
EB GUIDE TF
User manual

Version 6.6.0.142803

EB GUIDE TF

Page 2 of 190

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

ProOSEK®, tresos®, and street director® are registered trademarks of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2018, Elektrobit Automotive GmbH.

EB GUIDE TF

Page 3 of 190

Table of Contents
1. About this documentation .. 11

1.1. Target audiences of the user documentation ... 11
1.1.1. System integrators .. 11
1.1.2. Application developers ... 11
1.1.3. Extension developers .. 12

1.2. Structure of user documentation ... 13
1.3. Typography and style conventions .. 13
1.4. Naming conventions ... 15

2. Safe and correct use .. 17
2.1. Intended use ... 17
2.2. Possible misuse ... 17

3. Support .. 18
4. Introduction to EB GUIDE ... 19

4.1. The EB GUIDE product line ... 19
4.2. EB GUIDE Studio .. 19

4.2.1. Modeling HMI behavior ... 19
4.2.2. Modeling HMI appearance ... 20
4.2.3. Handling data ... 20
4.2.4. Simulating the EB GUIDE model .. 20
4.2.5. Exporting the EB GUIDE model ... 21

4.3. EB GUIDE TF ... 21
5. Background information .. 23

5.1. Overview of EB GUIDE TF ... 23
5.1.1. Architecture of EB GUIDE GTF .. 23
5.1.2. Life cycle .. 26

5.1.2.1. Core life cycle .. 26
5.1.2.2. EB GUIDE model life cycle ... 28

5.1.3. Deployment structure of EB GUIDE TF .. 29
5.1.4. The GtfStartup.exe executable file ... 30

5.1.4.1. Command line options .. 30
5.2. EB GUIDE GTF core modules .. 32

5.2.1. Diagnostic module .. 32
5.2.2. Configuration module .. 32
5.2.3. DependencyResolver module .. 32

5.2.3.1. Interfaces ... 33
5.3. Interaction between HMI and applications ... 33

5.3.1. Event system .. 34
5.3.1.1. Event publication .. 34
5.3.1.2. Event receipt .. 35

EB GUIDE TF

Page 4 of 190

5.3.2. Datapool ... 35
5.3.2.1. Identifiers of datapool items .. 36
5.3.2.2. Synchronisation of datapool items ... 36
5.3.2.3. Windowed lists ... 37

5.4. Extensions to EB GUIDE TF .. 38
5.4.1. Model elements .. 38

5.4.1.1. Property descriptor ... 38
5.4.1.2. Property constant descriptor .. 39

5.4.2. Widgets .. 39
5.4.3. EB GUIDE Script functions .. 40

5.4.3.1. The EB GUIDE Script run-time stack ... 40
5.4.3.2. The foreign function interface .. 40

5.4.4. Rendering widgets .. 41
5.4.4.1. Rendering .. 41
5.4.4.2. Touch handling ... 42

5.5. Simulation with EB GUIDE Monitor ... 42
5.5.1. Communication with EB GUIDE TF .. 42

5.6. Android APK .. 42
5.6.1. System requirements ... 42
5.6.2. Features of the EB GUIDE TF APK ... 43
5.6.3. Description of the EB GUIDE TF APK files ... 43

5.6.3.1. Released APK and custom APK ... 44
5.6.3.2. Restrictions .. 45

5.6.4. Android life cycle management .. 45
5.6.5. Directory for EB GUIDE models ... 45
5.6.6. Android layout handling ... 46

5.7. Integration ... 46
5.7.1. EB GUIDE TF and C++ exceptions .. 46
5.7.2. EB GUIDE TF and POSIX signals ... 47
5.7.3. Read-only file system support .. 47

5.8. Programming concept .. 48
5.8.1. Observer patterns and callbacks .. 48
5.8.2. Functors ... 49

5.8.2.1. Initialization of functor templates .. 49
5.8.2.2. FunctorX value behavior ... 50
5.8.2.3. Argument binding with functor objects ... 50

5.8.3. Delegates ... 50
5.8.3.1. Creation of a delegate .. 51

5.9. Inter-process communication .. 52
6. Executing an EB GUIDE model on target framework .. 56

6.1. Configuring profiles .. 56
6.2. Exporting an EB GUIDE model ... 56

EB GUIDE TF

Page 5 of 190

6.3. Configuring the system start ... 56
7. Using the Configuration module .. 58

7.1. Retrieving an item from the Configuration module .. 58
7.2. Adding a scalar item to the Configuration module .. 59
7.3. Adding a list item to the Configuration module ... 59
7.4. Creating a path value using the Configuration module .. 60
7.5. Adding elements of a .json file to the Configuration module ... 61

8. Using the Diagnostic module .. 62
8.1. Logging messages ... 62
8.2. Redirecting your logged messages into a file ... 62

9. Using the DependencyResolver module .. 63
9.1. Retrieving an item from DependecyContainer ... 63
9.2. Retrieving all instances registered to an interface .. 64
9.3. Registering an instance to the container ... 65
9.4. Unregistering an instance ... 67
9.5. Registering a catalog ... 67
9.6. Unregistering a catalog .. 68
9.7. Creating a container .. 68

10. Using the EB GUIDE TF plugin mechanism ... 69
10.1. Creating an EB GUIDE TF plugin ... 69
10.2. Adding an EB GUIDE TF plugin ... 70
10.3. Writing an EB GUIDE TF plugin ... 72
10.4. Copying the resulting .dll file ... 72
10.5. Starting the simulation with GtfStartup.exe .. 73

11. Extending EB GUIDE Script with foreign functions .. 74
12. Adding widgets and widget features .. 75

12.1. Example of the extended container widget .. 75
12.2. Example of the widget feature for focus behavior of rectangles ... 75

13. Using and creating an Android APK for EB GUIDE TF .. 76
13.1. Executing an exported EB GUIDE model on Android ... 76
13.2. Creating your own Android APK using the template ... 77
13.3. Creating your own Android APK from scratch .. 78

14. Evaluating memory usage ... 80
15. Creating a read-only file system (RomFS) container ... 81
16. References ... 83

16.1. Android events ... 83
16.2. Datapool items ... 84
16.3. Data types ... 84

16.3.1. Mesh .. 84
16.3.2. Boolean .. 84
16.3.3. Color .. 85
16.3.4. Conditional script ... 85

EB GUIDE TF

Page 6 of 190

16.3.5. Float ... 86
16.3.6. Font .. 86
16.3.7. Image ... 86
16.3.8. Integer .. 87
16.3.9. List ... 87
16.3.10. String .. 88

16.4. EB GUIDE Script ... 89
16.4.1. EB GUIDE Script keywords ... 89
16.4.2. EB GUIDE Script operator precedence ... 90
16.4.3. EB GUIDE Script standard library .. 90

16.4.3.1. EB GUIDE Script functions A .. 91
16.4.3.1.1. abs ... 91
16.4.3.1.2. absf ... 91
16.4.3.1.3. acosf ... 91
16.4.3.1.4. animation_before ... 91
16.4.3.1.5. animation_beyond ... 92
16.4.3.1.6. animation_cancel ... 92
16.4.3.1.7. animation_cancel_end ... 92
16.4.3.1.8. animation_cancel_reset ... 92
16.4.3.1.9. animation_pause ... 93
16.4.3.1.10. animation_play ... 93
16.4.3.1.11. animation_reverse .. 93
16.4.3.1.12. animation_running ... 93
16.4.3.1.13. animation_set_time ... 94
16.4.3.1.14. asinf ... 94
16.4.3.1.15. atan2f ... 94
16.4.3.1.16. atan2i ... 94
16.4.3.1.17. atanf ... 95

16.4.3.2. EB GUIDE Script functions C - H .. 95
16.4.3.2.1. ceil ... 95
16.4.3.2.2. changeDynamicStateMachinePriority 95
16.4.3.2.3. character2unicode ... 96
16.4.3.2.4. clearAllDynamicStateMachines ... 96
16.4.3.2.5. color2string ... 96
16.4.3.2.6. cosf ... 96
16.4.3.2.7. deg2rad ... 97
16.4.3.2.8. expf ... 97
16.4.3.2.9. float2string ... 97
16.4.3.2.10. floor ... 97
16.4.3.2.11. focusNext ... 98
16.4.3.2.12. focusPrevious ... 98
16.4.3.2.13. format_float ... 98

EB GUIDE TF

Page 7 of 190

16.4.3.2.14. format_int ... 99
16.4.3.2.15. getLineCount ... 100
16.4.3.2.16. getTextHeight ... 100
16.4.3.2.17. getTextLength ... 100
16.4.3.2.18. getTextWidth ... 101
16.4.3.2.19. has_list_window ... 101
16.4.3.2.20. hsba2color ... 101

16.4.3.3. EB GUIDE Script functions I - R .. 102
16.4.3.3.1. int2float ... 102
16.4.3.3.2. int2string ... 102
16.4.3.3.3. isDynamicStateMachineActive .. 102
16.4.3.3.4. language ... 103
16.4.3.3.5. localtime_day ... 103
16.4.3.3.6. localtime_hour ... 103
16.4.3.3.7. localtime_minute ... 103
16.4.3.3.8. localtime_month ... 104
16.4.3.3.9. localtime_second ... 104
16.4.3.3.10. localtime_weekday ... 104
16.4.3.3.11. localtime_year .. 104
16.4.3.3.12. log10f ... 104
16.4.3.3.13. logf ... 105
16.4.3.3.14. nearbyint ... 105
16.4.3.3.15. popDynamicStateMachine .. 105
16.4.3.3.16. powf ... 105
16.4.3.3.17. pushDynamicStateMachine .. 106
16.4.3.3.18. rad2deg ... 106
16.4.3.3.19. rand ... 106
16.4.3.3.20. shutdown ... 106
16.4.3.3.21. rgba2color ... 107
16.4.3.3.22. round ... 107

16.4.3.4. EB GUIDE Script functions S - W .. 107
16.4.3.4.1. seed_rand ... 107
16.4.3.4.2. sinf ... 107
16.4.3.4.3. skin ... 108
16.4.3.4.4. sqrtf ... 108
16.4.3.4.5. string2float ... 108
16.4.3.4.6. string2int ... 109
16.4.3.4.7. string2string ... 109
16.4.3.4.8. substring ... 109
16.4.3.4.9. system_time ... 110
16.4.3.4.10. system_time_ms ... 110
16.4.3.4.11. tanf ... 110

EB GUIDE TF

Page 8 of 190

16.4.3.4.12. trace_dp ... 110
16.4.3.4.13. trace_string ... 111
16.4.3.4.14. transformToScreenX ... 111
16.4.3.4.15. transformToScreenY ... 111
16.4.3.4.16. transformToWidgetX ... 111
16.4.3.4.17. transformToWidgetY ... 112
16.4.3.4.18. trunc ... 112
16.4.3.4.19. widgetGetChildCount ... 112

16.5. Events ... 113
16.6. model.json configuration file .. 113

16.6.1. Example model.json in EB GUIDE Studio ... 120
16.7. platform.json configuration file .. 122

16.7.1. Example platform.json in EB GUIDE Studio .. 124
16.8. Scenes .. 126
16.9. Touch screen types supported by EB GUIDE GTF ... 128
16.10. Widgets ... 128

16.10.1. View ... 128
16.10.2. Basic widgets .. 129

16.10.2.1. Alpha mask .. 130
16.10.2.2. Animation ... 131

16.10.2.2.1. Constant curves ... 132
16.10.2.2.2. Fast start curves .. 132
16.10.2.2.3. Slow start curves ... 133
16.10.2.2.4. Quadratic curves .. 133
16.10.2.2.5. Sinus curves .. 134
16.10.2.2.6. Script curves .. 134
16.10.2.2.7. Linear curves ... 135
16.10.2.2.8. Linear interpolation curves .. 135

16.10.2.3. Container ... 136
16.10.2.4. Ellipse .. 136
16.10.2.5. Image ... 137
16.10.2.6. Instantiator ... 137
16.10.2.7. Label .. 138
16.10.2.8. Rectangle ... 138

16.10.3. 3D widgets .. 139
16.10.3.1. Ambient light .. 139
16.10.3.2. Camera .. 139
16.10.3.3. Directional light ... 140
16.10.3.4. Material .. 140
16.10.3.5. Mesh .. 140
16.10.3.6. PBR GGX material .. 141
16.10.3.7. PBR Phong material ... 142

EB GUIDE TF

Page 9 of 190

16.10.3.8. Point light ... 142
16.10.3.9. Scene graph ... 143
16.10.3.10. Scene graph node .. 143
16.10.3.11. Spot light .. 144

16.11. Widget features .. 144
16.11.1. Common ... 145

16.11.1.1. Child visibility selection .. 145
16.11.1.2. Enabled .. 145
16.11.1.3. Focused ... 145
16.11.1.4. Multiple lines ... 146
16.11.1.5. Pressed .. 146
16.11.1.6. Selected ... 147
16.11.1.7. Selection group ... 147
16.11.1.8. Spinning ... 148
16.11.1.9. Text truncation .. 148
16.11.1.10. Touched .. 149

16.11.2. Effect .. 150
16.11.2.1. Border .. 150
16.11.2.2. Coloration ... 150
16.11.2.3. Stroke ... 151

16.11.3. Focus .. 151
16.11.3.1. Auto focus .. 151
16.11.3.2. User-defined focus .. 152

16.11.4. Gestures ... 153
16.11.4.1. Flick gesture ... 153
16.11.4.2. Hold gesture ... 153
16.11.4.3. Long hold gesture ... 154
16.11.4.4. Path gestures ... 154

16.11.4.4.1. Gesture IDs ... 155
16.11.4.5. Pinch gesture .. 156
16.11.4.6. Rotate gesture .. 157

16.11.5. Input handling .. 158
16.11.5.1. Gestures ... 158
16.11.5.2. Key pressed ... 158
16.11.5.3. Key released .. 158
16.11.5.4. Key status changed ... 159
16.11.5.5. Key unicode .. 159
16.11.5.6. Move in .. 160
16.11.5.7. Move out .. 160
16.11.5.8. Move over .. 161
16.11.5.9. Moveable .. 161
16.11.5.10. Rotary .. 161

EB GUIDE TF

Page 10 of 190

16.11.5.11. Touch lost ... 162
16.11.5.12. Touch move .. 162
16.11.5.13. Touch pressed .. 163
16.11.5.14. Touch released .. 163
16.11.5.15. Touch status changed .. 164

16.11.6. Layout ... 165
16.11.6.1. Absolute layout ... 165
16.11.6.2. Box layout .. 165
16.11.6.3. Flow layout ... 166
16.11.6.4. Grid layout .. 167
16.11.6.5. Layout margins ... 167
16.11.6.6. List layout ... 168
16.11.6.7. Scale mode .. 169

16.11.7. List management ... 170
16.11.7.1. Line index ... 170
16.11.7.2. List index .. 170
16.11.7.3. Template index .. 170
16.11.7.4. Viewport ... 170

16.11.8. 3D ... 171
16.11.8.1. Camera viewport ... 171
16.11.8.2. Ambient texture ... 171
16.11.8.3. Diffuse texture ... 172
16.11.8.4. Emissive texture .. 173
16.11.8.5. Light map texture .. 174
16.11.8.6. Normal map texture ... 175
16.11.8.7. Opaque texture ... 176
16.11.8.8. Reflection texture .. 176
16.11.8.9. Specular texture .. 177
16.11.8.10. Tone mapping ... 178

16.11.9. Transformation ... 179
16.11.9.1. Pivot ... 179
16.11.9.2. Rotation .. 180
16.11.9.3. Scaling ... 180
16.11.9.4. Shearing ... 180
16.11.9.5. Translation .. 181

Glossary ... 182
Index .. 186

EB GUIDE TF
Chapter 1. About this documentation

Page 11 of 190

1. About this documentation

1.1. Target audiences of the user documentation
This chapter informs you about target audiences involved in an EB GUIDE project and the tasks they usually
perform.

You can categorize your tasks and find the documentation relevant to you.

The following roles exist:

► section 1.1.1, “System integrators”

► section 1.1.2, “Application developers”

► section 1.1.3, “Extension developers”

1.1.1. System integrators
System integrators make sure that all the different system parts are integrated into one complete and working
system.

System integrators perform the following tasks:

► Ensure that the different project parts are executed together

► Configure required modules and file system structures

► Integrate customer specific EB GUIDE GTF extensions and HMI applications

► Carry out settings to ensure system integrity within EB GUIDE Studio and on the target device

► Carry responsibility for the project setup in EB GUIDE Studio, for example, create a shared workspace in
projects involving different people working together on one EB GUIDE model

System integrators have the profound knowledge of the following:

► The system, including the target framework used and its restrictions

► The generating mechanism that ensures compatibility of an EB GUIDE model and the target system

1.1.2. Application developers
Application developers write source code for HMI applications, such as a CD player or a radio. Such applications
add distinct functionality to the system, for example control of hardware components.

EB GUIDE TF
Chapter 1. About this documentation

Page 12 of 190

Application developers perform the following tasks:

► Program additional functionality that is required by the system

► Write code to interface with EB GUIDE TF, provide application data to the HMI, and provide communication
with the HMI

► Consider the required communication data between the HMI model and its application

► Define datapool items and events

► Determine the flow of data between HMI model and application

► Communicate with modelers to know what data can be provided by hardware devices and how to use the
different EB GUIDE GTF communication mechanisms

Application developers have the profound knowledge of the following:

► C++, to know how to compile for the existing EB GUIDE TF C++ interfaces

► All programming languages used, as applications can be written in any programming language

► The specifications and requirements of the domain

1.1.3. Extension developers

There may be missing features that cannot be provided through simply modeling an EB GUIDE Studio model
or adding customer-specific applications. This is when new widgets or a specific renderer may be required.

Extension developers perform the following tasks:

► Communicate with members of the EB GUIDE development team through chapter 3, “Support“ to find out
if there are already solutions to problems

► Work on the framework and develop new features, EB GUIDE Studio extensions or EB GUIDE GTF ex-
tensions

► Write code for additional modules for the following items:

► Existing EB GUIDE TF modules such as widgets or the shaders

► Existing EB GUIDE Studio extensions such as additional toolbar buttons

Extension developers have the profound knowledge of the following:

► EB GUIDE interfaces

► Interaction between the central modules

► Structure of the framework's data

EB GUIDE TF
Chapter 1. About this documentation

Page 13 of 190

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
The following pictographs and signal words are used in this documentation to indicate important information.

The signal word WARNING indicates information that is vital for the success of the configuration.

WARNING Source and kind of problem
What can happen to the software?

What are the consequences of the problem?

How does the user avoid the problem?

The signal word NOTE indicates important information on a subject.

EB GUIDE TF
Chapter 1. About this documentation

Page 14 of 190

NOTE Important information
Gives important information on a subject.

The signal word TIP provides helpful hints, tips and shortcuts.

TIP Helpful hints
Gives helpful hints

Throughout the documentation you will find words and phrases that are displayed in bold or in italic or mono-
spaced font.

To find out what these conventions mean, see the following examples.

All default text is written in Arial Regular font.

Font Description Example

Arial italics to emphasize new or important terms The basic building blocks of a configuration are
module configurations.

Arial boldface for GUI elements and keyboard keys 1. In the Project drop-down list box, select
Project_A.

2. Press the Enter key.

Monospaced font
(Courier)

for file names, directory names and
chapter names

Put your script in the function_name/abcdi-
rectory.

Monospaced font
(Courier)

for user input, code, and file directo-
ries

CC_FILES_TO_BUILD =(PROJECT_PATH)/

source/network/can_node.c CC_-

FILES_TO_BUILD += $(PROJECT_PATH)/

source/network/can_config.c

The module calls the BswM_Dcm_Re-
questSessionMode() function.

For the project name, enter Project_Test.

Square brackets
[]

to denote optional parameters; for
command syntax with optional para-
meters

insertBefore [<opt>]

Curly brackets {} to denote mandatory parameters; for
command syntax with mandatory pa-
rameters

insertBefore {<file>}

EB GUIDE TF
Chapter 1. About this documentation

Page 15 of 190

Font Description Example

Three dots … to indicate further parameters; for
command syntax with multiple para-
meters

insertBefore [<opt>…]

A vertical bar | to indicate all available parameters;
for command syntax in which you se-
lect one of the available parameters

allowinvalidmarkup {on|off}

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.6

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH/platform/<platform name>.

For example:

C:/Program Files/Elektrobit/EB GUIDE Studio 6.6/platform/win32

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

EB GUIDE TF
Chapter 1. About this documentation

Page 16 of 190

C:/Users/[user name]/Documents/EB GUIDE 6.6/projects/

► The directory to which you export your EB GUIDE model is referred to as $EXPORT_PATH.

EB GUIDE TF
Chapter 2. Safe and correct use

Page 17 of 190

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by Elektrobit Automotive GmbH to implement human
machine interfaces in safety-relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety-relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact Elektrobit Automotive GmbH for clarification at chapter 3, “Support“.

