the Pivot widget feature

Property name Description

pivotX The pivot point on the x-axis relative to parent widget

pivotY The pivot point on the y-axis relative to parent widget

pivotZ The pivot point on the z-axis relative to parent widget if widget is a scene graph

12.11.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 12.181. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX The rotation angle on the x-axis. This property only affects scene graph.

rotationAngleY The rotation angle on the y-axis. This property only affects scene graph.

rotationAngleZ The rotation angle on the z-axis

12.11.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 12.182. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX The scaling on the x-axis in percent

scalingY The scaling on the y-axis in percent

scalingZ The scaling on the z-axis in percent if widget is a scene graph

12.11.9.4. Shearing

The Shearing widget feature is used to distort widgets in the widget subtree.

EB GUIDE Studio
Chapter 12. References

Page 321 of 336

Table 12.183. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY The shearing amount of x-axis by y-axis

shearingXbyZ The shearing amount of x-axis by z-axis if widget is a scene graph

shearingYbyX The shearing amount of y-axis by x-axis

shearingYbyZ The shearing amount of y-axis by z-axis if widget is a scene graph

shearingZbyX The shearing amount of z-axis by x-axis if widget is a scene graph

shearingZbyY The shearing amount of z-axis by y-axis if widget is a scene graph

12.11.9.5. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 12.184. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX The translation on the x-axis

translationY The translation on the y-axis

translationZ The translation on the z-axis if widget is a scene graph

EB GUIDE Studio
Chapter 13. Installation of EB GUIDE Studio

Page 322 of 336

13. Installation of EB GUIDE Studio

13.1. Background information

13.1.1. Restrictions

NOTE Compatibility
EB GUIDE product line 6 is not compatible with any previous major version.

NOTE EB GUIDE Speech Extension
EB GUIDE Speech Extension is licensed as an add-on product that is enabled only when
purchased.

NOTE User rights
To install EB GUIDE on Windows 7 or Windows 10 systems, you require administrator rights.

13.1.2. System requirements
Observe the following settings:

Table 13.1. Recommended settings for EB GUIDE Studio

Hardware PC with quad core CPU with at least 2 GHz CPU
speed and 8 GB RAM

Operating system Windows 7, Windows 10

Screen resolution 1920 x 1080 pixels or more

Two separate monitors recommended

Software Microsoft .NET Framework 4.7

DirectX 11

EB GUIDE Studio
Chapter 13. Installation of EB GUIDE Studio

Page 323 of 336

Table 13.2. Recommended settings for EB GUIDE SDK

Development environment (IDE) Microsoft Visual Studio 2017 or newer

File integration CMake

13.2. Downloading EB GUIDE
To download the community edition of EB GUIDE, go to https://www.elektrobit.com/ebguide/try-eb-guide/ and
follow the instructions.

To download the enterprise edition of EB GUIDE, go to EB Command.

NOTE Activate your account
After ordering a product, you receive an email from sales department. Click the link in the
email. Follow the steps to create an account as directed in the email and in the browser,
then proceed to log in.

EB Command is the server from which you are going to download the EB GUIDE product line software. For
the instructions on how to download from EB Command, see https://www.elektrobit.com/support/download-
ing-from-eb-command/.

13.3. Installing EB GUIDE

Installing EB GUIDE

Prerequisite:

■ You downloaded the setup file studio_setup.exe.

■ You have administrator rights on the operating system.

Step 1
Double-click the setup file studio_setup.exe.

A dialog opens.

Step 2
Click Yes.

The Setup - EB GUIDE Studio dialog opens.

https://www.elektrobit.com/ebguide/try-eb-guide/
https://www.elektrobit.com/support/downloading-from-eb-command/
https://www.elektrobit.com/support/downloading-from-eb-command/

EB GUIDE Studio
Chapter 13. Installation of EB GUIDE Studio

Page 324 of 336

Step 3
Accept the license agreement and click Next.

Step 4
Select a directory for installation.

The default installation directory is C:/Program Files (x86)/Elektrobit/EB GUIDE <version>.

Step 5
Click Next.

A summary dialog displays all selected installation settings.

Step 6
To confirm the installation with the settings displayed, click Install.