EB GUIDE TF
Chapter 3. Support

Page 18 of 190

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click Help. The version number is located in the lower right corner of
the dialog.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 19 of 190

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE prod-
uct line provides tooling and platform for graphical or speech user interfaces. The EB GUIDE product line is
intended to be used in projects for infotainment head units, cluster instruments and selected industry applica-
tions. Main use cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. EB GUIDE TF is available for
development PCs and for different embedded platforms.

The EB GUIDE model that is created with EB GUIDE Studio and the exported EB GUIDE model that is executed
on EB GUIDE TF are completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

State machines
A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

States
States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 20 of 190

4.2.2. Modeling HMI appearance
In EB GUIDE Studio you define the graphical user interface and the speech user interface of the EB GUIDE
model.

Widgets
To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that
define the look. They are mainly used to display information, for example text labels or images. Widgets
also allow users to control system behavior, for example buttons or sliders. Multiple widgets are assembled
to a structure, which is called view.

Spidgets
To create a speech user interface EB GUIDE Studio offers spidgets. Spidgets are used to specify the
fundamental parts of a speech dialog. Speech recognition as user input and speech synthesis as system
output. A prompt spidget allows the modeling of text that is played through a text-to-speech synthesizer
(TTS). A command spidget allows the modeling of grammars that describe what a speech recognizer
understands. Related spidgets are grouped together through model elements. This group is called talk.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

Datapool
The datapool is an embedded database that holds all data to be displayed and further internal information.
Datapool items store and exchange data.

Event system
Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

Application software can access events and the datapool through the API.

4.2.4. Simulating the EB GUIDE model
With EB GUIDE Studio you can test the functionality of your EB GUIDE model during simulation. You start the
simulation with a mouse-click and can immediately experience the look and feel of your EB GUIDE model.

You interact with simulation using input devices like mouse, keyboard, or touch screen.

You can also control your EB GUIDE model with EB GUIDE Monitor and do the following:

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 21 of 190

► Change the displayed data by changing values of datapool items

► Simulate user input by firing events

► Track all changes in the log

► Start scripts

You can also use EB GUIDE Monitor as a stand-alone application.

4.2.5. Exporting the EB GUIDE model
To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
EB GUIDE TF consists of the GtfStartup executable file and a set of libraries, which are required to execute
an EB GUIDE model.

Depending on the project type selected in EB GUIDE Studio you execute:

► EB GUIDE GTF

EB GUIDE Graphics Target Framework is the run-time environment executing a graphical HMI.

► EB GUIDE STF

EB GUIDE Speech Target Framework is the run-time environment executing speech functionality in the
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

EB GUIDE TF
Chapter 4. Introduction to EB GUIDE

Page 22 of 190

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstrac-
tion to the real graphic system on your hardware. EB GUIDE TF supports various renderers for different
platforms.

► Audio abstraction

The speech user interface requires access to audio hardware. The audio abstraction provides access to
microphones and speakers. EB GUIDE STF implements speech recognition and text-to-speech synthesis.
For this purpose EB GUIDE STF incorporates third-party speech engines.

EB GUIDE TF
Chapter 5. Background information

Page 23 of 190

5. Background information

5.1. Overview of EB GUIDE TF
Within the EB GUIDE product line, EB GUIDE GTF is responsible for the following:

► EB GUIDE GTF executes the content of an exported EB GUIDE model.

► EB GUIDE GTF renders the previews of the views and widgets within EB GUIDE Studio.

Extending EB GUIDE Studio with custom widgets and features also means extending EB GUIDE GTF.

EB GUIDE Studio provides input to EB GUIDE GTF in form of the binary model description files that were
generated during export. EB GUIDE GTF runs the EB GUIDE model for the simulation or runs the exported
EB GUIDE model on a dedicated target platform. A target platform for EB GUIDE GTF is typically defined by
concrete target architecture, operating system and graphics API.

You can connect EB GUIDE Monitor to EB GUIDE GTF which allows observation, manipulation and testing of
an EB GUIDE model running on EB GUIDE GTF.

5.1.1. Architecture of EB GUIDE GTF

EB GUIDE GTF is based on a microkernel architecture. This means EB GUIDE GTF consists of a core with
base functionality and plugins that enable the execution of EB GUIDE models.

EB GUIDE TF
Chapter 5. Background information

Page 24 of 190

Figure 5.1. EB GUIDE GTF overview

EB GUIDE GTF is embedded in an environment containing an operating system, a graphics API and project-
specific middleware.

The core includes the following:

► Abstraction of the dedicated operating system that is called Operating System Abstraction Layer (OSAL)

► The Launcher interface that launches EB GUIDE GTF

► DependencyResolver, a dependency resolving mechanism

► The PluginLoader interface that loads plugins

► The Configuration interface that accesses configuration items

► The ConfigImporter interface that loads configuration files

► The CommandLine interface that parses given command line parameters

► Interfaces for diagnostic purposes

Applications are plugins for EB GUIDE GTF. This means the core loads applications at the start-up before the
start of an EB GUIDE model is initiated. Applications are bound to the global accessible API and cannot directly
access EB GUIDE model content.

Extensions are plugins for an EB GUIDE model. Extensions are initiated during the EB GUIDE model start-up.
Extensions can access model-specific content directly and extend the EB GUIDE model content, for example
using widgets, features or EB GUIDE script functions.

EB GUIDE TF
Chapter 5. Background information

Page 25 of 190

The HMI model in this context is the summary of all components that are necessary to run an exported EB
GUIDE model. This includes components that manage the user interface, the data and the execution of the
dynamic behavior of an EB GUIDE model.

Figure 5.2. HMI model components

The execution components take care of the dynamic behavior of an EB GUIDE model. This means the exe-
cution of the following:

► State machine

► EB GUIDE scripts that are part of the datapool, state machine or widget tree

► Animations that describe property changes within the widget tree

► Parts of an EB GUIDE model that are described using languages and skins

► EB GUIDE models for which the ModelRunner is responsible

The data components take care of data definition and management.

EB GUIDE GTF considers the following items as data items of an EB GUIDE model:

► Datapool items

► Events that are managed using EventSystem

► Resources

► Scenes built up from views and widget trees

► Widget properties

EB GUIDE TF
Chapter 5. Background information

Page 26 of 190

The user interface components take care of functions required to support graphical user interfaces. These
components enable EB GUIDE GTF to perform the following:

► The TextEngine component supports processing and rendering of internationalized and localized texts.

► The Decoder component loads and decodes various types of resources, for example images as PNG,
JPEG.

► The Renderer component creates the visual representation using the available EB GUIDE GTF graphics
abstraction layer.

5.1.2. Life cycle

EB GUIDE TF has two different life cycle concepts:

► The core life cycle drives the start-up of the framework. It provides basic functionality for communication,
extension, integration, platform abstraction, tracing, and configuration.

► The EB GUIDE model life cycle drives the start-up of an EB GUIDE model. It provides functionality for
model elements, model processing, model diagnosis, and scene rendering.

The EB GUIDE GTF core is responsible for preparing core plugins to run EB GUIDE models.

5.1.2.1. Core life cycle

The core life cycle starts when calling the main interface of EB GUIDE GTF that is part of Launcher. This call
blocks for the whole life cycle of EB GUIDE GTF.

EB GUIDE TF
Chapter 5. Background information

Page 27 of 190

Figure 5.3. EB GUIDE GTF life cycle

The life cycle can be split into three phases.

1. Core start-up phase

2. Run phase

3. Shutdown phase

The core start-up phase is split into the following:

1. Load of the configuration file for the platform

2. Load of the plugins that are configured for the core

3. Start of the Runnable interface implementations

For more information, see section 16.7, “platform.json configuration file”.

The Runnable interface is a part of the Launcher component and allows the participation in the core and
EB GUIDE model life cycles.

The core shutdown phase is the opposite of the start-up phase and includes the following:

1. Stop of the Runnable interface implementations

2. Unload of the plugins

3. Unload of the configuration file for the platform

EB GUIDE TF
Chapter 5. Background information

Page 28 of 190

In between the start-up and shutdown phases, EB GUIDE GTF is running. This means that the EB GUIDE
model life cycle is driven here and will stay active up until the core shuts down. For more information, see
section 16.4.3, “EB GUIDE Script standard library”.

5.1.2.2. EB GUIDE model life cycle

Each loaded EB GUIDE model has its own life cycle. The life cycle consists of four successive predefined
stages and custom stages, see figure below.

Figure 5.4. Life cycle of an EB GUIDE model with predefined and custom stages

The EB GUIDE TF SDK defines four predefined stages:

► Prepared stage: Announcement of widget descriptions etc.

► Initialized stage: Information about configurations

► Loaded stage: Registration of previously announced script functions and preparation for running the state
machine

► Running stage: Decoding of resources and the state machine is running

Specific actions are executed during each predefined stage. When the life cycle of the EB GUIDE model enters
the next stage, all executed actions of the previous stage are lost.

Each predefined stage has an intermediary internal stage, where the same actions are executed as in the
current stage. Thus the executed actions are not lost in the internal stage when the model life cycle enters a
new stage. For example in the internal Running stage the EB GUIDE model is already running and the actions
are already executed. The internal stages function as a backup and therefore the EB GUIDE model cannot fail.

You can add a custom stage at any point during the model life cycle. To see how to add a custom stage, visit
our website https://www.elektrobit.com/ebguide/learn/resources/ and go to the section Downloads. Click on
EB GUIDE examples, download the EB_GUIDE_Examples file and have a look at the ModelStageExample
example.

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 5. Background information

Page 29 of 190

5.1.3. Deployment structure of EB GUIDE TF

EB GUIDE TF consists of several software modules. Depending on the customer project some of them are
essential and others are optional. You as a system integrator can add additional EB GUIDE GTF extensions,
for example widgets which are not part of EB GUIDE TF.

The default delivery of EB GUIDE TF runs on operating systems that support shared libraries, for example
Windows 10, Linux or QNX. EB GUIDE TF is divided into the following components to fit most customer projects
out of the box:

► GtfStartup.exe

The executable file which contains platform-specific start-up code and interprets the model.json config-
uration file.GtfStartup.exe is configurable with parameters.

► GtfCore

Shared library which contains all mandatory modules for each GUI project based on EB GUIDE Studio
and EB GUIDE TF.

► GtfRuntime

Shared library which contains all mandatory functionality for EB GUIDE GTF based projects.

► GtfGui

Shared library that is responsible for text-/resource handling and is required for EB GUIDE GTF based
GUI projects.

► GtfGuiOpenGLES20

Shared library which contains the OpenGL ES 2.0 API renderer implementation.

► GtfGuiOpenGLES3

Shared library which contains the OpenGL ES 3.0 API renderer implementation.

► GtfGuiDirectX11

Shared library which contains the DirectX 11 API renderer implementation.

► GtfService

Shared library which is required to establish TCP connection to an EB GUIDE TF instance, used by for
example EB GUIDE Monitor or GtfIpc.

► GtfIpc

Shared library which extends GtfService and provides possibility for the inter-process communication
(IPC).

► GtfFileOutput

EB GUIDE TF
Chapter 5. Background information

Page 30 of 190

Shared library which is used by the trace logging system for file output.

► GtfProfilingOutput

Shared library which is used by the trace logging system for output of profiling data.

► GtfStderrOutput

Shared library which is used by the trace logging system for output to the standard streams.

► GtfVsDebugOutput

Shared library which is used by the trace logging system for output inside of the developement IDE.

5.1.4. The GtfStartup.exe executable file

The GtfStartup.exe executable file provides platform-specific start-up code and interprets the model.json
and platform.json configuration files. Additional functionality is available for specific platforms, for example
command line parameter handling or detection of other EB GUIDE TF instances.

5.1.4.1. Command line options

The following table lists command line options available in EB GUIDE GTF for GtfStartup.exe and explains
their meaning. Undefined commands are ignored.

The general syntax for a command line is as follows: GtfStartup.exe <option>

Table 5.1. Command line options

Option Description

--version Optional parameter. Displays the EB GUIDE GTF
version.

--romfs $ROMFS_FILE_PATH $ROMFS_ROOT_-
FOLDER

Optional parameter. In order to run, EB GUIDE GTF
needs a file system. Therefore, if the target device
has no file system available, RomFS file system
(RomFS) is used. If specified, the given RomFS is
loaded. $ROMFS_FILE_PATH is the path to RomFS
container file and $ROMFS_ROOT_FOLDER is the root
location in the RomFS file system.

$MODEL_JSON_PATH Path to the model.json configuration file

You can specify either of the following:

EB GUIDE TF
Chapter 5. Background information

Page 31 of 190

Option Description

► Only the directory where the file is stored. In
this case the file with the name model.json is
used.

► Only the file name, if the file is stored in the di-
rectory in which you called GtfStartup.exe.

► The directory where the file is stored and the file
name, if the file name is not model.json.

$PLATFROM_JSON_PATH Path to the platform.json configuration file

You can specify either of the following:

► Only the directory where the file is stored. In this
case the file with the name platform.json is
used.

► Only the file name, if the file is stored in the di-
rectory in which you called GtfStartup.exe.

► The directory where the file is stored and the file
name, if the file name is not platform.json.

> <output_file.txt> Redirects the output messages to a .txt file. The
output file is created in the directory in which GtfS-
tartup.exe was called.

> <output_file.txt> 2>&1 Redirects error messages to a .txt file. The output
file is created in the directory in which GtfStart-
up.exe was called.

Note that the output messages are not displayed after you entered a command line option. To see the output
messages, use the > redirect option.

Example 5.1.
Usage of command line options

To start an EB GUIDE model with the specified configuration files model.json and platform.json,
enter the following:

GtfStartup.exe $MODEL_JSON_PATH $PLATFROM_JSON_PATH

Note the order: first you specify the path to model.json, second you specify the path to plat-
form.json.

EB GUIDE TF
Chapter 5. Background information

Page 32 of 190

5.2. EB GUIDE GTF core modules

5.2.1. Diagnostic module
The Diagnostic module offers the possibility of logging messages from an application using the Log interface.

You can retrieve an Log instance from the DependencyResolver module. Make sure that the retrieved handle
is valid. A handle is a managed pointer to the specified data type.

Afterwards the following 2 methods can be called:

► void vprint(LogLevel level, const char * format, va_list ap)

► void print(LogLevel level, const char * format, ...)

Depending on the message, different log levels can be selected:

► LogError

► LogWarning

► LogInfo

The Diagnostic module is responsible for providing a logging interface so than an application can print it's
own messages. These messages can be seen either in the EB GUIDE Monitor or in a separate log file.

For instructions how to use the Diagnostic module, see chapter 8, “Using the Diagnostic module“.

5.2.2. Configuration module
The Configuration module provides the way of sharing data between modules of a EB GUIDE TF instance.
A configuration item is a name value pair. The name must be unique.

The values are of the following types: BooleanScalar, IntegerScalar, FloatScalar, StringScalar,
BooleanList, IntegerList, FloatList, and StringList.

The key naming structure is namespace.namespace.[...], see the following example: gtf.core.plu-
ginstoload

For instructions how to use the Configuration module, see chapter 7, “Using the Configuration module“.

5.2.3. DependencyResolver module

EB GUIDE TF
Chapter 5. Background information

Page 33 of 190

The module DependencyResolver has the purpose of managing a hierarchy of interfaces, which can be
built-in or provided by EB GUIDE GTF plugins.

This module enforces loose coupling between module and is thread safe.

5.2.3.1. Interfaces

All interfaces are found in the namespace gtf::dependencyresolver.

The interfaces of the DependencyResolver module are:

► DependencyContainer: Main interface, used to register and retrieve instances

► DependencyObject: Helper class for adding data to a catalog

► Interface: Parent for all interfaces that are registered in DependencyContainer

For instructions how to use the DependencyResolver module, see chapter 9, “Using the DependencyRe-
solver module“.

5.3. Interaction between HMI and applications
In most cases, the HMI interacts with at least one project specific application, for example a media player.
Asynchronous communication allows better separation of software modules and helps to reduce mutual timing
impacts.

To establish an asynchronous communication between the generated EB GUIDE model and the dedicated
application you have the following options:

► Event system

► Datapool

The advantages of the event system are that no sent information is lost and all events are processed in a
defined order. The disadvantage is that high frequency communication may overcharge the processing in
communication partner.

The advantages of datapool are that the latest information is always available and high frequency updates
cannot overcharge the processing in communication partner. But the disadvantage is that intermediate updates
may get lost.

EB GUIDE TF
Chapter 5. Background information

Page 34 of 190

TIP Purpose of communication
Events are the advised mechanism if the HMI needs to trigger asynchronous application
activities, for example play next track.

Datapool items are the advised mechanism if the application needs to provide information
asynchronously to the HMI, for example title list of a media player.

5.3.1. Event system
An event system provides an asynchronous communication mechanism based on events. Events are delivered
in exactly the same order they were sent. An event is added to all event queues subscribed to this event. Events
can transport values, for example integers, strings or resources.

An event queue is a facility used by a receiver to control, when to process the arrived events. An event queue
may limit the number of unprocessed events. New events are ignored by this queue until the number of un-
processed events does not exceed the limit anymore.

EB GUIDE TF uses multiple event systems for different purposes. The most important one for application
developers is the global event system. It provides communication between applications and EB GUIDE models.
Another event system is used for local communication within each EB GUIDE model.

NOTE Limited event transition between global and local event systems
Only events of user-specific event groups transferred between global event system and
local event systems and vice versa.

In the global event system, string-based identifiers are used. They are created from the EB GUIDE model
during export and are unique for all models.

In the local event system, numeric identifiers are used. They are also created from the EB GUIDE model during
export, but are unique in one model only.

Both types of identifiers are exported to C++ header files and can be used by application developers to interact
with an EB GUIDE model.

5.3.1.1. Event publication

The following steps show the general procedure of event publication:

1. Create a new event at the event system or at an event queue and provide the identifiers for event and
group.

2. Optionally add parameter values.

EB GUIDE TF
Chapter 5. Background information

Page 35 of 190

3. Send the event to the event system or to the event queue.

To identify the sender, you can provide an optional send parameter. This may be useful if you want to
identify your own events.

After you send an event, the event is read-only. You cannot change parameter values anymore.

NOTE The event API is not thread-safe
Do not access one event from concurrent threads before it was sent, because the API is not
thread-safe. After you send an event, the event is read-only and can be used by different
threads.

5.3.1.2. Event receipt

The following steps show the general procedure of event receipt:

1. Create an event queue.

2. Register an invoking callback method at the event queue.

3. To subscribe to required events, provide a callback method for specific events, groups of events or all
events.

4. After a new event arrives, the invoker callback method is executed. This method should invoke the worker
task. To dispatch and process events which are currently in the event queue, use method dispatch()
within the task. After dispatching the event queue is empty.

NOTE Ensure asynchronous event processing
It is not allowed to dispatch and process events directly in the registered callback method.
Event dispatching and processing has to be done asynchronously, even if the whole system
runs in one and the same thread. The callback method must only invoke an asynchronous
worker task.

NOTE The event queue API is not thread-safe
Do not access one event queue instance from concurrent threads, because the API is not
thread-safe.

Only synchronization between event system and event queue provides thread-safety. Dif-
ferent threads must use different event queue instances.

5.3.2. Datapool
The datapool provides an asynchronous communication mechanism based on datapool items. Datapool items
can be of scalar, list, or project specific resource types, for example string lists or image lists.

EB GUIDE TF
Chapter 5. Background information

Page 36 of 190

At EB GUIDE TF runtime each application and each EB GUIDE model is working on its own datapool instance.
A datapool instance is empty by default. The owner of a datapool can load items and their initial values from a
description file. This datapool description file is part of the exported EB GUIDE model.

EB GUIDE TF synchronizes the values of all datapool items that are shared by different datapool instances.
Explicit calls to the API methods of the datapool control the synchronization.

NOTE The datapool API is not thread-safe
Do not access one datapool instance from concurrent threads, because the API is not
thread-safe. The synchronization between datapool instances provides thread safety. Dif-
ferent datapool instances can be used in different threads.

The common use case is that one datapool user modifies a datapool item and one or more users read the
changed values.

NOTE Possible race conditions on competing modifications in different datapool
instances
If one datapool item is modified in several datapool instances, race conditions may occur.

Datapool items can change as follows:

► Datapool items use the API of this datapool instance.

► The datapool items change during the synchronization of the changes done in other datapool instances.

NOTE No order of change notifications
The change notifications do not depend on the order of modifications.

5.3.2.1. Identifiers of datapool items

The datapool API supports two types of datapool item identifiers: a string-based identifier, and a numeric one.
During the export of the EB GUIDE model, datapool item identifiers are created and written to a C++ header
file. The string-based identifier is unique for all EB GUIDE models, the numeric identifier is unique in one EB
GUIDE model only.

5.3.2.2. Synchronisation of datapool items

The following steps show the general procedure for synchronisation of datapool items:

EB GUIDE TF
Chapter 5. Background information

Page 37 of 190

► Register an invoke callback method.

► The API method commit() provides all changed values of one datapool instance to all other datapool
instances.

► All datapool instances sharing a sub-set of the changed datapool items are invoked by calling the registered
invoke callback method.

► The API method update() applies the latest available values to the specific datapool instance only.

commit() and update() affect all changed datapool items at once.

NOTE Possible loss of intermediate values
The datapool provides access to the latest available value only.

NOTE Ensure asynchronous processing of changed datapool items
It is not allowed to process updates or notifications directly in the registered invoke callback
method. Updates and notifications must be processed asynchronously, even if the whole
system runs in the same thread.

The callback method must only invoke an asynchronous worker task.

5.3.2.3. Windowed lists

Lists support two operating modes. The default operating mode is based on one data element per list element.

The second operating mode provides the concept of windowed list. Windowed lists are useful to save system
resources in case of very big list with thousand or millions of elements, or in cases where access to the data
source is very slow.

List access is possible only if list elements are covered by at least one window. If the window position or window
size is changed, the newly covered list elements are uninitialized until the application writes the list element
value for the first time. Read access fails for all uninitialized list elements. Some operations are not supported
for windowed lists and will fail, for example insert, append or remove.

An application can switch between both operation modes.

In a typical use case the EB GUIDE model tells the application about the needed parts of a list by using events
or datapool items. The application creates windows that cover these parts and provides the requested data for
these parts only. To avoid missing data in the EB GUIDE model, define a pre-loading strategy.

EB GUIDE TF
Chapter 5. Background information

Page 38 of 190

5.4. Extensions to EB GUIDE TF

5.4.1. Model elements

In EB GUIDE Studio it is possible to add model elements. Each model element needs a descriptor that is added
to EB GUIDE TF. EB GUIDE TF cares about registering the additional model elements within EB GUIDE Studio.
The descriptor is also known as meta information of a model element.

A component that provides such descriptors to EB GUIDE TF is called descriptor provider. The interface meth-
ods of class DescriptorProvider are described in the DescriptorProvider.h file.

The following descriptors can be added:

► Widget descriptor

A widget descriptor stores all information for a single widget definition. The descriptor is used to instantiate
a default widget template within EB GUIDE Studio.

The interface methods of class WidgetDescriptor are described in the WidgetDescriptor.h file.

► Widget feature descriptor

A widget feature descriptor stores all information for a single widget feature definition. The descriptor is
used to instantiate a widget feature within EB GUIDE Studio.

The interface methods of class WidgetFeatureDescriptor are described in the WidgetFeature-
Descriptor.h file.

► Action descriptor for functions in EB GUIDE Script

An action descriptor is used to define functions in EB GUIDE Script.

The interface methods of class ActionDescriptor are described in the ActionDescriptor.h file.

To add the descriptors above, you use a property descriptor. The components catch the published property
descriptor and use its information. For example, view factories use widget and widget feature information for
the creation of every widget tree which is displayed.

5.4.1.1. Property descriptor

A property descriptor stores all information for a widget property. It is also used to describe the parameters
within EB GUIDE Script functions.

../gtf_api/_descriptor_provider_8h.html
../gtf_api/_widget_descriptor_8h.html
../gtf_api/_widget_feature_descriptor_8h.html
../gtf_api/_widget_feature_descriptor_8h.html
../gtf_api/_action_descriptor_8h.html

EB GUIDE TF
Chapter 5. Background information

Page 39 of 190

The interface methods of class PropertyDescriptor are described in the PropertyDescriptor.h file.

5.4.1.2. Property constant descriptor

A property constant descriptor defines a name for a concrete property value. The constants are used as enu-
merations within EB GUIDE Studio.

For example, the integer property alignment can have the constants left, center, or right, where. And left
stands for the value 1, center stands for the value 0 and right stands for the value 2.

The interface methods of class PropertyConstantDescriptor are described in the PropertyDescriptor.h
file.

5.4.2. Widgets

The widget tree is composed of a generic class called gtf::widgetset::Widgetmodel, which is imple-
mented with gtf::propertycontainer::PropertyContainer.

gtf::propertycontainer::PropertyContainer wraps an array of properties and a type ID.

Figure 5.5. Classes that form the generic widget tree

Type IDs are assigned during the export of the EB GUIDE model. The type ID numbering scheme allows the
framework components to perform type checks in the widget tree in constant time using a simple range check.

The renderer scans the type ID information of widgets and properties.

The gtf::widgetset::Widgetmodel adds the following:

► Array of child widgets

► Parent pointer

► Optional: pointer to the widget instance

► Array of widget features

../gtf_api/_property_descriptor_8h.html
../gtf_api/_property_descriptor_8h.html

EB GUIDE TF
Chapter 5. Background information

Page 40 of 190

► Pointer to cached renderer data to the gtf::propertycontainer::PropertyContainer

5.4.3. EB GUIDE Script functions
You can extend EB GUIDE Script by supplying functions written in C++. Such functions are called foreign
functions and can be used in EB GUIDE Script to implement synchronous calls from the HMI to the application.
A modeler can then use foreign functions in EB GUIDE Script programs. The typical use of foreign functions
is to make features of some library written in C/C++ available to EB GUIDE Script programs. For example it
is possible to use foreign functions to make C++ math library functions such as sinus or square root available
to EB GUIDE Script programs.

TIP EB GUIDE Script functions are not recommended for communication between
HMI and application
The HMI thread is blocked until the called function returns. This may have massive impact
on the timing of HMI activities. Therefore, keep the execution time of these functions as
short as possible.

5.4.3.1. The EB GUIDE Script run-time stack

EB GUIDE Script uses a stack for the parameter and return values of a foreign function.

The stack plays a vital role in the execution of EB GUIDE Script programs. If there are too many or too few
arguments for an instruction on the stack, the execution of the program is in an undefined state.

5.4.3.2. The foreign function interface

In order for the EB GUIDE Script compiler to generate calls to your foreign function, you provide information
about your foreign function:

► The name of your function: what it is called in EB GUIDE Script programs.

► The number and types of the parameters of your function.

► The type of the return value of your function.

Parameters are passed using a stack in a defined order. The first parameter of your function is at the very
bottom of the stack, and the last parameter of your function is on top of the stack. The function has to pop its
arguments in reverse order.

The foreign function calls all parameters which are defined in the function signature. The foreign function has
to push the result value which is defined in the function signature, even if there are errors during the execution
of the foreign function.

EB GUIDE TF
Chapter 5. Background information

Page 41 of 190

NOTE The function has to preserve the integrity of the stack
You tell the compiler which parameters the function expects, and which return value it gen-
erates. The function has to behave according to that information. Take all parameters from
the stack, and push a return value to the stack.

5.4.4. Rendering widgets
Widgets in EB GUIDE GTF can provide their own rendering or drawing routines to generate a visual represen-
tation of the widget on the screen. The EB GUIDE TF SDK provides the WidgetRenderer interface through
which EB GUIDE TF draws the widget.

The following chapters provide information that have to be taken into account in order to implement custom
rendering routines for your widget.

To see how to create such customized widgets, visit our website www.elektrobit.com/ebguide and download the
EB_GUIDE_Examples file. Start with the TriangleWidget example that demonstrates rendering a simple
widget and hit testing for touch. To learn how to implement a custom offscreen effect shader, refer to the
RippleEffect example.

5.4.4.1. Rendering

A single instance of the WidgetRenderer handles all instances of the widget it hast to render. Within the
WidgetRenderer, a single instance of a widget is represented by a RenderObject.

To draw the RenderObject, EB GUIDE TF performs three passes:

1. Traversal pass

A traversal pass instructs the WidgetRenderer to load any rendering relevant data and transformations.
Additionally, the widget must propagate rendering relevant information to child widgets. For example, this
step may create a new GPU framebuffer to pass to the child widgets. Using this technique, you can realize
offscreen effects.

2. Update pass

An update pass requests GPU buffers, textures, or other GPU related data structures to be updated. This
step may rely on interfaces and functions that load image resources directly into textures.

3. Render pass

Last is the draw or render pass. The WidgetRenderer is instructed to assemble one or more draw
commands. A draw command is a collection of GPU state and drawing resources. In order to guarantee
correct and efficient drawing orders, the WidgetRenderer must schedule this draw command for drawing

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 5. Background information

Page 42 of 190

through the GraphicsContext interface. Within the draw command, the drawing algorithm gains access
to the GraphicsExecutionContext through which you setup the draw state according to your rendering
algorithm.

5.4.4.2. Touch handling

Touch handling or hit testing is another important aspect that your widget must consider if it shall react on
touch events. EB GUIDE TF requests a TouchObject interface from the RenderObject that represents your
widget in the WidgetRenderer. The TouchObject interface has to implement the intersection method that
tests a screen position against your widget.

5.5. Simulation with EB GUIDE Monitor
When simulating the EB GUIDE model, the tool EB GUIDE Monitor observes and controls a running EB GUIDE
model. EB GUIDE Monitor includes mechanisms for communication with the datapool, the event system, and
the state machines of a running and connected EB GUIDE model.

For more information on EB GUIDE Monitor and for instructions, see EB GUIDE Studio manual.

5.5.1. Communication with EB GUIDE TF

EB GUIDE Monitor communicates with a running EB GUIDE TF instance through a TCP/IP connection. The
connection is implemented in the GtfService plugin for the target framework.

5.6. Android APK
The Android application package (APK) file format is used to distribute and install applications and other mid-
dleware on Android devices.

5.6.1. System requirements

The Android APK version that is currently released for EB GUIDE TF is designed to run on a wide range of
Android devices.

EB GUIDE TF
Chapter 5. Background information

Page 43 of 190

Table 5.2. Minimal requirements

Architecture ARMv7

Platform EB GUIDE TF: Android 5.0 (API Level 21)

5.6.2. Features of the EB GUIDE TF APK
Table 5.3. Features of the EB GUIDE TF APK

Feature Description

Life cycle management EB GUIDE TF supports Android life cycle management.

Multi-touch support EB GUIDE TF supports up to ten fingers for multi-touch. The number of
supported fingers may be limited by the Android device.

Key handling EB GUIDE TF processes 16-bit UTF key mapping codes.

Interaction with the Java API EB GUIDE TF can be started and controlled by the Android activity. Ex-
ample code and a template implementation are provided by the appli-
cation. A native activity is not necessary.

Android layout handling The exported EB GUIDE model is informed through events if the layout
of the visible screen area changes. That way you can handle a virtual
keyboard or changes in rotation.

5.6.3. Description of the EB GUIDE TF APK files

► EB GUIDE Launcher.apk

The EB GUIDE Launcher starts EB GUIDE TF and displays the exported EB GUIDE model.

If you start the EB GUIDE Launcher it displays the exported EB GUIDE model that was selected last by
EB GUIDE Model Chooser.

► EB GUIDE Model Chooser.apk

The EB GUIDE Model Chooser provides a user interface to select an exported EB GUIDE model that is
executed on the Android device.

By selecting an exported EB GUIDE model, the EB GUIDE Launcher is started with the corresponding
model.

Clicking the Info button displays the directory where exported EB GUIDE models are stored for the EB
GUIDE Model Chooser, and a list with device-related details. For information about the location of the
exported EB GUIDE models in the file system, see section 5.6.5, “Directory for EB GUIDE models”.

EB GUIDE TF
Chapter 5. Background information

Page 44 of 190

Figure 5.6. EB GUIDE Model Chooser

5.6.3.1. Released APK and custom APK

EB GUIDE TF is delivered and installed as an APK. Use either a pre-built released APK of a released version
or create a custom version based on the delivered Android binaries and the APK template in the SDK.

The following lists help you to decide whether or not you need a custom APK.

If the following applies to your project, use the released APK:

► It contains EB GUIDE functionality or feature demonstrations with no further extensions.

► It contains project-specific extensions, for example EB GUIDE GTF extensions, to be added to the exported
EB GUIDE model.

► Standard access rights are sufficient. The standard access rights are read or write to the external storage of
the device, network access android.permission.INTERNET, record audio, and modify audio settings.

EB GUIDE TF
Chapter 5. Background information

Page 45 of 190

If the following applies to your project, use the delivered APK template:

► You need additional access rights that are not granted by the released APK version, for example CALL_-
PHONE.

► You require a customer-specific APK, for example a customer signature for APK verification or icons.

► You use Android framework features that are not accessible in the stable API of the native development
kit (NDK). The NDK contains only a small subset of features and functionality which you can use with the
Java API.

► You need additional Android application functionalities that require modifications to Java-related code
pieces, for example activities, services, skins, intents, or compositing.

5.6.3.2. Restrictions

The Android APK that is currently released for EB GUIDE TF has the following restrictions:

► The exported EB GUIDE model is informed about rotation changes and layout changes, for example an
incoming virtual keyboard on the display. It is the responsibility of the exported EB GUIDE model to handle
these events.

► If the system uses Android layout handling, the Android flag SOFT_INPUT_ADJUST_NOTHING must not
be set in the configuration of the Android activity.

5.6.4. Android life cycle management

The Android life cycle management is an optimization implemented by the Android operating system. If an
application moves to the background, Android releases all graphics resources and makes the resources avail-
able for the application that moves to the foreground. An application is responsible for recreating the resources
when it moves to the foreground.

5.6.5. Directory for EB GUIDE models

EB GUIDE models are stored in the com.elektrobit.guide_model_chooser/files directory that is
located on the primary external storage directory. Application-related files are stored there permanently. One
directory is required per EB GUIDE model.

EB GUIDE TF
Chapter 5. Background information

Page 46 of 190

NOTE com.elektrobit.guide_model_chooser/files directory
After you installed EB GUIDE Model Chooser and EB GUIDE Launcher the com.elektro-
bit.guide_model_chooser/files directory does not yet exist. The directory is creat-
ed when you start EB GUIDE Model Chooser for the first time. Alternatively, you can also
add the directory manually.

The EB GUIDE Model Chooser searches only in the primary external storage directory. Usually Android devices
have their primary external storage on a portion of the internal storage. Make sure you copy the files to the
correct place.

Examples for primary external storage directory:

► For a Samsung Galaxy S3 device with Android 5.0 that is connected to a PC with Windows 7, the di-
rectory is Computer/GT-I9300/Phone/Android/data/com.elektrobit.guide_model_choos-
er/files.

► For a Nexus 7 device with Android 5.0 that is connected to a PC with Windows 7, the directory is Com-
puter/Nexus 7/Internal storage/Android/data/com.elektrobit.guide_model_choos-

er/files.

On start-up or refresh, EB GUIDE Model Chooser recursively scans the directory for the EB GUIDE TF config-
uration file model.json. The parent directory for each start-up configuration is displayed as the EB GUIDE
model name.

5.6.6. Android layout handling
Android is designed for mobile devices. On a mobile device, some characteristics concerning the layout of the
visible screen area need to be considered.

EB GUIDE supports the developer by providing events that indicate layout changes in the visible screen area.

Example 5.2.
Examples for layout handling

► When a mobile device is rotated, the GUI has to adapt according to the rotation.

► When a virtual keyboard is displayed on the screen, the GUI has to adapt to the new element.

5.7. Integration

5.7.1. EB GUIDE TF and C++ exceptions

EB GUIDE TF
Chapter 5. Background information

Page 47 of 190

EB GUIDE TF is designed and built without support for C++ exceptions.

If your own C++ code uses exceptions it is your responsibility to ensure that your code is combined with EB
GUIDE TF and its libraries in a way that is safe for your system. Not following this rule can lead to crashes
for which the root cause is difficult to find.

If your system includes C++ standard libraries, only libraries containing C++ code without exceptions are al-
lowed to be loaded or linked into the EB GUIDE TF process. Make sure that the full dependency of all libraries
is adhered to.

For example, on QNX systems you are not allowed to load libraries that reference the libcpp.so library into
the EB GUIDE TF process, because the EB GUIDE TF process uses libraries that reference the libcpp-ne.-
so library. libcpp.so is a C++ standard library with exceptions, whereas libcpp-ne.so is a C++ standard
library without exception.

5.7.2. EB GUIDE TF and POSIX signals

POSIX signals may interrupt system calls. EB GUIDE TF does not support error handling for interrupted system
calls on POSIX platforms.

EB GUIDE TF does not use POSIX signals, but user applications possibly do. Therefore the following POSIX
signals are blocked in all EB GUIDE TF threads:

► SIGALRM

► SIGCHLD

► SIGUSR1

► SIGUSR2

WARNING POSIX signals
If EB GUIDE TF threads or user applications do not block POSIX signals while calling EB
GUIDE TF API methods, POSIX signals lead to undefined EB GUIDE TF behavior.

5.7.3. Read-only file system support

A read-only file system (RomFS) is a block-based file system. Its organization structure has less overhead than
regular file systems because it has read-only access and omits access right management.

A RomFS has the purpose of overlaying the file system that is provided by an operating system (OS), for
example to speed the system up.

EB GUIDE TF
Chapter 5. Background information

Page 48 of 190

A RomFS can also be used to run EB GUIDE TF on embedded systems without OS file system support.

EB GUIDE TF RomFS support is completely implemented in user space and does not depend on any way
of the underlying OS.

NOTE Use the RomFS container
The RomFS container is the preferred container format although GtfOSAL overlay file sys-
tem support is designed to allow other container implementations, too. You may use other
container implementations for example to evaluate different designs.

To create a RomFS container, refer to chapter 15, “Creating a read-only file system (RomFS) container“.

5.8. Programming concept

5.8.1. Observer patterns and callbacks

To track when a subject changes its state, for example if the property of a widget is changed, EB GUIDE TF uses
the observer pattern. The observer pattern happens through a callback function that needs to be registered
using gtf::delegate. This function is invoked for each modification of the subject's state. For instructions
on how to use a delegate, see section 5.8.3, “Delegates”.

Example 5.3.
Delegate example

The event system provides an event queue which purpose is to control the point in time when event
processing happens. The event system provides a subscribe method which takes a callback as para-
meter. The callback is processed when the event occurs.

gtf::utils::Delegate<void(gtf::eventsystem::EventHandle<const char*>)>

const subscriberCallback =

gtf::utils::Delegate<void(gtf::eventsystem::global::EventHandle)>::create

<EventApplication, &EventApplication::processEvent>(this);

 eventQueue->subscribe(gtf::eventsystem::SubscriptionType::Event

 , GLOBAL_EVENT_GROUP_GLOBAL

 , GLOBAL_EVENT_MSG_ID_WHATTODO

 , this

 , subscriberCallback);

EB GUIDE TF
Chapter 5. Background information

Page 49 of 190

5.8.2. Functors

A functor is a data type that stores a function or method invocation and provides an interface to call the encap-
sulated function or method like an ordinary function. In EB GUIDE TF a set of functor type templates and utility
routines are provided to assemble function invocations. The FunctorX templates are used to store callbacks.

The signature of the function call is encoded in the functor template. There is a separate functor template type
for every possible number of parameters. In this user documentation the number of parameters is denoted as
a suffix X. The first template parameter of FunctorX describes the type of the return value. All further template
parameters define the expected parameter types of the call.

5.8.2.1. Initialization of functor templates

The functor type templates provide the following basic constructors:

FunctorX<R,Params>();

The default constructor creates an empty functor object. It is safe to call an empty functor object. Empty
functors can be tested using the negation operator.

FunctorX<R,Params>(R (*)(Params))

This constructor expects a pointer to a global function or static class method as parameter. The passed
function is then called by the function call operator.

FunctorX<R,Params>(R (Class::*)(Params), Class*)

If you want to set a non-static method, you require an additional object pointer, for example as in the
following code: Functor0<void> example(&SomeObject::doIt, pSomeObject);. There is also
a variant of this constructor that expects a pointer to a constant object and a method pointer of a constant
method.

FunctorX<R,Params>(F const&)

This is the catch-all constructor template, for assigning compatible and callable functor types. In the previ-
ous constructors the signature required an exact match of each element of the signature. This constructor
also works for compatible functor types, for example if an Functor2<int,float,float> is initialized
with a Functor2<int,double,double>. These two functor types are different but compatible, because
a method that expects double parameters can be called with float parameters. The only requirement
for the constructor parameter F is that its function call operator can be called using implicit conversion of
the parameters denoted as Params.

A functor can also be initialized using the utility routines gtf_bind. The gtf_bind functions assemble a
FunctorX instance of the parameters given. The function is available in the following versions, which resemble
the constructors of FunctorX:

FunctorX<R,Params> gtf_bind(R (*)(Params));

FunctorX<R,Params> gtf_bind(R (Class::*)(Params), Class *);

EB GUIDE TF
Chapter 5. Background information

Page 50 of 190

FunctorX<R,Params> gtf_bind(R (Class::*)(Params)const, Class const *);

The syntax with gtf_bind is usually simpler and less verbose compared to the FunctorX constructors. This
is due to the template type deduction of the C++ compiler that allows omitting the template parameters.

5.8.2.2. FunctorX value behavior

FunctorX objects partially mimic the behavior of primitive values. They are put onto the stack and assigned.
When assigned, the content of the FunctorX on the right is duplicated.

FunctorX objects cannot be compared. A comparison yields compile errors.

To make sure that a functor is configured during run-time, you can use it inside a boolean expression since it
yields true when initialized. Calling an uninitialized functor is not harmful because an empty fall-back function
is always available and is executed.