The installation starts.

Step 7
To exit the setup click Finish.

You have installed EB GUIDE.

TIP Multiple installations
It is possible to install more than one EB GUIDE versions.

13.4. Uninstalling EB GUIDE

Uninstalling EB GUIDE

NOTE Removing EB GUIDE permanently
If you follow the instruction, you remove EB GUIDE permanently from your PC.

Prerequisite:

■ EB GUIDE is installed.

■ You have administrator rights on the operating system.

Step 1
On the Windows Start menu, click All Programs.

EB GUIDE Studio
Chapter 13. Installation of EB GUIDE Studio

Page 325 of 336

Step 2
On Elektrobit menu, click the version you want to uninstall.

Step 3
On the submenu, click Uninstall.

Glossary

Page 326 of 336

Glossary

#
3D graphic A 3D graphic is a virtual picture of a 3D scene. A 3D scene is a collection of 3D

models (meshes or shapes), materials, light sources, and cameras. Materials
define the visual appearance of 3D models through colors and textures and
the behavior under virtual lighting. A camera provides the view point from
where a virtual picture of the 3D scene is taken.

A
API Application programming interface

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

Glossary

Page 327 of 336

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE product line. It
consists of EB GUIDE GTF and EB GUIDE STF. It is required to run an EB
GUIDE model.

G
GL Graphical library

GUI Graphical user interface

H
HMI Human machine interface

L
library A library is a set of resources used in EB GUIDE Studio. Libraries that are

necessary for an EB GUIDE project are defined in the project center.

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

Glossary

Page 328 of 336

O
OS Operating system

P
PBR Physically-based rendering

profile In the project center, a profile is a set of specifications. In a profile you define li-
braries, messages and scenes for your project. During export of an EB GUIDE
model the data in the profile is written to the model.json configuration file.

project center All project-related functions are located in the project center, for example pro-
files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

R
resource A resource is a data package that is part of the EB GUIDE project. Examples

for resources are fonts, images, meshes. Resources are stored outside of the
EB GUIDE model, for example in files, depending on the operating system.

S
shared library A shared library, as opposed to a static library, can be loaded when preparing

a program for execution. On Windows platforms shared libraries are called
dynamic link libraries and have a .dll file extension. On Unix systems shared
libraries are called shared objects and have an .so file extension.

state A state defines the status of the state machine. States and state transitions
are modeled in state charts.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

Glossary

Page 329 of 336

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

Index

Page 330 of 336

Index
Symbols
.psd file format, 133
3D graphic, 35, 59, 217, 326

add, 132
import, 217
mesh, 59
supported formats, 35, 59

3D object, 35
3D widget, 59, 101
3D widgets, 35

reference, 279

A
absolute layout

reference, 305
action

entry action, 109
exit action, 109
transition, 120

alpha mask, 131
reference, 270

ambient light
reference, 279

ambient texture
reference, 311

animation, 38, 101, 130, 151, 210
entry animation, 38, 151
exit animation, 38, 151
reference, 271

API, 326 (see application programming interface)
application programming interface, 39
auto focus

reference, 291
auto-hide, 49

B
basic widget, 101
basic widgets

reference, 269

boolean
data type, 224

boolean list
data type, 225

border
reference, 290

box layout
reference, 305

button
user interface, 75

C
camera

reference, 279
camera viewport

reference, 311
child visibility selection

reference, 285
choice state, 112
color

data type, 225
coloration

reference, 290
command area

project editor, 47
command line, 75, 168, 169, 176
communication context, 39, 160, 326
component

docking, 49
undocking, 49

compound state, 111
condition

transition, 118
conditional script

data type, 225
configuration file, 253, 262
configure

display, 173
console (see command line)
constant curve

reference, 272
container

Index

Page 331 of 336

add, 127
reference, 276

content area
project center, 40
project editor, 45

copy
datapool item, 159
event, 156

D
data type

boolean, 224
boolean list, 225
color, 225
conditional script, 225
float, 226
font, 226
image, 226
integer, 227
list, 227
mesh, 224
mesh list, 224
string, 228