5.8.2.3. Argument binding with functor objects

If the signature of a method does not match the expected or required signature of the functor, it is possible to
use the extended syntax of gtf_bind. The syntax allows you to attach values to the method call or reorder
parameters in the method call.

When you attach values, the values are stored within the functor object. This behavior is similar to the object
pointer that is stored inside the FunctorX when the constructor is called with a method.

To refer to the arguments of the functor, call the placeholders objects _1, _2, ... _9 which have to be passed
to the call of gtf_bind. The placeholder _1 refers to the first parameter, _2 to the second, etc.

NOTE Possible dynamic memory usage with gtf_bind and placeholders
If the extended version of gtf_bind with placeholder functionality is used, a functor object
created with gtf_bind requires dynamic memory. gtf_bind copies all parameters into
the functor object. The internal storage of FunctorX is limited. If the storage is too small,
the FunctorX allocates heap memory.

5.8.3. Delegates

A delegate is a data type that represents references to methods with a particular parameter list and return type.
Delegates are used to pass methods as arguments to other methods. Any method from any accessible class

EB GUIDE TF
Chapter 5. Background information

Page 51 of 190

or struct that matches the delegate type can be assigned to the delegate. The method can be either static or
an instance method. Also it can be used on constant methods.

The delegate templates are used to store callbacks.

5.8.3.1. Creation of a delegate

NOTE Empty delegates are not allowed.

The delegate class provides the gtf::utils::Delegate<R(Params)>::create <Class, F&> ()
method that returns gtf::utils::Delegate<R(Params)>.

This method expects a specialization of the delegate class, which takes as template arguments the return type
of the function and the type of the parameters. The create method expects as template arguments the class
name and a reference to the actual method from that class. As parameter, the instance of the specific class
is provided.

► Create a delegate for an object method:

gtf::utils::Delegate<R(Params)> delegate =

gtf::utils::Delegate<Class, R(Params)>::create <Class,F&> (instance);

► Create a delegate for a static method or function:

gtf::utils::Delegate<R(Params)> delegate =

gtf::utils::Delegate<R(Params)>::create <F>();

In case of static methods or functions, there is no need to specify the class name as template argument,
neither the instance as parameter.

► Create a delegate for const function or const arguments:

There is no difference for a constant or no-constant argument.

You can also initialize a delegate using the bind method:

 gtf::utils::Delegate<R(Params)> delegate;

delegate.bind<&F>();

EB GUIDE TF
Chapter 5. Background information

Page 52 of 190

NOTE Change of function
If you declared a delegate and it has a function assigned, the bind method changes the
function with another function if it has the same return type and arguments list.

5.9. Inter-process communication
The GtfIpc plugin extends the EB GUIDE GTF with the inter-process communication (IPC) mechanism that
connects multiple EB GUIDE GTF instances and exchanges information, for example datapool items and
events.

Figure 5.7. Connecting EB GUIDE GTF instances with IPC

The IPC has a server-client architecture. The implementation supports several clients. Clients and server can
be restarted. If a server is restarted, it will be initialized with the default datapool item values and update the
clients with the same values.

The server instance is responsible for the following:

► Connecting clients

► Mastering datapool data

Once the IPC network is established, the server forwards the changes in the exchange information to the other
clients.

EB GUIDE TF
Chapter 5. Background information

Page 53 of 190

Example 5.4.

An IPC network is created by connecting a server and several clients. All these connected nodes con-
tain the current time information in a datapool item. If a client updates the datapool item and therefore
the time, all the other nodes present in the IPC network will get updated with the new value.

By default, all datapool items and events contained in a nodes' model are shared. You can configure the items
which are shared as follows:

► Set the "gtf.datapool.descriptionfile" configuration item.

If the configuration item is set, the IPC initializes its datapool with the file set in this configuration item.

► Set the start-up parameter that refers to the model.json path.

Data exchange within the IPC has the default datapool and event system behavior. For more information, see
section 5.3.2, “Datapool” and section 5.3.1, “Event system”.

In case of datapool, if one node changes a datapool item five times, other nodes will only get the latest updated
value of the datapool item.

In case of events, if one node fires an event e.g. five times, other nodes will have the event triggered also
five times.

The following tables show the examples for connection modes configuration:

NOTE Structure of configuration items
Basic structure of an item is as follows: <configuration_item> : <value>

String values must be enclosed with " ".

Values in the tables below are just example values. Adapt the values according to your
projects' needs.

Broadcast

Table 5.4. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "broadcast" The connection mode

"gtf.ipc.discovery.network": "255.255.-

255.255"

The broadcast network address

"gtf.ipc.discovery.port": 4712 The broadcast port

EB GUIDE TF
Chapter 5. Background information

Page 54 of 190

Configuration item and value Description

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

Table 5.5. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

"gtf.ipc.discovery.mode": "broadcast" The connection mode

"gtf.ipc.discovery.network": "255.255.-

255.255"

The broadcast network address

"gtf.ipc.discovery.port": 4712 The broadcast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

Multicast

Table 5.6. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "multicast" The connection mode

"gtf.ipc.discovery.network": "230.0.0.-

1"

The multicast network address

"gtf.ipc.discovery.port": 4712 The multicast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

Table 5.7. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

"gtf.ipc.discovery.mode": "multicast" The connection mode

"gtf.ipc.discovery.network": "230.0.0.-

1"

The multicast network address

"gtf.ipc.discovery.port": 4712 The multicast port

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

EB GUIDE TF
Chapter 5. Background information

Page 55 of 190

Configuration item and value Description

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

Direct

Table 5.8. Server configuration

Configuration item and value Description

"gtf.ipc.role": "server" The role in the IPC network

"gtf.ipc.discovery.mode": "direct" The connection mode

"gtf.ipc.discovery.network": "127.0.0.-

1"

Localhost

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

"gtf.servicemapper.port": 60001 If the configuration is generated, the port might al-
ready be set. You need to set the value only if it does
not yet exist.

Table 5.9. Client configuration

Configuration item and value Description

"gtf.ipc.role": "client" The role in the IPC network

"gtf.ipc.discovery.mode": "direct" The connection mode

"gtf.ipc.discovery.network": "x.x.x.x" The network address of the server

"gtf.ipc.discovery.port": 60001 The port should match the "gtf.servicemap-
per.port" value of the server

"gtf.ipc.datapool.config": "ipc_dat-

apool.gtf"

The configuration file containing the datapool items
that should be part of IPC communication

"gtf.ipc.client.timeout": 5000 The time interval in milliseconds between the con-
nection retry attempts of the client

For more information on platform.json, see section 16.7, “platform.json configuration file”.

EB GUIDE TF
Chapter 6. Executing an EB GUIDE model on target framework

Page 56 of 190

6. Executing an EB GUIDE model on target
framework

6.1. Configuring profiles
EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model. In profiles you set up
a configuration for a specific target platform, for example Win32, Linux or QNX. During export the EB GUIDE
TF start-up configuration file model.json is generated from profiles.

You use profiles to do the following:

► Add custom configuration items

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

For details on how to configure profiles, see Configuring profiles in the EB GUIDE Studio manual.

6.2. Exporting an EB GUIDE model
For details on how to export an EB GUIDE model, see Exporting an EB GUIDE model in the EB GUIDE Studio
manual.

6.3. Configuring the system start

Configuring the system start

Prerequisite:

■ Profiles are configured according to the project requirements.

■ An EB GUIDE model is exported.

EB GUIDE TF
Chapter 6. Executing an EB GUIDE model on target framework

Page 57 of 190

Step 1
Copy the EB GUIDE TF version for your platform to your target platform. This includes the executable file
and all EB GUIDE TF plugins that are required by your model.json and platform.json configuration.

Step 2
Copy the exported EB GUIDE model. Make sure the paths in model.json refer to the EB GUIDE model's
files and its relative paths are correct.

Step 3
Start EB GUIDE TF on the target device.

For details on how to start EB GUIDE GTF from the command line, see section 5.1.4.1, “Command line op-
tions”.

You have configured EB GUIDE TF for your target platform.

EB GUIDE TF
Chapter 7. Using the Configuration module

Page 58 of 190

7. Using the Configuration module
The Configuration module is responsible for building, retrieving and adding elements to a map that contains
configuration items. The main interface of the Configuration module is the Settings interface. An instance
can be retrieved from the DependencyResolver module. Make sure that the retrieved handle is valid. A
handle is a managed pointer to the specified data type.

NOTE Thread safety of the Configuration module
Adding and retrieving operations of the Configuration module are thread-safe.

7.1. Retrieving an item from the Configuration
module

Retrieving an item from the Configuration module

Prerequisite:

■ You know the data type of the configuration item that you want to retrieve, for example StringScalar.

Step 1
Declare a handle that represents a managed pointer to a value.

Example: configuration::StringScalarHandle value;

Step 2
Store in this variable the result of the call to getItem where you specify the key as a parameter. When you
call getItem, the template parameter must be the same type as the handle.

Example: value = settings->getItem<gtf::configuration::StringScalar>(key);

If the item does not exist in the map, getItem returns null. If the key is not found in the current map then it is
searched for recursively in all its ancestors.

EB GUIDE TF
Chapter 7. Using the Configuration module

Page 59 of 190

7.2. Adding a scalar item to the Configuration
module

Adding a scalar item to the Configuration module

Step 1
To retrieve a builder from the Settings interface, use getBuilder.

Example: configuration::StringScalarBuilderHandle stringBuilder = settings->
getBuilder<configuration::StringScalarBuilder>();

Step 2
Specify the value of the scalar item.

Example: stringBuilder->set(model.getString().getUTF8());

Step 3
To add the scalar item to the map, use addItem.

Example: settings->addItem(stringBuilder->build(), key);

If the key already exists or the handle is null, addItem returns false.

7.3. Adding a list item to the Configuration mod-
ule

Adding a list item to the Configuration module

Step 1
To retrieve a Builder interface from the Settings interface, use getBuilder.

Example: configuration::FloatListBuilderHandle listBuilder = settings->
getBuilder<configuration::FloatListBuilder>();

Step 2
To add values to the list, use add.

Example: FloatListBuilder->add(1.0f); listBuilder->add(2.0f); FloatList-
Builder->add(3.0f);

EB GUIDE TF
Chapter 7. Using the Configuration module

Page 60 of 190

Step 3
To add the item to the map, use addItem.

Example: settings->addItem(listBuilder ->build(), key);

If the key already exists or the handle is null, addItem returns false.

7.4. Creating a path value using the Configura-
tion module

Creating a path value using the Configuration module

Prerequisite:

■ A StringScalar item is added to the Configuration module. For more information, see section 7.2,
“Adding a scalar item to the Configuration module”.

Step 1
Declare a handle to a PathValue variable.

Example: configuration::PathValueHandle pathHandle;

Step 2
Retrieve the previously added StringScalar as a PathValue.

Example: pathHandle = settings->getItem<configuration::PathValue> ("stringItem-
Name");

Step 3
Specify the base value for the path as a const char*.

Example: pathHandle->setBasePath("basePath");

Step 4
Retrieve the resulting value.

Example: const char* stringPath = pathHandle->get();

EB GUIDE TF
Chapter 7. Using the Configuration module

Page 61 of 190

7.5. Adding elements of a .json file to the Con-
figuration module

Adding elements of a .json file to the Configuration module

The ConfigurationImporter module parses a .json file and adds it to the Configuration module.

Prerequisite:

■ A valid handle for the ConfigurationImporter module is available.

■ An instance of the Settings interface exists.

Step 1
To add elements of a .json file to the Configuration module, use parse.

Example: bool result = configurationImporter->parse($JSON_PATH);

If the file is missing or invalid, the method returns false.

EB GUIDE TF
Chapter 8. Using the Diagnostic module

Page 62 of 190

8. Using the Diagnostic module

8.1. Logging messages

Logging messages

Prerequisite:

■ You wrote an EB GUIDE GTF extension.

Step 1
Declare a handle that represents a managed pointer to a Log interface.

Example: gtf::diagnostic::LogHandle logger;

Step 2
Store in this variable the result of the get method. When calling get, the template parameter must be the
Log interface.

Example: gtf::diagnostic::LogHandle logger = contain-
er->get<gtf::diagnostic::Log>();

If the interface does not exist, get returns null.

Step 3
Use the retrieved interface to print out the message.

Example: logger->print(diagnostic::Log::LogInfo, "Hello world!");

8.2. Redirecting your logged messages into a file
For instructions how to redirect the logged messages into a file, see section 5.1.4.1, “Command line options”.

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 63 of 190

9. Using the DependencyResolver
module
When using the DependencyResolver module, note the following:

► All interfaces that have to be registered in the container must inherit from public
dependencyresolver::Interface.

► The macro GTF_DEFINE_INTERFACE_NAME(InterfaceName) must be added in the class header file.

For example:

class UserInterface : public dependencyresolver::Interface

public:

 virtual void fooBar() = 0;

};

typedef gtf::smartptr::RefCountedPtr<UserInterface> UserInterfaceHandle;

GTF_DEFINE_INTERFACE_NAME(UserInterface);

9.1. Retrieving an item from DependecyContain-
er

Retrieving an item from DependecyContainer

Prerequisite:

■ A handle to an item was registered to the container.

Step 1
Declare a handle variable.

Example: UserInterfaceHandle value;

Step 2
The call to the get method returns a handle. Store this handle in the variable.

Example: value = container->get<UserInterface>();

If the item does not exist in the container, get returns NULL.

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 64 of 190

NOTE Lookup scope
If the lookup scope is not specified, by default the instances of the requested interface will
be searched recursively in all its ancestors.

To search only in the local lookup scope use get<Type>(LookupScope::Local);.

9.2. Retrieving all instances registered to an inter-
face

Retrieving all instances registered to an interface

Step 1
Declare an array of handles.

Example: gtf::container::Array<UserInterfaceHandle> instances;

Step 2
Use it to store the specified instances from the container using getAll method.

Example: container->getAll(instances);

Step 3
Use an iterator to navigate through the array.

Example:

for (gtf::container::Array<UserInterfacelHandle>::Iterator it = instances.begin();

 it != instances.end(); ++it)

{

//process data here...

}

If no items are found, getAll will return FALSE and the array will be empty.

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 65 of 190

NOTE Lookup scope
If the lookup scope is not specified, by default the instances of the requested interface will
be searched recursively in all its ancestors.

To search only in the local lookup scope use getAll<Type>(instances,

LookupScope::Local);.

9.3. Registering an instance to the container

Registering an instance to the container

Prerequisite:

■ A valid handle to the item must exist.

Step 1
To register an instance of an interface, add the new instance to the container.

Example: container->registerInstance<UserInterfaceHandle >(instance);

Step 2
To register the same instance for multiple interfaces, add the same instance for each interface to the contain-
er.

Example:

class InterfaceA : public Interface

{

};

class InterfaceB : public InterfaceA

{

};

typedef gtf::smartptr::RefCountedPtr<InterfaceB> InterfaceBHandle;

InterfaceBHandle interfaceB= new InterfaceB();

container->registerInstance<InterfaceA>(interfaceB);

container->registerInstance<InterfaceB>(interfaceB);

If the item cannot be registered, registerInstance will return FALSE.

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 66 of 190

NOTE It is not possible to register the same instance with the same interface twice.

Registering an instance using create function

Step 1
Create a function that returns a handle to the instance you want to register.

Example:

static dependencyresolver::UserInterfaceHandle createInstance

(dependencyresolver::DependencyContainerHandle & container)

{

 if (!container.valid())

 {

 return dependencyresolver::InterfaceHandle();

 }

 UserInterfaceHandle instance = new UserInterfaceImplementation();

 return instance;

}

Step 2
Create a catalog instance.

Example: gtf::dependecyresolver::DependencyCatalog catalog;

Step 3
Extend the catalog with the previous function:
Dependencyresolver::extendCatalog<UserInterface>(catalog, createInstance);

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 67 of 190

NOTE DependencyObjects
A catalog is an array of DependencyObjects.

For more information, see API documentation module DependencyResolver.

9.4. Unregistering an instance

Unregistering an instance

Prerequisite:

■ A handle to an item was registered to the container.

Step 1
Unregister the instance from the container.

Example: container->unregisterInstance<UserInterface>(instance);

If the item cannot be unregistered, registerInstance will return FALSE.

9.5. Registering a catalog
The following instruction shows you how to add the content of a catalog to a container.

Registering a catalog

Step 1
Declare a catalog.

Example: Example: gtf::dependecyresolver::DependencyCatalog catalog;.

Step 2
Register the catalog in the container.

Example: container->registerCatalog(catalog);

If the call to registerCatalog fails, it will return FALSE.

dce://gtf_api/DependencyResolver

EB GUIDE TF
Chapter 9. Using the DependencyResolver module

Page 68 of 190

9.6. Unregistering a catalog

Unregistering a catalog

Step 1
Unregister the catalog from the container.

Example: container->unregisterCatalog(catalog);

If the call to unregisterCatalog fails, it will return FALSE.

9.7. Creating a container

Creating a container

Prerequisite:

■ A handle to an item was registered to the container.

Step 1
Create a container.

Example: DependencyContainerHandle childContainer = container->createContainer();

retrieve and retrieveAll are used internally by get and getAll.

EB GUIDE TF
Chapter 10. Using the EB GUIDE TF plugin mechanism

Page 69 of 190

10. Using the EB GUIDE TF plugin
mechanism

10.1. Creating an EB GUIDE TF plugin
Two types of EB GUIDE TF plugins exist: extensions, and applications. The following instructions are valid
for both types.

Creating an EB GUIDE TF plugin

The following section explains the general workflow for integrating EB GUIDE TF into your build system on
Windows platforms. Find the instructions for each step in the sections below.

Step 1
Adjust the model.json to load the EB GUIDE TF plugin. For details, see section 10.2, “Adding an EB
GUIDE TF plugin”.

Step 2
Write an EB GUIDE TF plugin. For details, see section 10.3, “Writing an EB GUIDE TF plugin”.

Step 3
Copy the resulting .dll file. For details, see section 10.4, “Copying the resulting .dll file”.

Step 4
Start the simulation with GtfStartup.exe. For details, see section 10.5, “Starting the simulation with Gt-
fStartup.exe ”.

EB GUIDE TF
Chapter 10. Using the EB GUIDE TF plugin mechanism

Page 70 of 190

10.2. Adding an EB GUIDE TF plugin

NOTE Adding an EB GUIDE TF plugin
To add an EB GUIDE TF plugin, you can do either of the following:

► Add the EB GUIDE TF plugin to an EB GUIDE model in EB GUIDE Studio.

► Modify the model.json file of an exported EB GUIDE model.

Adding an EB GUIDE TF plugin to an EB GUIDE model

In order to use a newly written EB GUIDE TF plugin such as a widget or a widget feature in an EB GUIDE
model, it is necessary to add the EB GUIDE TF plugin to the EB GUIDE model.

Prerequisite:

■ An EB GUIDE TF plugin exists.

Step 1
Compile the EB GUIDE TF plugin.

Step 2
Copy the resulting file to the $GUIDE_PROJECT_PATH/resources directory.

Step 3
Start EB GUIDE Studio and open an EB GUIDE Studio project.

Step 4
Go to the project center and click Configure > Profiles.

Step 5
Select the required profile.

Step 6
Open the Model tab.

Step 7
To load your EB GUIDE TF plugin, integrate the following code into the model.json:

{

 "gtf": {

 "model": {

 "pluginstoload": [

 "resources/myplugin"

]

 }

 }

}

EB GUIDE TF
Chapter 10. Using the EB GUIDE TF plugin mechanism

Page 71 of 190

myplugin is the name of the example EB GUIDE TF plugin.

Step 8
Save the project and close EB GUIDE Studio.

Step 9
Open the project again.

You have added an EB GUIDE TF plugin to an EB GUIDE model.

Step 10
Export the EB GUIDE model.

Adding an EB GUIDE TF plugin without EB GUIDE Studio

The following instruction shows you how to modify the model.json file directly so that it loads an EB
GUIDE TF plugin.

Prerequisite:

■ An EB GUIDE model is exported.

Step 1
Navigate to the exported EB GUIDE model.

Step 2
Open the model.json file with a text editor.

Step 3
To load your EB GUIDE TF plugin, include the following code:

{

 "gtf": {

 "model": {

 "pluginstoload": [

 "myplugin"

]

 }

 }

}

myplugin is the name of the example EB GUIDE TF plugin.

Step 4
Save the model.json file.

EB GUIDE TF
Chapter 10. Using the EB GUIDE TF plugin mechanism

Page 72 of 190

10.3. Writing an EB GUIDE TF plugin

Writing an EB GUIDE TF plugin

To enable your EB GUIDE TF plugin to react on datapool and event updates it is necessary to include the
corresponding files.

In order to access an example, visit our website https://www.elektrobit.com/ebguide/learn/resources/. Down-
load the EB_GUIDE_Examples file and open the BasicExample example.

Prerequisite:

■ An EB GUIDE model is exported.

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

Step 1
Navigate to the directory you prepared for the plugin, for example C:/plugin/myplugin.

Step 2
Create a file named myplugin.cpp.