datapool, 52, 326
datapool item, 52, 159, 326

add, 158
change, 178
copy, 159
export, 174
import, 175
language support, 213
link, 161
list, 159
paste, 159
reference, 224
windowed list, 52

diffuse texture
reference, 312

directional light
reference, 280

display
configure, 173

docking
component, 49

dynamic state machine
add, 108, 185

E
EB GUIDE extension, 54
EB GUIDE GTF, 326
EB GUIDE GTF SDK, 326
EB GUIDE model, 53, 326

model element, 53
EB GUIDE Monitor, 50, 168, 177, 177, 178, 179, 183

command line, 183
datapool component, 178
datapool item, 178
event, 177
events component, 177
scripting component, 179
stand-alone, 183
tabs, 50

EB GUIDE product line, 326
EB GUIDE project, 53
EB GUIDE Script, 60, 160, 326

comment, 61
datapool access, 68
event, 71
expression, 63
foreign function call, 68
identifier, 61
if-then-else, 66
l-value, 64
list, 70
local variable, 65
namespace, 61
r-value, 65
scripted value, 74
standard library, 73
string formatting, 73
tutorial, 193
types, 62
while loop, 66
widget property, 69

Index

Page 332 of 336

EB GUIDE SDK, 326
EB GUIDE Studio, 326
EB GUIDE Studio SDK;, 326
EB GUIDE TF, 326
effect

widget feature, 290
ellipse

reference, 276
emissive texture

reference, 313
enabled

reference, 285
entry action, 113

state machine, 109
entry animation, 151

reference, 269
event, 54, 71

add, 156
copy, 156
fire, 177
paste, 156
reference, 253

event system, 54
exit action, 114

state machine, 109
exit animation, 151

reference, 269
export, 168

language-dependent text, 174

F
fast start curve

reference, 272
finger ID, 99
flick gesture

reference, 293
float

data type, 226
flow layout

reference, 306
focused

reference, 285

font, 57
bitmap font, 57, 58
data type, 226
opentype font, 57
truetype font, 57

G
gesture, 98

non-path gesture, 98
path gesture, 98
reference, 293, 298

gesture ID
reference, 295

GL, 327
grid layout

reference, 307
GUI, 327

H
HMI, 327
hold gesture

reference, 293

I
icon

user interface, 75
image

9-patch, 58
add, 124
data type, 227
reference, 277
supported formats, 58

import
language-dependent text, 175

instantiator, 203
add, 128
line template, 128, 277
reference, 277

integer
data type, 227

internal transition, 121

Index

Page 333 of 336

K
key pressed

reference, 298
key released

reference, 298
key status changed

reference, 299
key unicode

reference, 299

L
label, 126

add, 126
font, 126, 126
reference, 278

language
change, 213

language-dependent text, 213
export, 174
import, 175

layout margins
reference, 307

library, 327
add, 171

light map texture
reference, 314

line index
reference, 310

linear curve, 275
linear interpolation curve, 275
linear interpolation integer, 210
link

datapool item, 162
widget property, 137, 139

list, 159
create, 203
data type, 227

list index
reference, 310

list layout
reference, 308

long hold gesture

reference, 294

M
material

PBR GGX material, 281, 328
PBR Phong material, 282, 328
reference, 280, 281, 282

mesh, 59
data type, 224
reference, 280

mesh list
data type, 224

model element, 53, 327
delete, 115

model.json, 253
move in

reference, 300
move out

reference, 300
move over

reference, 301
moveable

reference, 301
multi-touch input, 99
multiple lines

reference, 286
multisampling, 268

N
navigation area

project center, 40
navigation component

project editor, 42
normal map texture

reference, 315

O
opaque texture

reference, 316
OS, 328

Index

Page 334 of 336

P
paste

datapool item, 159
event, 156

path gesture, 200
reference, 294, 295

pinch gesture
reference, 296

pivot
reference, 319

platform.json, 262
point light

reference, 282
pressed

references, 286
problems component, 166

project editor, 49
profile, 170, 328

add, 170
clone, 170

project center, 40, 328
content area, 40
navigation area, 40

project editor, 41, 328
command area, 47
content area, 45
navigation component, 42
problems component, 48
toolbox, 43
toolbox component, 43