Step 3
Open the myplugin.cpp file and write an EB GUIDE TF plugin.

Find a description of all relevant classes and methods in the EB GUIDE TF API.

Step 4
Compile myplugin.cpp.

The result is a .dll file myplugin.dll.

10.4. Copying the resulting .dll file

Copying the resulting .dll file

Prerequisite:

■ An EB GUIDE model is exported.

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

https://www.elektrobit.com/ebguide/learn/resources/
../gtf_api/index.html

EB GUIDE TF
Chapter 10. Using the EB GUIDE TF plugin mechanism

Page 73 of 190

■ A compiled EB GUIDE TF plugin is created.

Step 1
Navigate to the directory where you saved the myplugin.dll file, for example C:/plugin/myplugin.

Step 2
Copy C:/plugin/myplugin to the directory where you exported the EB GUIDE model, for example C:/
projects/example_project.

10.5. Starting the simulation with GtfStart-
up.exe

Starting the simulation with GtfStartup.exe

On Windows platforms you can start the simulation directly using GtfStartup.exe.

Prerequisite:

■ An EB GUIDE model is exported.

■ The model.json file is adapted.

■ A new directory is created, for example C:/plugin/myplugin.

■ A compiled EB GUIDE TF plugin is created.

■ The resulting .dll file is available in the directory of the exported EB GUIDE model.

Step 1
Navigate to $GUIDE_INSTALL_PATH/platform/win32/bin.

Step 2
Execute GtfStartup.exe with the complete path to model.json as the first argument. Enter the following
command line:

GtfStartup.exe C:/projects/example_project

The framework opens a window which displays the start view.

EB GUIDE TF
Chapter 11. Extending EB GUIDE Script with foreign functions

Page 74 of 190

11. Extending EB GUIDE Script with
foreign functions
This section provides information about the EB GUIDE Script function example, in this case a function returning
the sum of two integer values.

In order to access this example, visit our website https://www.elektrobit.com/ebguide/learn/resources/. Down-
load the EB_GUIDE_Examples file and open the ScriptFunction example.

For more information about EB GUIDE Script functions, see section 5.4.3, “EB GUIDE Script functions”.

https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 12. Adding widgets and widget features

Page 75 of 190

12. Adding widgets and widget features
This section provides information about EB GUIDE GTF extension examples such as widgets and widget
features. The widget in the first example adds new functionality, while the second example is a widget feature
which makes a rectangle change its color when focused.

NOTE Example widgets for EB GUIDE
To see how customized widgets can be created and added to an EB GUIDE Studio project,
download the EB_GUIDE_Examples file from our website https://www.elektrobit.com/
ebguide/learn/resources/ for pre-designed widgets.

12.1. Example of the extended container widget
The example implements a container widget that controls the visibility of its child widgets. The displayStatus
property defines which child widgets are displayed: all, none, or only the first.

In order to access this example, visit our website https://www.elektrobit.com/ebguide/learn/resources/. Down-
load the EB_GUIDE_Examples file and open the ExtendedContainerWidget example.

12.2. Example of the widget feature for focus be-
havior of rectangles
The example adds a widget feature to a rectangle widget. The example widget feature is called focusRect-
Color and has a property focusedColor. The purpose of the widget feature is to change the background
color of a rectangle to the value of the focusedColor property when the rectangle is focused. To enable the
focus widget feature, add the widget feature State focused.

In order to access this example, visit our website https://www.elektrobit.com/ebguide/learn/resources/. Down-
load the EB_GUIDE_Examples file and open the FocusedWidgetFeature example.

https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/
https://www.elektrobit.com/ebguide/learn/resources/

EB GUIDE TF
Chapter 13. Using and creating an Android APK for EB GUIDE TF

Page 76 of 190

13. Using and creating an Android APK for
EB GUIDE TF
For background information on Android APK, see section 5.6, “Android APK”.

For more information on Android setup, APK creation or the Android toolchain, refer to the official Android
documentation.

As the basic concepts and approaches known for other platforms are also valid for the Android platform, the
following sections focus on the topics that are specific for Android.

13.1. Executing an exported EB GUIDE model on
Android

Executing an exported EB GUIDE model on Android

To execute an exported EB GUIDE model on Android, you install the EB GUIDE Model Chooser and EB
GUIDE Launcher. The EB GUIDE Model Chooser provides a user interface to select exported EB GUIDE
models. Selecting an exported EB GUIDE model starts EB GUIDE Launcher. The EB GUIDE Launcher exe-
cutes an exported EB GUIDE model on the Android device.

Prerequisite:

■ To install the two applications on the Android device, enable your system to install from a different source
than the Android Play Store. On your Android device select the Settings > Security > Unknown sources
option.

Step 1
Copy EB GUIDE Launcher.apk and EB GUIDE Model Chooser.apk from the $GTF_INSTALL_PATH/
platform/android/bin/ directory to your Android device or to the external storage of your Android de-
vice.

Step 2
Open a file manager and navigate to the copied files.

Step 3
Install EB GUIDE Launcher.apk and EB GUIDE Model Chooser.apk.

Step 4
Export an EB GUIDE model.

EB GUIDE TF
Chapter 13. Using and creating an Android APK for EB GUIDE TF

Page 77 of 190

For more information, see EB GUIDE Studio manual.

Step 5
Copy the whole directory that was exported by EB GUIDE Studio to your Android device. For information
where to store the EB GUIDE models, see section 5.6.5, “Directory for EB GUIDE models”.

Step 6
To execute the EB GUIDE model on your Android device, open EB GUIDE Model Chooser.apk and se-
lect an EB GUIDE model from the list.

The EB GUIDE Launcher.apk is started automatically with the selected EB GUIDE model. The EB GUIDE
model is executed on your Android device.

13.2. Creating your own Android APK using the
template

Creating your own Android APK using the template

Step 1
Import the project $GTF_INSTALL_PATH/platform/android/apk/GtfAndroidAppTemplate into
Eclipse or IntelliJ.

Step 2
Add the library $GTF_INSTALL_PATH/platform/android/bin/GtfBridge.jar to the Eclipse or Intel-
liJ workspace.

Step 3
Optional: To change the location of the EB GUIDE model and the libraries, edit the implementation of the
template TemplateActivity.java.

The template activity is the main activity of your custom application.

Step 4
In $GUIDE_INSTALL_PATH/projects/code/apk/AndroidAppTemplate create the folder structure
libs/armeabi.

Step 5
Copy the Android SDK binaries delivered with EB GUIDE GTF to the directory $GTF_INSTALL_PATH/
platform/android/apk/libs/armeabi.

Step 6
In $GUIDE_INSTALL_PATH/projects/code/apk/AndroidAppTemplate create the folder assets.

Step 7
Copy the file platform.json delivered with EB GUIDE GTF to the directory $GTF_INSTALL_PATH/
platform/android/apk/assets.

EB GUIDE TF
Chapter 13. Using and creating an Android APK for EB GUIDE TF

Page 78 of 190

Step 8
Copy an EB GUIDE model to the default external file directory of the application. The default directory imple-
mented in the template activity is /data/android/com.elektrobit.gtf_android_template.pack-
age.

Step 9
Deploy and launch the application in Eclipse or IntellJ on the target device or use an Android virtual device
(AVD).

The EB GUIDE model is executed on your Android device. Customize the application according to your re-
quirements.

13.3. Creating your own Android APK from scratch
The APK files installed with the Android SDK of EB GUIDE TF are suitable for most use cases. If they are not
sufficient, use the APK template, see section 13.2, “Creating your own Android APK using the template”. You
can integrate additional EB GUIDE GTF extensions that are useful for a project. Save the additional EB GUIDE
GTF extensions in the directory of the exported EB GUIDE model and include them in the start-up configuration
file. All run-time dependencies are resolved by EB GUIDE TF.

For background information on the custom APK, see section 5.6.3.1, “Released APK and custom APK”.

Creating your own Android APK from scratch

Step 1
Create an Android project. Use either the Eclipse ADT plugin, IntelliJ or create it with the provided Ant tool-
ing.

Step 2
Add the library $GTF_INSTALL_PATH/platform/android/bin/GtfBridge.jar to your Eclipse or In-
telliJ workspace.

Step 3
In the project workspace, create a directory libs/armeabi and copy the .so files from $GTF_INS-
TALL_PATH into the directory.

Step 4
In the project workspace, create a directory assets and copy the file platform.json from $GTF_INS-
TALL_PATH into the directory.

Step 5
Add the import com.elektrobit.gtf.android.GtfActivity.

Step 6
Create an activity that extends GtfActivity.

EB GUIDE TF
Chapter 13. Using and creating an Android APK for EB GUIDE TF

Page 79 of 190

Step 7
Adapt the following methods:

Step 7.1
To set the model path, call the method protected String getModelPath().

Return either getStandardModelPath() for the default path, or a string with the path of the EB GUIDE
model files.

Step 7.2
To load additional libraries, add their names to the string array, which is the return value of protected
String[] getAdditionalNativeLibs(). If you do not use any additional libraries, return null.

Step 8
In the manifest, modify or add the following code:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-sdk android:minSdkVersion="21"/>

Step 9
Create a keystore file for a release build.

Step 10
Create the release build with Ant tooling on the command line.

TIP Debug builds
Test and create debug builds within Eclipse. The Eclipse plugin takes care of the whole APK
build process, for example debug keystore.

TIP Sub-projects for a separation of functionality
Place the activity in a master project and divide individual functionality into sub-projects.
The master project references the other components as sub-project dependencies and the
Android build performs the necessary integration steps.

EB GUIDE TF
Chapter 14. Evaluating memory usage

Page 80 of 190

14. Evaluating memory usage
Evaluating memory usage helps you to debug the system and the EB GUIDE model. During run-time, EB
GUIDE GTF can continuously print information about memory that the framework manages dynamically.

The memory report is printed to the standard output streams. On Microsoft Windows operating systems, outputs
to console are deactivated. To see the stream outputs, pipe the streams into files. EB GUIDE Monitor will also
show the memory report in the Logger component. On other operating systems that are POSIX compatible
(like Linux) the report is shown on console.

Configuring a memory report

You configure a memory report by adding a configuration message to the model.json configuration file.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, click Configure > Profiles.

Step 2
Select the Simulation profile.

Step 3
Select the Platform tab.

Step 4
Enter the following code:

{

 "gtf": {

 "diagnostic": {

 "memory": {

 "interval":5000

 }

 }

 }

}

You configured the memory report to be printed with an interval of 5 seconds.

EB GUIDE TF
Chapter 15. Creating a read-only file system (RomFS) container

Page 81 of 190

15. Creating a read-only file system
(RomFS) container

Creating a read-only file system (RomFS) container

The directory you create serves as root directory in the RomFS. It is referred to as "/" on POSIX platforms
and as "C:/" on Microsoft Windows platforms.

Step 1
Create a directory structure and files in a local working directory.

Step 2
Locate the command line tool RomFsCreate in the tools/RomFsTools sub-directory of your EB GUIDE
GTF SDK directory.

Step 3
Run RomFsCreate without any parameters.

The following usage directions are displayed:

Invalid command line options

Usage:

RomFsCreate.exe [OPTIONS] SOURCE_DIRECTORY [IMAGE_NAME]

Options:

--create-c-file BASE_NAME:

 Creates a source (.c) file that contains the romfs data and a header (.h) file

 the files will have the names: BASE_NAME.c and BASE_NAME.h

--output-dir TARGET_DIRECTORY:

 define the location were the .romfs file will be created

--max-size N

 specify the maximum size of the container

-h or --help display this help

For usage options, see the list below.

You have the following options:

Create a RomFS container
RomFsCreate.exe romfs_root_directory creates the file romfs_root_directory.romfs. This
file contains romfs_root_directory.

EB GUIDE TF
Chapter 15. Creating a read-only file system (RomFS) container

Page 82 of 190

Create a RomFS container and specify the name of the resulting file
RomFsCreate.exe romfs_root_directory image creates the file image.romfs. This file contains
romfs_root_directory.

Limit the size of the resulting container
Specify --max-size N on the command line. If the size limit you specify is exceeded, RomFsCreate
emits an error message and stops putting files into the container. The maximum size max-size is defined
in bytes.

Create a RomFS container and put it, ready to use, in a C-array
RomFsCreate.exe romfs_root_directory --create-c-file c_array creates the file romfs_-
root_directory.romfs. This file contains romfs_root_directory .

Content is put in the file c_array.c as const unsigned char romfs_root_directory[] =
"...";. "..." is the content of the container encoded in C hexadecimal literals.

Additionally a c_array.h header file is created. The header file has an extern const unsigned char
romfs_root_directory[N]; forward declaration which you can include and use in your code.

The --max-size N parameter is respected.

Create a RomFS container, specify the name of the resulting file and put it, ready to use, in a C-array
RomFsCreate.exe romfs_root_directory image --create-c-file c_array creates the file
image.romfs. This file contains romfs_root_directory. Content is put in file c_array.c as const
unsigned char romfs_root_directory[] = "...";.

"..." is the content of the container encoded in C heximal literals.

Additionally a c_array.h header file is created. This header file has an extern const unsigned
char romfs_root_directory[N]; forward declaration, which you can include and use in your code.

The --max-size N parameter is respected.

EB GUIDE TF
Chapter 16. References

Page 83 of 190

16. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

16.1. Android events
Android events belong to the SystemNotifications event group and have event group ID 13.

Table 16.1. Android events

Event ID Name Description

1 RendererEnabled Is sent by the application when Android
life cycle management stops or starts the
renderer

Parameters:

► enabled: If true, the renderer is en-
abled. If false, the renderer is set to
sleep mode.

2 setKeyboardVisibility Is sent by the EB GUIDE model if a virtual
keyboard is intended to be shown

Parameters:

► visibility: If true, a virtual key-
board is made visible. If false, it is in-
visible.

3 onKeyboardVisibilityChanged Is sent by the application if a virtual key-
board is shown

Parameters:

► visibility: If true, a virtual key-
board is visible. If false, it is invisible.

4 onLayoutChanged Is sent by the application when the visible
area of the screen changes

Parameters (in pixels):

► x: The x-coordinate of the top left cor-
ner of the visible screen area

EB GUIDE TF
Chapter 16. References

Page 84 of 190

Event ID Name Description

► y: The y-coordinate of the top left cor-
ner of the visible screen area

► width: The width of the visible
screen area

► height: The height of the visible
screen area

16.2. Datapool items
Table 16.2. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

16.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

16.3.1. Mesh

Mesh defines the shape of the 3D object.

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store meshes in a list. For details about lists, see section 16.3.9, “List”.

16.3.2. Boolean

Boolean properties can have the values true and false.

Available operations are as follows:

EB GUIDE TF
Chapter 16. References

Page 85 of 190

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

It is possible to store boolean properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.3. Color

Colors are stored in the RGBA8888 format.

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

It is possible to store color properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.4. Conditional script

Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections.

► The Trigger combo box contains a list of events and datapool items that trigger the execution of the On
trigger script.

► The On trigger script is called on initialization, after an event trigger, or after a value update of a datapool
item..

The parameter of the On trigger script indicates the cause for the execution of the script.

The return value of the On trigger script controls change notifications for the property.

If true, it triggers a change notification.

EB GUIDE TF
Chapter 16. References

Page 86 of 190

If false, it does not trigger a change notification.

16.3.5. Float

Float-point number data type represents a single-precision 32-bit IEEE 754 value.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.6. Font

To add a font to an EB GUIDE project, copy the font file in the following directory: $GUIDE_PROJECT_PATH/
<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.7. Image

EB GUIDE TF
Chapter 16. References

Page 87 of 190

To add an image to an EB GUIDE project, copy the image file in the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.8. Integer

EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 16.3.9, “List”.

16.3.9. List

EB GUIDE supports a list of values with the same data type.

The following list types are available:

EB GUIDE TF
Chapter 16. References

Page 88 of 190

► Mesh list

► Boolean list

► Color list

► Float list

► Font list

► Image list

► Integer list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

► length: (length)

► element accessor: ([])

16.3.10. String

EB GUIDE supports character strings, for example Hello world.

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=Aa=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 16.3.9, “List”.

EB GUIDE TF
Chapter 16. References

Page 89 of 190

16.4. EB GUIDE Script

16.4.1. EB GUIDE Script keywords

The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Keyword Description

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

l: A language follows.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

function Declares a function

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows.

EB GUIDE TF
Chapter 16. References

Page 90 of 190

Keyword Description

while Repeats a statement as long as the condition is true

16.4.2. EB GUIDE Script operator precedence

The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 16.3. EB GUIDE Script operator precedence

Operator Associativity

(()), ({}) none

([]) none

(->) left

(.) none

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

(;) left

16.4.3. EB GUIDE Script standard library

The following chapter provides a description of all EB GUIDE Script functions.

EB GUIDE TF
Chapter 16. References

Page 91 of 190

16.4.3.1. EB GUIDE Script functions A

16.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 16.4. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

16.4.3.1.2. absf

The function returns the absolute value of the float number x.

Table 16.5. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

16.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

Table 16.6. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

16.4.3.1.4. animation_before

The function checks if a running animation has passed a given point in time.

Table 16.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has not yet passed the point in time.

EB GUIDE TF
Chapter 16. References

Page 92 of 190

16.4.3.1.5. animation_beyond

The function checks if a running animation has passed a given point in time.

Table 16.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

16.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

Table 16.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

16.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 16.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

16.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 16.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

EB GUIDE TF
Chapter 16. References

Page 93 of 190

16.4.3.1.9. animation_pause

The function pauses an animation.

Table 16.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

16.4.3.1.10. animation_play

The function starts or continues an animation.

Table 16.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

16.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 16.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

16.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 16.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

EB GUIDE TF
Chapter 16. References

Page 94 of 190

16.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

Table 16.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

16.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

Table 16.17. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

16.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 16.18. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

16.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 16.19. Parameters of atan2i

Parameter Type Description

y integer Argument y

EB GUIDE TF
Chapter 16. References

Page 95 of 190

Parameter Type Description

x integer Argument x

<return> float The return value

16.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 16.20. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

<return> float The return value

16.4.3.2. EB GUIDE Script functions C - H

16.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 16.21. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

16.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 16.22. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE TF
Chapter 16. References

Page 96 of 190

16.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 16.23. Parameters of character2unicode

Parameter Type Description

str string The input string

<return> integer The character as Unicode

0 in case of errors

16.4.3.2.4. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 16.24. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

16.4.3.2.5. color2string

The function converts a color to eight hexadecimal values.

Table 16.25. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color chan-
nels red, green, blue and alpha.

For example, opaque pure red is converted to #ff0000ff, semi-transparent pure green
is converted to #00ff007f.

16.4.3.2.6. cosf

The function returns the cosine of x, where x is given in radians.

EB GUIDE TF
Chapter 16. References

Page 97 of 190

Table 16.26. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

16.4.3.2.7. deg2rad

The function converts an angle from degrees to radians.

Table 16.27. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

<return> float The return value

16.4.3.2.8. expf

The function returns the value of e (the base of natural logarithms) raised to the power of x.

Table 16.28. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

16.4.3.2.9. float2string

The function converts simple float to string.

Table 16.29. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

16.4.3.2.10. floor

The function returns the largest integral value not greater than the parameter value.

EB GUIDE TF
Chapter 16. References

Page 98 of 190

Table 16.30. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

16.4.3.2.11. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 16.31. Parameters of focusNext

Parameter Type Description

<return> void

16.4.3.2.12. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 16.32. Parameters of focusPrevious

Parameter Type Description

<return> void

16.4.3.2.13. format_float

The function formats a float value.

Table 16.33. Parameters of format_float

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the num-
ber of significant digits or the number of digits after the dec-
imal-point character .

EB GUIDE TF
Chapter 16. References

Page 99 of 190

Parameter Type Description

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

useDotAsDelim-

iter

boolean Defines the delimiter sign.

Possible values:

► true: Use a dot as delimiter.

► false: Use a comma as delimiter.

value float The number to format

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_float are f, a, g and e, and not more than one
type character is allowed.

16.4.3.2.14. format_int

The function formats an integer value.

Table 16.34. Parameters of format_int

Parameter Type Description

format string A string of the following structure:

%[flags] [width] [.precision] type

► flags: Optional character or characters that control output
justification and output of signs, blanks, leading zeros, deci-
mal points, and octal and hexadecimal prefixes.

► width: Optional decimal number that specifies the minimum
number of characters that are output.

► precision: Optional decimal number that specifies the mini-
mum number of digits that are printed.

► type: Required conversion specifier character that deter-
mines whether the associated argument is interpreted as a
character, a string, an integer, or a float number.

value int The number to format

EB GUIDE TF
Chapter 16. References

Page 100 of 190

WARNING Adhere to printf specification for C++
The format parameter is defined according to the printf specification for C++.

Using values that do not comply with this specification can lead to unexpected behavior.

For example, allowed types for format_int are d, i, o, x and u, and not more than one
type character is allowed.

16.4.3.2.15. getLineCount

The function returns the number of lines of a text for a widget.

Table 16.35. Parameters of getLineCount

Parameter Type Description

widget widget The widget to evaluate

<return> integer The number of lines

16.4.3.2.16. getTextHeight

The function returns the height of a text with regard to its font resource.

Table 16.36. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

If the size of the font is 0 or negative, the function returns 0.

16.4.3.2.17. getTextLength

The function returns the number of characters in a text.

Table 16.37. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

EB GUIDE TF
Chapter 16. References

Page 101 of 190

NOTE Escape sequences
EB GUIDE Script does not resolve escape sequences like \n and counts every character.
For example, for the text Label\n the getTextLength function returns 7.

16.4.3.2.18. getTextWidth

The function returns the width of a text with regard to its font resource.

Table 16.38. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

If the size of the font is 0 or negative, the function returns 0.

16.4.3.2.19. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 16.39. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

16.4.3.2.20. hsba2color

The function converts an HSB/HSV color to a GTF color.

Table 16.40. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

EB GUIDE TF
Chapter 16. References

Page 102 of 190

Parameter Type Description

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting GTF color with the alpha value applied

16.4.3.3. EB GUIDE Script functions I - R

16.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 16.41. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

16.4.3.3.2. int2string

The function converts a simple integer to string.

Table 16.42. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

16.4.3.3.3. isDynamicStateMachineActive

The function checks if the state with the dynamic state machine list is active.

Table 16.43. Parameters of isDynamicStateMachineActive

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

EB GUIDE TF
Chapter 16. References

Page 103 of 190

16.4.3.3.4. language

The function switches the language of all datapool items. This operation is performed asynchronously.

Table 16.44. Parameters of language

Parameter Type Description

language languageType The language to switch to, for example
f:language(l:German)

<return> void

16.4.3.3.5. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 16.45. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

16.4.3.3.6. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 16.46. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

16.4.3.3.7. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 16.47. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

EB GUIDE TF
Chapter 16. References

Page 104 of 190

16.4.3.3.8. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 16.48. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted month

16.4.3.3.9. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 16.49. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

16.4.3.3.10. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 16.50. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

16.4.3.3.11. localtime_year

The function extracts the year from the local time of a system time value.

Table 16.51. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

16.4.3.3.12. log10f

The function returns the base 10 logarithm of x.

EB GUIDE TF
Chapter 16. References

Page 105 of 190

Table 16.52. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.3.13. logf

The function returns the natural logarithm of x.

Table 16.53. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.3.14. nearbyint

The function rounds to nearest integer.

Table 16.54. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

16.4.3.3.15. popDynamicStateMachine

The function removes the dynamic state machine on the top of the priority queue.

Table 16.55. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

16.4.3.3.16. powf

The function returns the value of x raised to the power of y.

EB GUIDE TF
Chapter 16. References

Page 106 of 190

Table 16.56. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

16.4.3.3.17. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 16.57. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

16.4.3.3.18. rad2deg

The function converts an angle form radians to degree.

Table 16.58. Parameters of rad2deg

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.3.19. rand

The function gets a random value between 0 and 231-1.

Table 16.59. Parameters of rand

Parameter Type Description

<return> integer A random number between 0 and 231-1

16.4.3.3.20. shutdown

The function requests the framework to shutdown the program.

EB GUIDE TF
Chapter 16. References

Page 107 of 190

16.4.3.3.21. rgba2color

The function converts from RGB color space to GTF color.

Table 16.60. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to GTF color, with
the alpha value applied

16.4.3.3.22. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 16.61. Parameters of round

Parameter Type Description

value float The value to round

<return> integer The rounded value

16.4.3.4. EB GUIDE Script functions S - W

16.4.3.4.1. seed_rand

The function sets the seed of the random number generator.

Table 16.62. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

16.4.3.4.2. sinf

The function returns the sine of x, where x is given in radians.

EB GUIDE TF
Chapter 16. References

Page 108 of 190

Table 16.63. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.4.3. skin

The function switches the skin of all datapool items. This operation is performed asynchronously.

Table 16.64. Parameters of skin

Parameter Type Description

skin skinType The skin to switch to, for example f:skin(s:Standard)

<return> void

16.4.3.4.4. sqrtf

The function returns the non-negative square root of x.

Table 16.65. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.4.5. string2float

The function converts the initial part of a string to float.

The expected form of the initial part of the string is as follows:

1. An optional leading white space

2. An optional plus ('+') or minus ('-') sign

3. One of the following:

► A decimal number

► A hexadecimal number

► An infinity

► An NAN (not-a-number)

EB GUIDE TF
Chapter 16. References

Page 109 of 190

Table 16.66. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

16.4.3.4.6. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 16.67. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

16.4.3.4.7. string2string

The function formats strings.

Table 16.68. Parameters of string2string

Parameter Type Description

str string The string to format

len integer The maximum length of the string

<return> string The language string

16.4.3.4.8. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns "abc".

► substring("abc", 0, -2) returns "ab".

Table 16.69. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

EB GUIDE TF
Chapter 16. References

Page 110 of 190

Parameter Type Description

endIndex integer The first character index that is not part of the result

<return> string The language string

16.4.3.4.9. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 16.70. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

16.4.3.4.10. system_time_ms

The function gets the current system time in milliseconds.

Table 16.71. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

16.4.3.4.11. tanf

The function returns the tangent of x, where x is given in radians.

Table 16.72. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

16.4.3.4.12. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 16.73. Parameters of trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

EB GUIDE TF
Chapter 16. References

Page 111 of 190

16.4.3.4.13. trace_string

The function writes a string to the trace log and the connection log.

Table 16.74. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

16.4.3.4.14. transformToScreenX

The function takes a widget and a local coordinate and returns x-position in the screen-relative world coordinate
system.

Table 16.75. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The x-position of the screen coordinate

16.4.3.4.15. transformToScreenY

The function takes a widget and a local coordinate and returns Y position of a position in the screen-relative
world coordinate system.

Table 16.76. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x-position of the local coordinate

localY integer The y-position of the local coordinate

<return> integer The y-position of the screen coordinate

16.4.3.4.16. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x-position
in the widget-relative local coordinate system.

EB GUIDE TF
Chapter 16. References

Page 112 of 190

Table 16.77. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The x-position of the local coordinate

16.4.3.4.17. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y-position
in the widget-relative local coordinate system.

Table 16.78. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x-position of the screen coordinate

screenY integer The y-position of the screen coordinate

<return> integer The y-position of the local coordinate

16.4.3.4.18. trunc

The function rounds to the nearest integer value, always towards zero.

Table 16.79. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

16.4.3.4.19. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 16.80. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

EB GUIDE TF
Chapter 16. References

Page 113 of 190

Parameter Type Description

<return> integer The number of child widgets

16.5. Events
Table 16.81. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

16.6. model.json configuration file
The model.json is an EB GUIDE TF configuration file that contains configuration items which are relevant
for a single EB GUIDE model.

The model.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

NOTE JSON object notation
If you configure model.json in EB GUIDE Studio, use the JSON object notation.

For an example, see section 16.6.1, “Example model.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

Table 16.82. Common

Configuration item Type Description Default value

gtf.eventsystem.maxQueue integer Maximum size of the
event queues

0

gtf.model.traces boolean Enables the tracing of
the f:trace_string
script function

true

gtf.model.identifier string Unique identifier of
the EB GUIDE mod-

empty

http://www.json.org

EB GUIDE TF
Chapter 16. References

Page 114 of 190

Configuration item Type Description Default value

el (equal to the EB
GUIDE Studio project
UUID)

gtf.model.identifier.short integer Short identifier of the
EB GUIDE model

0xdeadbeaf

Table 16.83. Files and paths

Configuration item Type Description Default value

gtf.model.path string Path to the EB GUIDE
model

None

gtf.model.config string Full path to the EB
GUIDE model configu-
ration

<gtf.model.path>/

model.json

gtf.datapool.descriptionFile string Name of the datapool
description file

datapool.gtf

gtf.model.files.sm string Name of the state ma-
chine description file

model.bin

gtf.model.files.rm string Name of the resources
description file

resources.bin

gtf.model.files.views string Name of the view de-
scription file

views.bin

gtf.model.files.types string Name of the type de-
scription file

types.bin

gtf.model.pluginstoload string list Names of EB GUIDE
model plugins to load

empty string list

gtf.eventsystem.mapFile string Name of the event
system mapping file

eventMap.gtf

The option gtf.model.coreNames is a string list that contains the names of all configured cores. The fol-
lowing table contains configuration items for every core.

Table 16.84. Cores

Configuration item Type Description Default value

gtf.model.cores.<corename>.own-

Thread

boolean Specifies if the core
uses an own thread to
run

false

gtf.model.cores.<corename>.id integer Specifies the core con-
text identifier

0

EB GUIDE TF
Chapter 16. References

Page 115 of 190

The option gtf.model.sceneNames is a string list that contains the names of all configured scenes. For
every scene, the configuration items in the following table are found.

Table 16.85. Scenes

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.visi-

ble

boolean Determines the visibili-
ty of the scene

true

gtf.model.scenes.<scenename>.width integer Width of the scene 800

gtf.model.scenes.<scenename>.-

height

integer Height of the scene 480

gtf.model.scenes.<scenename>.x integer Coordinates of the
scene's starting point

0

gtf.model.scenes.<scenename>.y integer Coordinates of the
scene's starting point

0

gtf.model.scenes.<scenename>.pro-

jectName

string Name of the working
project

gtf.model.scenes.<scenename>.win-

dowCaption

string Displayed window
name text

gtf.model.scenes.<scenename>.-

sceneId

integer Identifier for the scene 0

gtf.model.scenes.<scenename>.maxF-

PS

integer The redraw rate (FPS
= Frames per second).
Set to 0 for an unlimit-
ed redraw rate.

60

gtf.model.scenes.<scenename>.-

hwLayerId

integer Specifies the core con-
text identifier

0

gtf.model.scenes.<scenename>.col-

orMode

integer Specifies the color
mode:

► 1: 32-bit (RG-
BA8888)

► 2: 16-bit
(RGB565)

► 3: 24-bit
(RGB888)

► 4: 32-bit sRGB

► 5: 32-bit sRGB
(Emulated)

1

EB GUIDE TF
Chapter 16. References

Page 116 of 190

Configuration item Type Description Default value

gtf.model.scenes.<scenename>.mul-

tisampling

integer Specifies the multi-
sampling of the scene

► 0: no multisam-
pling

► 1: 2x multisam-
pling

► 2: 4x multisam-
pling

0

gtf.model.scenes.<scenename>.en-

ableRemoteFramebuffer

boolean If true, the transfer of
the off-screen buffer to
the simulation window
is enabled

false

gtf.model.scenes.<scenename>.-

showWindowFrame

boolean Determines if the ren-
derer window frame
should be displayed

true

gtf.model.scenes.<scenename>.-

showWindow

boolean If true, an additional
window for simulation
is opened on Windows
based systems

true

gtf.model.scenes.<scenename>.dis-

ableVsync

boolean If true, the vertical
synchronization for the
renderer is disabled.

false

gtf.model.scenes.<scenename>.-

showFPS

integer Possible values:

► 0: Do not show
FPS

► 1: Show FPS on
the screen

► 2: Show FPS on
the console

► 3: Show FPS on
the screen and on
the console

0

gtf.model.scenes.<scenename>.ren-

derer

string Name of the ren-
derer to use: Di-
rectXRenderer

EB GUIDE TF
Chapter 16. References

Page 117 of 190

Configuration item Type Description Default value

OpenGLRenderer or
OpenGL3Renderer

Table 16.86. Rendering common

Configuration item Type Description Default value

gtf.model.fontCache.width integer Width of the font cache
atlas texture

512

gtf.model.fontCache.height integer Height of the font
cache atlas texture

512

gtf.model.fontCache.age integer Maximum allowed
age before the refresh
operation of the font
cache has to be done

100

gtf.model.traversalStackSize integer The renderers traver-
sal stack size in bytes

32768

The configuration items in the following table belong together. This means that the renderer expects that the
same amount of items is in all three lists. The entry with an index in one list belongs to the entries with the
same index in other lists.

Table 16.87. Renderer display extensions

Configuration item Type Description Default value

gtf.model.displayId integer list Identifiers of the
scenes

gtf.model.maxCacheSize integer list Maximum texture
caches for the scenes

gtf.model.driverName string list OS specific driver
names for the scenes,
e.g. /dev/fb0

The configuration items in the following table are used to configure the TextEngine component. TextEngine
is based on the FreeType third-party library. The following parameters are passed to the FreeType imple-
mentation. For more information about FreeType, see https://www.freetype.org/freetype2/docs/reference/ft2-
cache_subsystem.html.

Due to the way EB GUIDE TF handles font sizes, ft_size objects are not cached separately from ft_face
objects. Consider that the values for max_sizes can be limited by the hardware of your target platform.

https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html
https://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html

EB GUIDE TF
Chapter 16. References

Page 118 of 190

Table 16.88. TextEngine configuration items

Configuration item Type Description Default value

gtf.model.textengine.replacementG-

lyph

integer Unicode character
that should be used
in case the dedicated
font character is not
found in the current
font

0xfffd

gtf.model.textengine.maxFaces integer Maximum amount of
cached font faces

0

gtf.model.textengine.maxSizes integer Maximum amount of
cached font sizes

0

gtf.model.textengine.maxBytes integer Maximum amount
of memory in bytes
that can be used for
caches

0

gtf.model.textengine.enablePlain-

FileStream

boolean Determines the font
access configuration.
If true, the plain file
I/O access is used.
If false, the ROM-
mapped file access is
used.

false

NOTE Configuration items for bitmap fonts
For .fnt bitmap fonts you can use only the replacementGlyph configuration item. You
cannot use other configuration items in table 16.88, “TextEngine configuration items” for
bitmap fonts.

NOTE ROM-mapped file approach vs. plain file I/O approach
The ROM-mapped file approach in general provides higher performance. But on some sys-
tems, for example QNX, it consumes more memory than the plain file I/O approach. Plain
file I/O approach in general consumes less memory than the ROM-mapped file approach.
But it can lead to lower performance.

The option gtf.model.touchDevicesNames is a string list containing the names of all configured touch
devices. For every touch device the configuration items listed in the following table are available.

EB GUIDE TF
Chapter 16. References

Page 119 of 190

Table 16.89. Touch devices

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.-

touchscreenType

integer Defines the touch de-
vice type:

► 0: Galaxy

► 1: imx WVGA

► 2: Mouse

► 3: General

► 4: Lil-
liput_889GL

► 5: GeneralMul-
titouch

► 6: Lilliput
with automat-

ic calibra-

tion

► 7: Generic-
TouchConfigu-

ration

3

gtf.mod-

el.touchDevices.<deviceName>.dis-

playManagerId

integer Specifies the scene ID
for which the device is
valid

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchId

integer Specifies the ID of the
device

0

gtf.mod-

el.touchDevices.<deviceName>.min-

imalDistanceToMove

integer Threshold for react-
ing on touch position
changes

0

gtf.mod-

el.touchDevices.<deviceName>.-

touchMoveRepeatTimeout

integer Delay between touch
position change notifi-
cations

0

gtf.mod-

el.touchDevices.<deviceName>.width

integer Width of the touchable
device area

0

gtf.mod-

el.touchDevices.<deviceName>.-

height

integer Height of the touch-
able device area

0

EB GUIDE TF
Chapter 16. References

Page 120 of 190

Configuration item Type Description Default value

gtf.mod-

el.touchDevices.<deviceName>.x_-

high

integer Maximum horizontal
resolution extend of
the touchable device
area

0

gtf.mod-

el.touchDevices.<deviceName>.y_-

high

integer Maximum vertical res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.x_low

integer Minimal horizontal res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.y_low

integer Minimal vertical res-
olution extend of the
touchable device area

0

gtf.mod-

el.touchDevices.<deviceName>.devi-

cePath

string Name of the driver
used for touch, e.g. /
dev/input0

16.6.1. Example model.json in EB GUIDE Studio

Example 16.1.
model.json in EB GUIDE Studio

{

 "gtf":{

 "datapool":{

 "descriptionFile":"datapool.gtf"

 },

 "eventsystem":{

 "maxQueue":0,

 "mapFile":"eventMap.gtf"

 },

 "model":{

 "coreNames":[

 "<core_1>"

],

 "cores":{

 "<core_1>":{

 "ownThread":false,

EB GUIDE TF
Chapter 16. References

Page 121 of 190

 "id":0

 }

 },

 "touchDevicesNames":[

 "<device_1>"

],

 "touchDevices":{

 "<device_1>":{

 "touchscreenType":3,

 "displayManagerId":0,

 "touchId":0,

 "minimalDistanceToMove":0,

 "touchMoveRepeatTimeout":0,

 "width":0,

 "height":0,

 "x_high":0,

 "y_high":0,

 "x_low":0,

 "y_low":0,

 "devicePath":""

 }

 },

 "displayId":[

],

 "driverName":[

],

 "fontCache":{

 "width":512,

 "height":512,

 "age":100

 },

 "maxCacheSize":[

],

 "sceneNames":[

 "<scene_1>"

],

 "scenes":{

 "<scene_1>":{

 "visible":true,

 "width":800,

 "height":480,

 "x":0,

 "y":0,

 "projectName":"<project_x>",

EB GUIDE TF
Chapter 16. References

Page 122 of 190

 "windowCaption":"<Displayed window name text>",

 "sceneId":0,

 "maxFPS":60,

 "hwLayerId":0,

 "colorMode":1,

 "multisampling":0,

 "enableRemoteFramebuffer":false,

 "showWindowFrame":true,

 "showWindow":true,

 "disableVsync":false,

 "showFPS":0,

 "renderer":"DirectXRenderer"

 }

 },

 "traces":true,

 "traversalStackSize":32768,

 "identifier":"",

 "path":"<binary_folder>",

 "config":"<gtf.model.path>/model.json",

 "files":{

 "sm":"model.bin",

 "rm":"resources.bin",

 "views":"views.bin",

 "types":"types.bin"

 },

 "pluginstoload":[

]

 }

 }

}

16.7. platform.json configuration file
The platform.json is an EB GUIDE TF configuration file which contains common and platform dependent
items.

The platform.json file is a part of the exported EB GUIDE model.

The following table is used as documentation for all default configuration parameters.

EB GUIDE TF
Chapter 16. References

Page 123 of 190

NOTE JSON object notation
If you configure platform.json within EB GUIDE Studio, use the JSON object notation.

For an example, see section 16.7.1, “Example platform.json in EB GUIDE Studio”.

For more information about JSON format, see http://www.json.org.

Table 16.90. Platform configuration

Configuration item Type Description Default value

gtf.servicemapper.port integer Connection port for
the services (e.g. EB
GUIDE Monitor)

60000

gtf.core.pluginstoload string list List of core plugins
that should be loaded
(relative to binary fold-
er or absolute path)

None

gtf.launcher.editmode boolean Defines if EB GUIDE
TF is running in EB
GUIDE Studio. This is
a read-only item.

false

gtf.platform.config string Full path to the plat-
form.json file. This
is a read-only item.

<binary_fold-

er>/platform.json

gtf.framework.path string Path to the GtfS-
tartup executable.
This is a read-only
item.

<binary_folder>

gtf.diagnostic.memory.interval integer Specifies the time in-
terval for the memory
diagnostic. If value is 0
the diagnostic is deac-
tivated.

0

gtf.ipc.role string The role of the IPC
node. Possible val-
ues are server or
client

server

gtf.ipc.discovery.network string The IPv4 network ad-
dress which will be
used for the serv-
er-client discovery

255.255.255.255

http://www.json.org

EB GUIDE TF
Chapter 16. References

Page 124 of 190

Configuration item Type Description Default value

mechanism. In case of
direct connection, this
represents the servers'
network address.

gtf.ipc.discovery.port integer The network port
which will be used for
the server-client dis-
covery mechanism.
In case of direct con-
nection, this has to
be equal to the item
gtf.servicemap-

per.port from the
server configuration.

4711

gtf.ipc.datapool.config string The configuration
file containing the
datapool items that
should be part of IPC
communication

ipc_datapool.gtf

gtf.ipc.discovery.mode string The discovery mode
used for connecting
the server and the
clients. Possible op-
tions are: "broad-
cast", "multicast"
and "direct".

broadcast

gtf.ipc.client.timeout integer Retry period of the
client connection to the
server, expressed in
milliseconds.

5000

16.7.1. Example platform.json in EB GUIDE Studio

Example 16.2.
platform.json in EB GUIDE Studio

{

EB GUIDE TF
Chapter 16. References

Page 125 of 190

 "gtf":{

 "core":{

 "pluginstoload":[

 "TfRuntime",

 "TfService",

 "TfGui",

 "TfGUIOpenGLES20",

 "TfGUIOpenGLES3",

 "TfGUIDirectX11"

]

 },

 "servicemapper":{

 "port":60000

 },

 "launcher":{

 "editmode":true

 },

 "platform":{

 "config":"<binary_folder>/platform.json"

 },

 "framework":{

 "path":"<binary_folder>"

 },

 "diagnostic":{

 "memory":{

 "interval":0

 }

 },

 "ipc":{

 "role":"server",

 "discovery":{

 "network":"255.255.255.255",

 "port":4711,

 "mode":"broadcast"

 },

 "client":{

 "timeout":5000

 },

 "datapool": {

 "config": "ipc_datapool.gtf"

 }

 }

 }

}

EB GUIDE TF
Chapter 16. References

Page 126 of 190

16.8. Scenes
Table 16.91. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x-offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y-offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 32-bit (=1): RGBA8888

► 16-bit (=2): RGB565

► 24-bit (=3): RGB888

► 32-bit sRGB (=4):

This value uses GPU hardware support.