properties component
command area, 44
project editor, 44

Q
quadratic curve

reference, 273

R
reader application, 39
rectangle

reference, 278

reflection texture
reference, 316

rename global, 166
renderer

configure, 173
resource, 328

.psd file format, 60
3D graphic, 59
font, 57
image, 58
mesh, 59

resource management, 57
rotary

reference, 301
rotate gesture

reference, 297
rotation

reference, 320

S
scale mode

reference, 309
scaling

reference, 320
scene configuration

reference, 266
scene graph, 35, 59, 132, 217

add, 132
reference, 283
texture, 217

scene graph node
reference, 283

script curve, 274
scripted value, 73, 160
selected

reference, 287
selection group

reference, 287
shared library, 328
shearing

reference, 320
shortcut

Index

Page 335 of 336

user interface, 75
simulation, 168
sinus curve

reference, 274
skin

add, 148
delete, 148
support, 56
switch, 148

slow start curve
reference, 273

specular texture
reference, 317

spinning
reference, 288

spot light
reference, 284

state, 80, 110, 111, 189, 328
choice state, 84
compound state, 80
entry action, 113
exit action, 114
final state, 83
history state, 85
initial state, 82
transition, 115
view state, 82

state machine, 79, 328
add, 108
comparison to UML, 96
delete, 110
dynamic state machine, 79
execution of state machine, 92
haptic state machine, 79
include state machine, 79, 97
logic state machine, 79
state, 80
transition, 88
UML 2.5 notation, 96

string
data type, 228

stroke

reference, 291

T
template

create, 153
delete, 155
use, 154

template index
reference, 310

template interface, 153
add property, 153
remove property, 153

text truncation
reference, 288

todo
EB GUIDE Script, 61

tone mapping
reference, 318

toolbox
project editor, 43

toolbox component
project editor, 43

touch gesture (see gesture)
touch input (see gesture)
touch lost

reference, 302
touch move

reference, 302
touch pressed

reference, 303
touch released

reference, 303
touch status changed

reference, 304
touched

reference, 289
transition, 88, 115, 328

action, 119
add, 115
condition, 118
internal, 121
move, 116

Index

Page 336 of 336

trigger, 117
translation

reference, 321
trigger

transition, 117

U
UI, 329
undocking

component, 49
user-defined focus

reference, 292
user-defined property, 140

V
view, 100, 329

add, 122
reference, 268

view template
reference, 268, 269

viewport
reference, 310

VTA, 151

W
widget, 100, 329

3D widget, 101
add, 123
animation, 101
basic, 101
delete, 134
group, 127
position, 135
resize, 136

widget feature, 102, 103, 104
add, 143
path gesture, 200
remove, 145

widget property, 102
add, 140
default property, 103
EB GUIDE Script, 69

link to datapool item, 139
link to widget property, 137
user-defined property, 103, 140
widget feature property, 103
widget template, 104

widget template, 104, 153, 155
widget template interface, 104
windowed list

datapool item, 52
writer application, 39

	EB GUIDE Studio
	Table of Contents
	1.About this documentation
	1.1. Target audience: Modelers
	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions
	1.5. Path conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Simulating the EB GUIDE model
	4.2.5. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Tutorial: Getting started
	5.1. Starting EB GUIDE
	5.2. Creating a project
	5.3. Modeling HMI behavior
	5.4. Modeling HMI appearance
	5.5. Starting the simulation

	6.Background information
	6.1. 3D graphics
	6.1.1. Supported 3D graphic formats
	6.1.2. Settings for 3D graphic files
	6.1.3. Import of a 3D graphic file

	6.2. Animations
	6.2.1. Animations for widgets
	6.2.2. Animations for view transitions

	6.3. Application programming interface between application and model
	6.4. Communication context
	6.5. Components of the graphical user interface
	6.5.1. Project center
	6.5.1.1. Navigation area
	6.5.1.2. Content area

	6.5.2. Project editor
	6.5.2.1. Navigation component
	6.5.2.2. Outline component
	6.5.2.3. Toolbox component
	6.5.2.4. Properties component
	6.5.2.5. Content area
	6.5.2.6. Events component
	6.5.2.7. Datapool component
	6.5.2.8. Assets component
	6.5.2.9. Command area
	6.5.2.10. Problems component