Use this value, if you want to have sRGB support for an image wid-
get or for the Diffuse texture widget feature.

► 32-bit sRGB (Emulated) (=5):

Use this value only if 32-bit sRGB does not yield correct results.

multisampling Possible values:

► Off (= 0): no multisampling

EB GUIDE TF
Chapter 16. References

Page 127 of 190

Property name Description

► 2x (=1): 2x multisampling

► 4x (=2): 4x multisampling

Also see “Settings for multisampling”.

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► Off (=0): Do not show FPS

► On screen (=1): Show FPS on the screen

► Console (=2): Show FPS on the console

► Console & on screen (=3): Show FPS on the screen and on
the console

Renderer Defines a renderer for the scene.

Possible values:

► DirectXRenderer

► OpenGLRenderer

► OpenGL3Renderer

EB GUIDE TF
Chapter 16. References

Page 128 of 190

TIP Settings for multisampling
The higher the resolution for multisampling is the better the quality of the rendering result.
However, be aware that multisampling decreases the rendering performance, especially on
a target device. At small displays with high resolution the multisampling has almost no effect.

Start with no multisampling and, if the performance is good, try the settings 2x or 4x multi-
sampling. If there is no big difference with higher multisampling, use a lower setting.

TIP Settings for multisampling are hardware-dependent
If the required multisampling settings are not possible from hardware side, information about
it is available in the logfile.

16.9. Touch screen types supported by EB GUIDE
GTF
The supported types depend on the target device.

Table 16.92. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

5 General platform-dependent multitouch
touch-screen interface

Linux

16.10. Widgets

16.10.1. View

EB GUIDE TF
Chapter 16. References

Page 129 of 190

Table 16.93. Properties of a view

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget

y The y-coordinate of the widget

View templates have additional properties for view transition animations. An entry animation is executed when
the view in entered.

Table 16.94. Properties of an entry animation

Property name Description

Entry animation If true, instances of the view template have an entry animation.

Transition type The type of the entry animation, for example Move in from left, Fade in from
center or Show view immediately.

Duration The duration of the entry animation in milliseconds

Delay The delay of the entry animation in milliseconds

Play after exit an-

imation

If true, the start time of the entry animation depends on the duration of a previ-
ous exit animation.

An exit animation is executed when the view is exited.

Table 16.95. Properties of an exit animation

Property name Description

Exit animation If true, instances of the view template have an exit animation.

Transition type The type of the exit animation, for example Move out to top, Fade out to cen-
ter or Hide view immediately.

Duration The duration of the exit animation in milliseconds

Delay The delay of the exit animation in milliseconds

16.10.2. Basic widgets
There are eight basic widgets.

► Alpha mask

EB GUIDE TF
Chapter 16. References

Page 130 of 190

► Animation

► Container

► Ellipse

► Image

► Instantiator

► Label

► Rectangle

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

NOTE Negative values
Do not use negative values for height and width properties. EB GUIDE Studio treats
negative values as 0, this means the respective widget will not be depicted.

16.10.2.1. Alpha mask

An alpha mask is a container widget that controls the alpha channel, i.e. the opacity, of its child widgets with
an image.

Table 16.96. Properties of the alpha mask

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

enabled If true, the alpha mask is applied to the child widgets

image The image that controls the alpha channel, i.e. the opacity of the child widgets

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

scaleMode The scale mode of the image. Possible values:

EB GUIDE TF
Chapter 16. References

Page 131 of 190

Property name Description

► original size (=0)

► fit to size (=1)

► keep aspect ratio (=2)

NOTE Supported image file types for alpha mask
The available image formats depend on the implementation of the renderer. DirectX 11
and OpenGL ES version 2.0 or higher support .png files and .jpg files. RGB images are
converted to grayscale images before being used as alpha masks. Grayscale images are
used as is. The alpha channel in the image is ignored.

You cannot use the alpha mask with 9-patch images.

16.10.2.2. Animation

An animation defines the movement of a widget along a view. To define the appearance of an animation, add
curves in the Animation editor.

Table 16.97. Properties of the animation

Property name Description

enabled Defines if the animation is executed

repeat The number of repetitions, 0 for infinite number

alternating If true, the animation is executed repeatedly back and forth / bidirectional.

If false, the animation is executed repeatedly only in one direction / unidirection-
al.

The number of repetitions is defined in the repeat property.

scale The factor by which the animation time is multiplied

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards)

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

EB GUIDE TF
Chapter 16. References

Page 132 of 190

Property name Description

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

16.10.2.2.1. Constant curves

A constant curve sets a target value after a defined delay. Constant curves are available for integer, boolean,
float, and color types.

Table 16.98. Properties of constant curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

value The resulting constant value

target The target property the resulting value is assigned to

16.10.2.2.2. Fast start curves

A fast start curve periodically sets a value that increases fast in the beginning but loses speed constantly until
the end. Fast start curves are available for integer, float, and color types.

Table 16.99. Properties of fast start curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

EB GUIDE TF
Chapter 16. References

Page 133 of 190

Property name Description

start The initial value

end The final value

target The target property the resulting value is assigned to

16.10.2.2.3. Slow start curves

A slow start curve periodically sets a value that increases slowly in the beginning but rises constantly until the
end. Slow start curves are available for integer, float, and color types.

Table 16.100. Properties of slow start curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

start The initial value

end The final value

target The target property the resulting value is assigned to

16.10.2.2.4. Quadratic curves

A quadratic curve periodically sets a value using a quadratic function curve. Quadratic curves are available
for integer, float, and color types.

Table 16.101. Properties of quadratic curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

acceleration The acceleration of the curve

EB GUIDE TF
Chapter 16. References

Page 134 of 190

Property name Description

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

16.10.2.2.5. Sinus curves

A sinus curve periodically sets a value using a sinus function curve. Sinus curves are available for integer,
float, and color types.

Table 16.102. Properties of sinus curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

frequency The frequency of the curve in hertz

phase The angular phase translation in radians

target The target property the resulting value is assigned to

16.10.2.2.6. Script curves

A script curve sets a value using a curve that is described by EB GUIDE Script. Script curves are available
for integer, boolean, float, and color types.

Table 16.103. Properties of script curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

EB GUIDE TF
Chapter 16. References

Page 135 of 190

Property name Description

relative Defines if update values are applied on the initial value

curve The resulting curve function

target The target property the resulting value is assigned to

16.10.2.2.7. Linear curves

A linear curve periodically sets a value using a linear progression curve. Linear curves are available for integer,
float, and color types.

Table 16.104. Properties of linear curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

velocity The velocity to calculate the result

constant The constant value to calculate the result

target The target property the resulting value is assigned to

16.10.2.2.8. Linear interpolation curves

A linear interpolation curve widget periodically sets a value using a linear interpolation curve. Linear interpola-
tion curves are available for integer, float, and color types.

NOTE Linear key value interpolation curves
During import of a 3D graphic file, if the imported 3D scene has animations, linear key value
interpolation integer curve and linear key value interpolation float curve are created. The
underlying key-value pairs of these curves cannot be modified in EB GUIDE Studio.

Table 16.105. Properties of linear interpolation curves

Property name Description

enabled Defines if the animation is executed

delay The delay in ms relative to the animation start

EB GUIDE TF
Chapter 16. References

Page 136 of 190

Property name Description

duration The duration of the curve segment in ms

repeat The number of repetitions, with 0 for endless repetitions

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

target The target property the resulting value is assigned to

16.10.2.3. Container

A container holds several widgets as child widgets and thus groups the widgets.

Table 16.106. Properties of the container

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

16.10.2.4. Ellipse

An ellipse draws a colored ellipse with the dimensions and coordinates of the widget into a view. The widget
can also be used to draw a sector or an arc.

Table 16.107. Properties of the ellipse

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the ellipse

arcWidth The width of the arc of the ellipse

centralAngle The angle in degrees which defines a sector of the ellipse

sectorRotation The angle in degrees which describes the rotation of the ellipse's sector

EB GUIDE TF
Chapter 16. References

Page 137 of 190

16.10.2.5. Image

An image places a picture into a view.

Table 16.108. Properties of the image

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

image The image the widget displays

sRGB If this property is enabled, the image that is selected in image, is rendered using
sRGB color space.

Note that to use sRGB functionality, in the project center under Configure >
Profiles for the colorMode property select 32-bit sRGB (=4) or 32-bit
sRGB (Emulated) (=5).

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. DirectX 11 and
OpenGL ES version 2.0 or higher support .png files and .jpg files.

16.10.2.6. Instantiator

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables
with dynamic or static content. The child widgets of an instantiator serve as line templates for the list or table
which is created during run-time. By default the instantiator only instantiates the first line template.

Table 16.109. Properties of the instantiator

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

EB GUIDE TF
Chapter 16. References

Page 138 of 190

Property name Description

y The y-coordinate of the widget relative to its parent widget

numItems The number of instantiated child widgets. If numItems is 0, no child widgets are
created.

lineMapping Defines which child widget is the line template for which line, i.e. defines the or-
der of instantiation

16.10.2.7. Label

A label places text into a view.

Table 16.110. Properties of the label

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

text The text the label displays. If the text does not fit into the widget area it is trun-
cated at the end by default.

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

16.10.2.8. Rectangle

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 16.111. Properties of the rectangle

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x-coordinate of the widget relative to its parent widget

EB GUIDE TF
Chapter 16. References

Page 139 of 190

Property name Description

y The y-coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

16.10.3. 3D widgets

16.10.3.1. Ambient light

An ambient light is a light that uniformly illuminates the scene. An ambient light affects the ambient color
property of material widgets.

Table 16.112. Properties of the ambient light

Property name Description

enabled If true, the widget is enabled

color The color of the light

intensity The intensity of the light, with 0.0 as no ambient light

16.10.3.2. Camera

A camera defines the view of the scene from a particular point of view. Use several cameras to show the scene
from different points of view.

Table 16.113. Properties of the camera

Property name Description

enabled If true, the widget is enabled

nearPlane The nearest distance from the camera in view direction at which the scene be-
comes visible

farPlane The farthest distance from the camera in view direction up to which the scene is
visible

fieldOfView The camera's vertical viewing angle in degrees

projectionType Defines the projection type of the camera. The objects are rendered either with
perspective (=0) or orthographic (=1) projection.

Note: If the projection type is orthographic, the viewing volume is calculated by
using the fieldOfView angle.

EB GUIDE TF
Chapter 16. References

Page 140 of 190

16.10.3.3. Directional light

A directional light illuminates the scene from one direction.

Table 16.114. Properties of the directional light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with 0.0 as no directional light

16.10.3.4. Material

A material defines the visual appearance of the mesh surface using the Phong reflection model.

Table 16.115. Properties of the material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light. If no am-
bient light is added to the parent scene graph, this property has no effect.

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

shininess The shininess factor

specular The color that an object with a shiny surface reflects

opacity The opacity value

Note that only values between 0 and 1, as for example 0.3, are valid.

16.10.3.5. Mesh

A mesh defines the shape of the 3D object.

Table 16.116. Properties of the mesh

Property name Description

visible If true, the widget and its child widgets are visible

mesh The automatically created mesh file *.ebmesh

culling Defines whether no triangles (0), only front-facing triangles (1), or only back-fac-
ing triangles (2) are culled from the mesh

EB GUIDE TF
Chapter 16. References

Page 141 of 190

16.10.3.6. PBR GGX material

A PBR GGX material defines the visual appearance of the mesh surface using the physically correct Cook-
Torrance model.

Table 16.117. Properties of the PBR GGX material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

specular The color that an object with a shiny surface reflects

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

roughness The value for the surface quality of being rough

This value controls the surface’s microstructure.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid, as for example 0.3.

Figure 16.1. Example for a physically-based material

EB GUIDE TF
Chapter 16. References

Page 142 of 190

16.10.3.7. PBR Phong material

A PBR Phong material defines the visual appearance of the surface of the mesh using the physically correct
Phong reflection model.

Table 16.118. Properties of the PBR Phong material

Property name Description

ambient The color that the object reflects when it is illuminated by ambient light

diffuse The color that the object reflects evenly in all directions when it is illuminated by
pure white light

emissive The self-illumination color of the object

shininess The shininess factor

specular The color that an object with a shiny surface reflects

metallic The value for the surface quality of being metallic

This value interpolates between the diffuse and the specular contribution.

Note that only values between 0 and 1 are valid, as for example 0.3.

opacity The opacity value

Note that only values between 0 and 1 are valid , as for example 0.3.

Figure 16.2. Example for a non-normalized material (left) and a normalized material (right)

16.10.3.8. Point light

A point light adds a light to the scene that emits light in all directions like a light bulb.

Table 16.119. Properties of the point light

Property name Description

enabled If true, the widget is enabled

EB GUIDE TF
Chapter 16. References

Page 143 of 190

Property name Description

color The light's color

intensity The intensity of the light, with 0.0 as no point light

attenuationConstant The constant factor by which the light weakens with increasing distance

attenuationLinear The linear factor by which the light weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light weakens with increasing distance

16.10.3.9. Scene graph

A scene graph places a 3D object into a view.

Table 16.120. Properties of the scene graph

Property name Description

visible If true, the widget and its child widgets are visible

width The width of the widget in pixels

height The height of the widget in pixels

x The x-coordinate of the widget relative to its parent widget

y The y-coordinate of the widget relative to its parent widget

16.10.3.10. Scene graph node

A scene graph node is a child node and is added to the scene graph or to another scene graph node. You
use scene graph nodes to place 3D widgets in the 3D scene with transformation properties. You can add the
following 3D widgets to the scene graph node:

► Camera

► Directional light

► Mesh

► Point light

► Spot light

Table 16.121. Properties of the scene graph node

Property name Description

visible If true, the widget and its child widgets are visible

EB GUIDE TF
Chapter 16. References

Page 144 of 190

Property name Description

rotationX The rotation around the x-axis

rotationY The rotation around the y-axis

rotationZ The rotation around the z-axis

scalingX The scaling along the x-axis

scalingY The scaling along the y-axis

scalingZ The scaling along the z-axis

translationX The translation along the x-axis

translationY The translation along the y-axis

translationZ The translation along the z-axis

16.10.3.11. Spot light

A spot light adds a light which restricts illumination to a cone of influence.

Table 16.122. Properties of the spot light

Property name Description

enabled If true, the widget is enabled

color The light's color

intensity The intensity of the light, with 0.0 as no spot light

attenuationConstant The constant factor by which the light weakens with increasing distance

attenuationLinear The linear factor by which the light weakens with increasing distance

attenuationQuadrat-

ic

The quadratic factor by which the light weakens with increasing distance

coneAngleInner The light's inner cone angle

coneAngleOuter The light's outer cone angle

16.11. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

EB GUIDE TF
Chapter 16. References

Page 145 of 190

16.11.1. Common

16.11.1.1. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. Only the content of one
child widget is visible at a time.

Table 16.123. Properties of the Child visibility selection widget feature

Property name Description

containerIndex The index of the child widgets of the parent widget

containerMapping If a mapping is set, each child of the container is re-addressed by its appropriate
value in containerMapping.

If a mapping is not set, undefined, or if the length does not match the number
of child widgets in the container, the mapping is not used. Instead, the order of
widgets in the widget tree is used as their index. The topmost child has index 0,
next index 1 etc.

16.11.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 16.124. Properties of the Enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

16.11.1.3. Focused

The Focused widget feature enables a widget to have input focus.

Table 16.125. Properties of the Focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► not focusable (=0)

► only by touch (=1)

► only by key (=2)

EB GUIDE TF
Chapter 16. References

Page 146 of 190

Property name Description

► focusable (=3)

focused If true, the widget has focus

16.11.1.4. Multiple lines

The Multiple lines widget feature enables line breaks.

Restrictions:

► The Multiple lines widget feature is only available for the label widget.

Table 16.126. Properties of the Multiple lines widget feature

Property name Description

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

When the line gap is too small (high negative value), it has no effect anymore
and the text is rendered in one line. This occurs for example, when the font style
is set to PT_Sans_Narrow, size is set to 30 and the line gap is defined as
-50.

maxLineCount The maximum number of visible lines. 0 = no limitation

TIP Number of lines used
With the script function getLineCount, you can obtain the number of lines of the text.

For more information on this, see section 16.4.3.2.15, “getLineCount”.

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

16.11.1.5. Pressed

The Pressed widget feature defines that a widget can be pressed.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 147 of 190

► Adding the Pressed widget feature automatically adds the Focused widget feature.

Table 16.127. Properties of the Pressed widget feature

Property name Description

pressed If true, a key is pressed while the widget is focused

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

16.11.1.6. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 16.128. Properties of the Selected widget feature

Property name Description

selected If true, the widget is selected

16.11.1.7. Selection group

The Selection group widget feature is used to model a list of radio buttons. In the list, every radio button has
the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an application that sets the but-
tonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding a con-
dition that sets the button value.

Restrictions:

► Adding the Selection group widget feature automatically adds the Selected widget feature.

Table 16.129. Properties of the Selection group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is se-
lected.

EB GUIDE TF
Chapter 16. References

Page 148 of 190

16.11.1.8. Spinning

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 16.130. Properties of the Spinning widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction The reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the current-
Value property

valueWrapAround Possible values:

► true: The currentValue property continues at the inverse border, if min-
Value or maxValue is exceeded.

► false: The currentValue property does not decrease/increase, if min-
Value or maxValue is exceeded.

16.11.1.9. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area. The widget feature enables a different truncation than the default setting trailing.

Restrictions:

► The Text truncation widget feature is only available for the label widget.

Table 16.131. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, the truncationPolicy property defines the position of
the truncation. Possible values:

► leading (=0): Text is replaced at the beginning of the text

► trailing (=1): Text is replaced at the end of the text

EB GUIDE TF
Chapter 16. References

Page 149 of 190

Property name Description

For multi-line texts, the truncationPolicy property defines where text is re-
placed. Possible values:

► leading (=0): Lines at the beginning are replaced and text of the first vis-
ible line is truncated at the beginning of the text.

► trailing (=1) Lines at the end are replaced and text of the last visible
line is truncated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

16.11.1.10. Touched

The Touched widget feature enables a widget to react to touch input.

Table 16.132. Properties of the Touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react (=0): Press first, then the widget reacts. Notifica-
tions of moving and releasing are only active within the widget area.

► Press and grab (=1): Press to grab the contact. The contact remains
grabbed even if it moves away from the widget area.

► Press then react on contact (=3): Even if the contact enters the
pressed state outside the widget boundaries, the subsequent move and re-
lease events are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

► Whole area (=0): To identify the touched widget, the renderer evaluates
the widget's clipping rectangle.

► Visible pixels (=1): To identify the touched widget, the renderer eval-
uates the widget the touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Note that the Visible pixels value has no effect on labels.

EB GUIDE TF
Chapter 16. References

Page 150 of 190

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation
If performance is an important issue in your project, set the touchBehavior property to
Whole area (=0). EB GUIDE GTF evaluates Whole area (=0) faster than Visible
pixels (=1).

16.11.2. Effect

16.11.2.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Restrictions:

► The widget feature is available for rectangles.

Table 16.133. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

16.11.2.2. Coloration

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 16.3.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

EB GUIDE TF
Chapter 16. References

Page 151 of 190

Table 16.134. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The color used for the coloration

16.11.2.3. Stroke

The Stroke widget feature activates a configurable text outline, i.e. a label border.

Restrictions:

► The widget feature is available for labels.

Table 16.135. Properties of the Stroke widget feature

Property name Description

strokeEnabled If true, stroke is used

strokeThickness The thickness of the outline in pixels

strokeColor The color that is used to render the outline

16.11.3. Focus
The Focus widget feature category provides the widget features relating to focus management.

16.11.3.1. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. The Auto
focus widget feature checks the widget subtree for child widgets with the focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Restrictions:

► The widget feature Auto focus automatically adds the Focused widget feature.

Table 16.136. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrev The condition on which the focus index is decremented

EB GUIDE TF
Chapter 16. References

Page 152 of 190

Property name Description

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

16.11.3.2. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Restrictions:

► The widget feature User-defined focus automatically adds the Focused widget feature.

Table 16.137. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder The focusOrder property makes it possible to skip child widgets when assign-
ing focus. The ID of a child widget corresponds to its position in the subtree.
Child widgets that are not focusable are skipped by default. Order in which the
child widgets are focused:

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, otherwise widgets are
ignored for focus handling. Example: focusOrder=1|0|2 means the second wid-
get receives focus first, then the first widget receives focus, and finally the third
widget.

focusPrev The trigger that assigns the focus to the previous child

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy level (=0)

► wrap within hierarchy level (=1)

EB GUIDE TF
Chapter 16. References

Page 153 of 190

Property name Description

► step up in hierarchy (=2)

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

16.11.4. Gestures

16.11.4.1. Flick gesture

A quick brush of a contact over a surface

Restrictions:

► Adding the Flick gesture widget feature automatically adds the Gestures and Touched widget features.