	6.5.3. Dockable component
	6.5.4. EB GUIDE Monitor

	6.6. Datapool
	6.6.1. Concept
	6.6.2. Datapool items
	6.6.3. Windowed lists

	6.7. EB GUIDE model and EB GUIDE project
	6.8. Event handling
	6.8.1. Event system
	6.8.2. Events

	6.9. Extensions
	6.9.1. EB GUIDE Studio extension
	6.9.2. EB GUIDE GTF extension

	6.10. Languages
	6.10.1. Display languages in EB GUIDE Studio
	6.10.2. Languages in the EB GUIDE model
	6.10.3. Export and import of language-dependent texts

	6.11. Skins
	6.12. Resource management
	6.12.1. Fonts
	6.12.1.1. Bitmap fonts

	6.12.2. Images
	6.12.2.1. 9-patch images

	6.12.3. Meshes for 3D graphics
	6.12.4. .psd file format

	6.13. Scripting language EB GUIDE Script
	6.13.1. Capabilities and areas of application
	6.13.2. Namespaces and identifiers
	6.13.3. Comments
	6.13.4. Types
	6.13.5. Expressions
	6.13.6. Constants and references
	6.13.7. Arithmetic and logic expressions
	6.13.8. L-values and r-values
	6.13.9. Local variables
	6.13.10. While loops
	6.13.11. If-then-else
	6.13.12. Foreign function calls
	6.13.13. Datapool access
	6.13.14. Widget properties
	6.13.15. Lists
	6.13.16. Events
	6.13.17. String formatting
	6.13.18. The standard library

	6.14. Scripted values
	6.15. Shortcuts, buttons and icons
	6.15.1. Shortcuts
	6.15.2. Command line options
	6.15.2.1. Command line options for Studio.Console.exe
	6.15.2.2. Command line options for Monitor.Console.exe

	6.15.3. Buttons
	6.15.4. Icons

	6.16. State machines and states
	6.16.1. State machines
	6.16.1.1. Haptic state machine
	6.16.1.2. Logic state machine
	6.16.1.3. Dynamic state machine

	6.16.2. States
	6.16.2.1. Compound state
	6.16.2.2. View state
	6.16.2.3. Initial state
	6.16.2.4. Final state
	6.16.2.5. Choice state
	6.16.2.6. History states

	6.16.3. Transitions
	6.16.4. Execution of a state machine
	6.16.5. EB GUIDE notation in comparison to UML notation
	6.16.5.1. Supported elements
	6.16.5.2. Not supported elements
	6.16.5.3. Deviations

	6.17. Touch input
	6.17.1. Non-path gestures
	6.17.2. Path gestures
	6.17.3. Input processing and gestures
	6.17.4. Multi-touch input

	6.18. Widgets
	6.18.1. View
	6.18.2. Widget categories
	6.18.3. Widget properties
	6.18.4. Widget templates
	6.18.5. Widget features
	6.18.5.1. Focus widget feature category
	6.18.5.2. List management widget feature category

	7.Modeling HMI behavior
	7.1. Modeling a state machine
	7.1.1. Adding a state machine
	7.1.2. Adding a dynamic state machine
	7.1.3. Defining an entry action for a state machine
	7.1.4. Defining an exit action for a state machine
	7.1.5. Deleting a state machine

	7.2. Modeling states
	7.2.1. Adding a state
	7.2.2. Adding a state to a compound state
	7.2.3. Adding a choice state
	7.2.4. Defining an entry action for a state
	7.2.5. Defining an exit action for a state
	7.2.6. Deleting a model element from a state machine

	7.3. Connecting states through transitions
	7.3.1. Adding a transition between two states
	7.3.2. Moving a transition
	7.3.3. Defining a trigger for a transition
	7.3.4. Adding a condition to a transition
	7.3.5. Adding an action to a transition
	7.3.6. Adding an internal transition to a state

	8.Modeling HMI appearance
	8.1. Working with widgets
	8.1.1. Adding a view
	8.1.2. Adding a basic widget to a view
	8.1.2.1. Adding a rectangle
	8.1.2.2. Adding an ellipse
	8.1.2.2.1. Editing an ellipse

	8.1.2.3. Adding an image
	8.1.2.4. Adding a label
	8.1.2.4.1. Changing the font of a label

	8.1.2.5. Adding a container
	8.1.2.6. Adding an instantiator
	8.1.2.7. Adding an animation
	8.1.2.8. Adding an alpha mask

	8.1.3. Adding a 3D widget to a view
	8.1.3.1. Adding a scene graph to a view

	8.1.4. Adding a .psd file to a view
	8.1.5. Deleting a widget from a view

	8.2. Working with widget properties
	8.2.1. Positioning a widget
	8.2.2. Resizing a widget
	8.2.3. Linking between widget properties
	8.2.4. Linking a widget property to a datapool item
	8.2.5. Adding a user-defined property to a widget
	8.2.5.1. Adding a user-defined property of type Function (): bool

	8.2.6. Renaming a user-defined property

	8.3. Extending a widget by widget features
	8.3.1. Adding a widget feature
	8.3.2. Removing a widget feature

	8.4. Adding a language to the EB GUIDE model
	8.4.1. Adding a language
	8.4.2. Deleting a language

	8.5. Working with skin support
	8.5.1. Adding a skin to the EB GUIDE model
	8.5.2. Adding skin support to a datapool item
	8.5.3. Switching between skins
	8.5.4. Deleting a skin

	8.6. Animating a view transition
	8.6.1. Adding an entry animation
	8.6.2. Adding an exit animation

	8.7. Re-using a widget
	8.7.1. Adding a template
	8.7.2. Defining the template interface
	8.7.3. Using a template
	8.7.4. Deleting a template

	9.Handling data
	9.1. Adding an event
	9.2. Adding a parameter to an event
	9.3. Addressing an event
	9.4. Deleting an event
	9.5. Adding a datapool item
	9.6. Editing datapool items of a list type
	9.7. Converting a property to a scripted value
	9.8. Establishing external communication
	9.9. Linking between datapool items
	9.10. Deleting a datapool item

	10.Handling a project
	10.1. Creating a project
	10.2. Opening a project
	10.2.1. Opening a project from the file explorer
	10.2.2. Opening a project within EB GUIDE Studio

	10.3. Renaming model elements
	10.4. Validating and simulating an EB GUIDE model
	10.4.1. Validating an EB GUIDE model
	10.4.1.1. Validating an EB GUIDE model using EB GUIDE Studio
	10.4.1.2. Validating an EB GUIDE model using command line

	10.4.2. Starting and stopping the simulation

	10.5. Exporting an EB GUIDE model
	10.5.1. Exporting an EB GUIDE model using EB GUIDE Studio
	10.5.2. Exporting an EB GUIDE model using command line

	10.6. Changing the display language of EB GUIDE Studio
	10.7. Configuring profiles
	10.7.1. Adding a profile
	10.7.2. Adding a library
	10.7.3. Configuring a scene

	10.8. Exporting and importing language-dependent texts
	10.8.1. Exporting language-dependent texts
	10.8.2. Importing language-dependent texts
	10.8.2.1. Importing language-dependent texts using EB GUIDE Studio
	10.8.2.2. Importing language-dependent texts using command line

	10.9. Working with EB GUIDE Monitor
	10.9.1. Firing an event in EB GUIDE Monitor
	10.9.2. Changing value of the datapool item with EB GUIDE Monitor
	10.9.3. Starting scripts in EB GUIDE Monitor
	10.9.3.1. Writing script files for EB GUIDE Monitor

	10.9.4. Starting EB GUIDE Monitor as a stand-alone application

	11.Tutorials
	11.1. Tutorial: Adding a dynamic state machine
	11.2. Tutorial: Modeling button behavior with EB GUIDE Script
	11.3. Tutorial: Modeling a path gesture
	11.4. Tutorial: Creating a list with dynamic content
	11.5. Tutorial: Making an ellipse move across the screen
	11.6. Tutorial: Adding a language-dependent text to a datapool item
	11.7. Tutorial: Working with a 3D graphic

	12.References
	12.1. Android events
	12.2. Datapool items
	12.3. Data types
	12.3.1. Mesh
	12.3.2. Boolean
	12.3.3. Color
	12.3.4. Conditional script
	12.3.5. Float
	12.3.6. Font
	12.3.7. Image
	12.3.8. Integer
	12.3.9. List
	12.3.10. String

	12.4. EB GUIDE Script
	12.4.1. EB GUIDE Script keywords
	12.4.2. EB GUIDE Script operator precedence
	12.4.3. EB GUIDE Script standard library
	12.4.3.1. EB GUIDE Script functions A
	12.4.3.1.1. abs
	12.4.3.1.2. absf
	12.4.3.1.3. acosf
	12.4.3.1.4. animation_before
	12.4.3.1.5. animation_beyond
	12.4.3.1.6. animation_cancel
	12.4.3.1.7. animation_cancel_end
	12.4.3.1.8. animation_cancel_reset
	12.4.3.1.9. animation_pause
	12.4.3.1.10. animation_play
	12.4.3.1.11. animation_reverse
	12.4.3.1.12. animation_running
	12.4.3.1.13. animation_set_time
	12.4.3.1.14. asinf
	12.4.3.1.15. atan2f
	12.4.3.1.16. atan2i
	12.4.3.1.17. atanf

	12.4.3.2. EB GUIDE Script functions C - H
	12.4.3.2.1. ceil
	12.4.3.2.2. changeDynamicStateMachinePriority
	12.4.3.2.3. character2unicode
	12.4.3.2.4. clearAllDynamicStateMachines
	12.4.3.2.5. color2string
	12.4.3.2.6. cosf
	12.4.3.2.7. deg2rad
	12.4.3.2.8. expf
	12.4.3.2.9. float2string
	12.4.3.2.10. floor
	12.4.3.2.11. focusNext
	12.4.3.2.12. focusPrevious
	12.4.3.2.13. format_float
	12.4.3.2.14. format_int
	12.4.3.2.15. getLineCount
	12.4.3.2.16. getTextHeight
	12.4.3.2.17. getTextLength
	12.4.3.2.18. getTextWidth
	12.4.3.2.19. has_list_window
	12.4.3.2.20. hsba2color

	12.4.3.3. EB GUIDE Script functions I - R
	12.4.3.3.1. int2float
	12.4.3.3.2. int2string
	12.4.3.3.3. isDynamicStateMachineActive
	12.4.3.3.4. language
	12.4.3.3.5. localtime_day
	12.4.3.3.6. localtime_hour
	12.4.3.3.7. localtime_minute
	12.4.3.3.8. localtime_month
	12.4.3.3.9. localtime_second
	12.4.3.3.10. localtime_weekday
	12.4.3.3.11. localtime_year
	12.4.3.3.12. log10f
	12.4.3.3.13. logf
	12.4.3.3.14. nearbyint
	12.4.3.3.15. popDynamicStateMachine
	12.4.3.3.16. powf
	12.4.3.3.17. pushDynamicStateMachine
	12.4.3.3.18. rad2deg
	12.4.3.3.19. rand
	12.4.3.3.20. shutdown
	12.4.3.3.21. rgba2color
	12.4.3.3.22. round

	12.4.3.4. EB GUIDE Script functions S - W
	12.4.3.4.1. seed_rand
	12.4.3.4.2. sinf
	12.4.3.4.3. skin
	12.4.3.4.4. sqrtf
	12.4.3.4.5. string2float
	12.4.3.4.6. string2int
	12.4.3.4.7. string2string
	12.4.3.4.8. substring
	12.4.3.4.9. system_time
	12.4.3.4.10. system_time_ms
	12.4.3.4.11. tanf
	12.4.3.4.12. trace_dp
	12.4.3.4.13. trace_string
	12.4.3.4.14. transformToScreenX
	12.4.3.4.15. transformToScreenY
	12.4.3.4.16. transformToWidgetX
	12.4.3.4.17. transformToWidgetY
	12.4.3.4.18. trunc
	12.4.3.4.19. widgetGetChildCount

	12.5. Events
	12.6. model.json configuration file
	12.6.1. Example model.json in EB GUIDE Studio

	12.7. platform.json configuration file
	12.7.1. Example platform.json in EB GUIDE Studio

	12.8. Scenes
	12.9. Touch screen types supported by EB GUIDE GTF
	12.10. Widgets
	12.10.1. View
	12.10.2. Basic widgets
	12.10.2.1. Alpha mask
	12.10.2.2. Animation
	12.10.2.2.1. Constant curves
	12.10.2.2.2. Fast start curves
	12.10.2.2.3. Slow start curves
	12.10.2.2.4. Quadratic curves
	12.10.2.2.5. Sinus curves
	12.10.2.2.6. Script curves
	12.10.2.2.7. Linear curves
	12.10.2.2.8. Linear interpolation curves

	12.10.2.3. Container
	12.10.2.4. Ellipse
	12.10.2.5. Image
	12.10.2.6. Instantiator
	12.10.2.7. Label
	12.10.2.8. Rectangle

	12.10.3. 3D widgets
	12.10.3.1. Ambient light
	12.10.3.2. Camera
	12.10.3.3. Directional light
	12.10.3.4. Material
	12.10.3.5. Mesh
	12.10.3.6. PBR GGX material
	12.10.3.7. PBR Phong material
	12.10.3.8. Point light
	12.10.3.9. Scene graph
	12.10.3.10. Scene graph node
	12.10.3.11. Spot light

	12.11. Widget features
	12.11.1. Common
	12.11.1.1. Child visibility selection
	12.11.1.2. Enabled
	12.11.1.3. Focused
	12.11.1.4. Multiple lines
	12.11.1.5. Pressed
	12.11.1.6. Selected
	12.11.1.7. Selection group
	12.11.1.8. Spinning
	12.11.1.9. Text truncation
	12.11.1.10. Touched

	12.11.2. Effect
	12.11.2.1. Border
	12.11.2.2. Coloration
	12.11.2.3. Stroke

	12.11.3. Focus
	12.11.3.1. Auto focus
	12.11.3.2. User-defined focus

	12.11.4. Gestures
	12.11.4.1. Flick gesture
	12.11.4.2. Hold gesture
	12.11.4.3. Long hold gesture
	12.11.4.4. Path gestures
	12.11.4.4.1. Gesture IDs

	12.11.4.5. Pinch gesture
	12.11.4.6. Rotate gesture

	12.11.5. Input handling
	12.11.5.1. Gestures
	12.11.5.2. Key pressed
	12.11.5.3. Key released
	12.11.5.4. Key status changed
	12.11.5.5. Key unicode
	12.11.5.6. Move in
	12.11.5.7. Move out
	12.11.5.8. Move over
	12.11.5.9. Moveable
	12.11.5.10. Rotary
	12.11.5.11. Touch lost
	12.11.5.12. Touch move
	12.11.5.13. Touch pressed
	12.11.5.14. Touch released
	12.11.5.15. Touch status changed

	12.11.6. Layout
	12.11.6.1. Absolute layout
	12.11.6.2. Box layout
	12.11.6.3. Flow layout
	12.11.6.4. Grid layout
	12.11.6.5. Layout margins
	12.11.6.6. List layout
	12.11.6.7. Scale mode

	12.11.7. List management
	12.11.7.1. Line index
	12.11.7.2. List index
	12.11.7.3. Template index
	12.11.7.4. Viewport

	12.11.8. 3D
	12.11.8.1. Camera viewport
	12.11.8.2. Ambient texture
	12.11.8.3. Diffuse texture
	12.11.8.4. Emissive texture
	12.11.8.5. Light map texture
	12.11.8.6. Normal map texture
	12.11.8.7. Opaque texture
	12.11.8.8. Reflection texture
	12.11.8.9. Specular texture
	12.11.8.10. Tone mapping

	12.11.9. Transformation
	12.11.9.1. Pivot
	12.11.9.2. Rotation
	12.11.9.3. Scaling
	12.11.9.4. Shearing
	12.11.9.5. Translation

	13.Installation of EB GUIDE Studio
	13.1. Background information
	13.1.1. Restrictions
	13.1.2. System requirements

	13.2. Downloading EB GUIDE
	13.3. Installing EB GUIDE
	13.4. Uninstalling EB GUIDE

	Glossary
	Index