Table 16.138. Properties of the Flick gesture widget feature

Property name Description

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: x-part of the direction vector of the gesture

► directionY: y-part of the direction vector of the gesture

flickMaxTime The maximal time in milliseconds the contact may stay in place for the gesture to
be recognized as a flick gesture

flickMinLength The minimal distance in pixels a contact has to move on the surface to be recog-
nized as a flick gesture

16.11.4.2. Hold gesture

A hold gesture without movement

Restrictions:

► Adding the Hold gesture widget feature automatically adds the Gestures and Touched widget features.

EB GUIDE TF
Chapter 16. References

Page 154 of 190

► The Hold gesture widget feature does not trigger the Touch lost widget feature.

Table 16.139. Properties of the Hold gesture widget feature

Property name Description

onGestureHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when holdDuration is expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

holdDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a hold gesture

16.11.4.3. Long hold gesture

A long hold gesture without movement

Restrictions:

► Adding the Long hold gesture widget feature automatically adds the Gestures and Touched widget
features.

► The Long hold gesture widget feature does not trigger the Touch lost widget feature.

Table 16.140. Properties of the Long hold gesture widget feature

Property name Description

onGestureLongHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when longHoldDuration has expired and the
contact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: x-coordinate of the contact position

► y: y-coordinate of the contact position

longHoldDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a long hold gesture

16.11.4.4. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

EB GUIDE TF
Chapter 16. References

Page 155 of 190

Restrictions:

► Adding the Path gesture widget feature automatically adds the Gestures and Touched widget features.

Table 16.141. Properties of the Path gesture widget feature

Property name Description

onPath The reaction that is triggered when the entered shape matches. The reaction is
only triggered if onPathStart has been triggered already. Reaction argument:

► gestureId: ID of the path that was matched

onPathStart The reaction that is triggered once a contact moves beyond the minimal box
(pathMinXBox, pathMinYBox.)

onPathNotRecognized The reaction that triggered when the entered shape does not match. The reac-
tion is only triggered if onPathStart has been triggered already.

pathMinXBox The x-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

pathMinYBox The y-coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

16.11.4.4.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 16.142. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

EB GUIDE TF
Chapter 16. References

Page 156 of 190

ID Shape Description

3 Horizontal line right to left

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

16.11.4.5. Pinch gesture

Two contacts that move closer together or further apart

Restrictions:

► Adding the Pinch gesture widget feature automatically adds the Gestures and Touched widget features.

Table 16.143. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart The reaction that is triggered once the start of the gesture is recog-
nized. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

EB GUIDE TF
Chapter 16. References

Page 157 of 190

Property name Description

onGesturePinchUpdate The reaction that is triggered when the pinch ratio or center point
change. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

onGesturePinchEnd The reaction that is triggered once the gesture is finished. Reaction ar-
guments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: x-coordinate of the current center point between the two
contacts

► centerY: y-coordinate of the current center point between the two
contacts

pinchThreshold The minimal distance in pixels each contact has to move from its initial
position for the gesture to be recognized

16.11.4.6. Rotate gesture

Two contacts that move along a circle

Restrictions:

► Adding the Rotate gesture widget feature automatically adds the Gestures and Touched widget features.

Table 16.144. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart The reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate The reaction that is triggered when the recognized angle or center point
changes

onGestureRotateEnd The reaction that is triggered once the gesture is finished

rotateThreshold The minimal distance in pixels each contact has to move from its initial
position for the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUp-
date:

EB GUIDE TF
Chapter 16. References

Page 158 of 190

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: x-coordinate of the current center point between the two contacts

► centerY: y-coordinate of the current center point between the two contacts

16.11.5. Input handling

16.11.5.1. Gestures

The Gestures widget feature enables the widget to react on touch gestures.

Restrictions:

► Adding the Gestures widget feature automatically adds the Touched widget feature.

► The Gestures widget feature has no additional properties.

16.11.5.2. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Restrictions:

► Adding the Key pressed widget feature automatically adds the Pressed and Focused widget features.

Table 16.145. Properties of the Key pressed widget feature

Property name Description

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: The ID of the key that is processed

16.11.5.3. Key released

The Key released widget feature enables a widget to react on a key being released.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 159 of 190

► Adding the Key released widget feature automatically adds the Pressed and Focused widget features.

Table 16.146. Properties of the Key released widget feature

Property name Description

keyShortReleased The widget's reaction on a key being released

Reaction argument:

► keyId: The ID of the key that is processed

16.11.5.4. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Restrictions:

► Adding the Key status changed widget feature automatically adds the Pressed and Focused widget
features.

Table 16.147. Properties of the Key status changed widget feature

Property name Description

keyStatusChanged The widget's reaction on a key being pressed or released

Reaction arguments:

► keyId: The ID of the key that is processed

► status: The numeric ID of the status change

16.11.5.5. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Restrictions:

► Adding the Key unicode widget feature automatically adds the Pressed and Focused widget features.

Table 16.148. Properties of the Key unicode widget feature

Property name Description

keyUnicode The widget's reaction on a Unicode key input

Reaction argument:

EB GUIDE TF
Chapter 16. References

Page 160 of 190

Property name Description

► keyId: The ID of the key that is processed

16.11.5.6. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Restrictions:

► Adding the Move in widget feature automatically adds the Touched widget feature.

Table 16.149. Properties of the Move in widget feature

Property name Description

moveIn The widget's reaction on a movement into its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.7. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Restrictions:

► Adding the Move out widget feature automatically adds the Touched widget feature.

Table 16.150. Properties of the Move out widget feature

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

EB GUIDE TF
Chapter 16. References

Page 161 of 190

16.11.5.8. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Restrictions:

► Adding the Move over widget feature automatically adds the Touched widget feature.

Table 16.151. Properties of the Move over widget feature

Property name Description

moveOver The widget's reaction on a movement within its boundaries

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.9. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Restrictions:

► Adding the Moveable widget feature automatically adds the Touched and Touch moved widget features.

Table 16.152. Properties of the Moveable widget feature

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► horizontal (=0)

► vertical (=1)

► free (=2)

16.11.5.10. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 162 of 190

► Adding the Rotary widget feature automatically adds the Focused widget feature.

Table 16.153. Properties of the Rotary widget feature

Property name Description

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts on an incoming
rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming
event is sent

16.11.5.11. Touch lost

The Touch lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Restrictions:

► Adding the Touch lost widget feature automatically adds the Touched widget feature.

Table 16.154. Properties of the Touch lost widget feature

Property name Description

onTouchGrabLost The widget's reaction on a lost touch contact

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.12. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 163 of 190

► Adding the Touch move widget feature automatically adds the Touched widget feature.

Table 16.155. Properties of the Touch move widget feature

Property name Description

touchMoved The widget's reaction on being touched and moved

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.13. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

Restrictions:

► Adding the Touch pressed widget feature automatically adds the Touched widget feature.

Table 16.156. Properties of the Touch pressed widget feature

Property name Description

touchPressed The widget's reaction on being pressed

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.14. Touch released

The Touch released widget feature enables a widget to react on being released.

Restrictions:

► Adding the Touch released widget feature automatically adds the Touched widget feature.

EB GUIDE TF
Chapter 16. References

Page 164 of 190

Table 16.157. Properties of the Touch released widget feature

Property name Description

touchShortReleased The widget's reaction on being released

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► fingerId: The ID of the contact that moves across the widget

16.11.5.15. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Restrictions:

► Adding the Touch status changed widget feature automatically adds the Touched widget feature.

Table 16.158. Properties of the Touch status changed widget feature

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

Reaction arguments:

► touchId: The ID of the touch screen the user has clicked or released

► x: The x-coordinate

► y: The y-coordinate

► touchStatus: The ID of the type of touch

Possible values:

► 0: new contact

► 1: touch press

► 2: touch move

► 3: touch released

► 4: movement without touch

► 5: touch gone

► 6: any status change

EB GUIDE TF
Chapter 16. References

Page 165 of 190

Property name Description

► fingerId: The ID of the contact that moves across the widget

16.11.6. Layout

16.11.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Restrictions:

► The Absolute layout widget feature excludes the following widget features:

► Box layout

► Flow layout

► Grid layout

► List layout

Table 16.159. Properties of the Absolute layout widget feature

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for the child widgets.
Each list element is mapped to a child widget.

itemTopOffset An integer list that stores the offset from the top border for the child widgets.
Each list element is mapped to a child widget.

itemRightOffset An integer list that stores the offset from the right border for the child widgets.
Each list element is mapped to a child widget.

itemBottomOffset An integer list that stores the offset from the bottom border for the child widgets.
Each list element is mapped to a child widget.

16.11.6.2. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 166 of 190

► The Box layout widget feature excludes the following widget features:

► Absolute layout

► Flow layout

► Grid layout

► List layout

Table 16.160. Properties of the Box layout widget feature

Property name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

16.11.6.3. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Flow layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Grid layout

► List layout

Table 16.161. Properties of the Flow layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

layoutDirection The direction in which the list elements i.e. the child widgets are posi-
tioned. Possible values:

► horizontal (=0)

► vertical (=1)

EB GUIDE TF
Chapter 16. References

Page 167 of 190

Property name Description

horizontalChildAlign The horizontal alignment of child widgets. Possible values:

► leading (=0): The child widget is placed in the center.

► center (=1): The child widget is placed at the top.

► trailing (=2): The child widget is placed at the bottom.

verticalChildAlign The vertical alignment of child widgets. Possible values:

► center (=0): The child widget is placed in the center.

► top (=1): The child widget is placed at the top

► bottom (=2): The child widget is placed at the bottom.

16.11.6.4. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Restrictions:

► The Grid layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► List layout

Table 16.162. Properties of the Grid layout widget feature

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

numRows Defines the number of rows

numColumns Defines the number of columns

16.11.6.5. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout, Ab-
solute layout, Box layout, or Grid layout widget feature.

EB GUIDE TF
Chapter 16. References

Page 168 of 190

Table 16.163. Properties of the Layout margins widget feature

Property name Description

leftMargin The margin of the left border

topMargin The margin of the top border

rightMargin The margin of the right border

bottomMargin The margin of the bottom border

16.11.6.6. List layout

The List layout widget feature defines position and size of each child widget.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, see section 16.11.7.2, “List index”.

Restrictions:

► The List layout widget feature is intended to be used with instantiator.

► The List layout widget feature excludes the following widget features:

► Absolute layout

► Box layout

► Flow layout

► Grid layout

Table 16.164. Properties of the List layout widget feature

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are positioned. Pos-
sible values:

► horizontal (=0)

► vertical (=1)

scrollOffset The amount of pixels to scroll the list

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is
translated to scrollIndex. The remaining offset is written to the scrollOff-
set property.

firstListIndex The list index of the first visible list element, defined by the widget feature

EB GUIDE TF
Chapter 16. References

Page 169 of 190

Property name Description

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at
the list elements given in the scrollIndex property.

scrollValue The current scroll value

scrollValueMax The maximum scroll value, which is mapped to the end of the list

scrollValueMin The minimum scroll value, which is mapped to the beginning of the list

bounceValue The bounceValue property is zero as long as the scrollOffset property re-
sults in a position inside the valid scroll range. It has a positive value if the scroll
position exceeds the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to scrollOffset,
the scroll position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll
range. scrollOffset is truncated if the user tries to scroll further.

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

listLength The number of list elements

wrapAround Possible values:

► true: The scrollValue property continues at the inverse border, if scrol-
lValueMin or scrollValueMax is exceeded.

► false: The scrollValue property does not decrease/increase, if scroll-
ValueMin or scrollValueMax is exceeded.

16.11.6.7. Scale mode

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

Restrictions:

► The Scale mode widget feature is only available for the widget image.

Table 16.165. Properties of the Scale mode widget feature

Property name Description

scaleMode The scale mode of the image. Possible values:

► 0 = original size

► 1 = fit to size

► 2 = keep aspect ratio

EB GUIDE TF
Chapter 16. References

Page 170 of 190

16.11.7. List management

16.11.7.1. Line index

The Line index widget feature defines the unique position for each line of your list or table.

Restrictions:

► The Line index widget feature is intended to be used in combination with instantiators.

Table 16.166. Properties of the Line index widget feature

Property name Description

lineIndex The index of the current line in a table

16.11.7.2. List index

The List index widget feature defines the unique position of a widget in a list.

Restrictions:

► The List index widget feature is intended to be used in combination with the List layout widget feature.

Table 16.167. Properties of the List index widget feature

Property name Description

listIndex The index of the current widget in a list

16.11.7.3. Template index

The Template index widget feature defines the unique position of the used line template.

Restrictions:

► The Template index widget feature is intended to be used in combination with instantiators.

Table 16.168. Properties of the Template index widget feature

Property name Description

lineTemplateIndex The index of the used line template

16.11.7.4. Viewport

EB GUIDE TF
Chapter 16. References

Page 171 of 190

The Viewport widget feature clips oversized elements at the widget borders.

Restrictions:

► The Viewport widget feature is intended to be used in combination with containers or lists.

► The Viewport widget feature takes effect on the following model elements:

► Child widgets of the widget you added Viewport to are clipped inside the dimensions of the widget.

► The widget you added Viewport is clipped inside the dimensions of its parent view.

Table 16.169. Properties of the Viewport widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

16.11.8. 3D
Widget features in the 3D category are only available for 3D widgets.

16.11.8.1. Camera viewport

The Camera viewport widget feature defines the camera's drawing region within the scene graph.

Restrictions:

► The Camera viewport widget feature is available for camera.

Table 16.170. Properties of the Camera viewport widget feature

Property name Description

viewportX The x-origin of the viewport within the scene graph

viewportY The y-origin of the viewport within the scene graph

viewportWidth The viewport's width in pixels

viewportHeight The viewport's height in pixels

16.11.8.2. Ambient texture

The Ambient texture widget feature adds extended configuration values to a material.

Restrictions:

EB GUIDE TF
Chapter 16. References

Page 172 of 190

► The Ambient texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 16.171. Properties of the Ambient texture widget feature

Property name Description

ambientTexture The file name of the texture

ambientTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

ambientFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.3. Diffuse texture

The Diffuse texture widget feature adds extended configuration values to a material.

Restrictions:

► The Diffuse texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 16.172. Properties of the Diffuse texture widget feature

Property name Description

diffuseTexture The file name of the texture

diffuseTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE TF
Chapter 16. References

Page 173 of 190

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

diffuseFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

diffuseSRGB If this property is enabled, the texture that is selected in diffuseTex-
ture, is rendered using sRGB color space.

Note that to use sRGB functionality, in the project center under Con-
figure > Profiles for the colorMode property select 32-bit sRGB
(=4) or 32-bit sRGB (Emulated) (=5).

16.11.8.4. Emissive texture

The Emissive texture widget feature adds extended configuration values to a material.

Restrictions:

► The Emissive texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 16.173. Properties of the Emissive texture widget feature

Property name Description

emissiveTexture The file name of the texture

emissiveTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE TF
Chapter 16. References

Page 174 of 190

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

emissiveFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.5. Light map texture

The Light map texture widget feature adds extended configuration values to a material.

Restrictions:

► The Light map texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 16.174. Properties of the Light map texture widget feature

Property name Description

lightMapTexture The file name of the texture

lightMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

EB GUIDE TF
Chapter 16. References

Page 175 of 190

Property name Description

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

lightMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.6. Normal map texture

The Normal map widget feature adds extended configuration values to a material.

Restrictions:

► The Normal map texture widget feature is available for material, PBR Phong material, and PBR GGX
material.

Table 16.175. Properties of the Normal map widget feature

Property name Description

normalMapTexture The file name of the texture

normalMapTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapTextureAddress-

ModeV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

normalMapFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

EB GUIDE TF
Chapter 16. References

Page 176 of 190

Property name Description

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.7. Opaque texture

The Opaque texture widget feature adds extended configuration values to a material.

Restrictions:

► The Opaque texture widget feature is available for material, PBR Phong material, and PBR GGX material.

Table 16.176. Properties of the Opaque texture widget feature

Property name Description

opaqueTexture The file name of the texture

opaqueTextureAddressModeU The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

opaqueTextureAddressModeV The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

opaqueFilterMode The filter mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.8. Reflection texture

EB GUIDE TF
Chapter 16. References

Page 177 of 190

The Reflection texture widget feature adds extended configuration values to a material.

Restrictions:

► The Reflection texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 16.177. Properties of the Reflection texture widget feature

Property name Description

reflectionTopTexture The file name of the texture

reflectionBottomTexture The file name of the texture

reflectionLeftTexture The file name of the texture

reflectionRightTexture The file name of the texture

reflectionFrontTexture The file name of the texture

reflectionBackTexture The file name of the texture

reflectionFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

NOTE Reflection texture widget feature
EB GUIDE Studio displays the Reflection texture widget feature, only when an image file
is selected for all of the following properties:

► reflectionTopTexture

► reflectionBottomTexture

► reflectionLeftTexture

► reflectionRightTexture

► reflectionFrontTexture

► reflectionBackTexture

The image files must have the same size.

16.11.8.9. Specular texture

EB GUIDE TF
Chapter 16. References

Page 178 of 190

The Specular texture widget feature adds extended configuration values to a material.

Restrictions:

► The Specular texture widget feature is available for material, PBR Phong material, and PBR GGX ma-
terial.

Table 16.178. Properties of the Specular texture widget feature

Property name Description

specularTexture The file name of the texture

specularTextureAddress-

ModeU

The address mode of the texture along the u-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularTextureAddressMod-

eV

The address mode of the texture along the v-direction. Possible values:

► repeat (=0): When accessed outside the texture bounds, the
texture is repeated. Also known as wrap or tile

► clamp (=1): When accessed outside the texture bounds, the pix-
els at the edge of the texture are used.

specularFilterMode The filtering mode of the texture. Possible values:

► point (=0): Texture is not smoothed at all. Least expensive but
prone to aliasing artifacts when texture is minimized.

► linear (=1): Also known as bilinear filtering. Smoothens the
texture when minimized to reduce aliasing artifacts.

► trilinear (=2): Most expensive, but yields better results than
linear filtering.

16.11.8.10. Tone mapping

The Tone mapping widget feature enables tone mapping, i.e. the technique to map a luminance value to a
limited range, for the scene graph.

Restrictions:

► The Tone mapping widget feature is available for the scene graph.1Photographic tone reproduction for digital images Reinhard, Erik et al. in "Proceedings of the 29th annual conference on Computer
graphics and interactive techniques" 2002, Pages 267-276

EB GUIDE TF
Chapter 16. References

Page 179 of 190

Note that the Tone mapping widget feature implements the global tone mapping operator described by Erik
Reinhard et al. 1

Table 16.179. Properties of the Tone mapping widget feature

Property name Description

pureWhiteLuminance The smallest luminance value that is mapped to pure white. Note that
only values bigger or equal to 0 are valid.

Figure 16.3. Example for image without tone mapping (left) and with tone mapping (right)

16.11.9. Transformation
The widget features of the category Transformation modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

6. Rotation around x-axis

16.11.9.1. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

EB GUIDE TF
Chapter 16. References

Page 180 of 190

Restrictions:

► Adding the Pivot widget feature automatically adds the Rotation, Scaling and Shearing widget features.

Table 16.180. Properties of the Pivot widget feature

Property name Description

pivotX The pivot point on the x-axis relative to parent widget

pivotY The pivot point on the y-axis relative to parent widget

pivotZ The pivot point on the z-axis relative to parent widget if widget is a scene graph

16.11.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 16.181. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX The rotation angle on the x-axis. This property only affects scene graph.

rotationAngleY The rotation angle on the y-axis. This property only affects scene graph.

rotationAngleZ The rotation angle on the z-axis

16.11.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 16.182. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX The scaling on the x-axis in percent

scalingY The scaling on the y-axis in percent

scalingZ The scaling on the z-axis in percent if widget is a scene graph

16.11.9.4. Shearing

The Shearing widget feature is used to distort widgets in the widget subtree.

EB GUIDE TF
Chapter 16. References

Page 181 of 190

Table 16.183. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY The shearing amount of x-axis by y-axis

shearingXbyZ The shearing amount of x-axis by z-axis if widget is a scene graph

shearingYbyX The shearing amount of y-axis by x-axis

shearingYbyZ The shearing amount of y-axis by z-axis if widget is a scene graph

shearingZbyX The shearing amount of z-axis by x-axis if widget is a scene graph

shearingZbyY The shearing amount of z-axis by y-axis if widget is a scene graph

16.11.9.5. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 16.184. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX The translation on the x-axis

translationY The translation on the y-axis

translationZ The translation on the z-axis if widget is a scene graph

Glossary

Page 182 of 190

Glossary

#
3D graphic A 3D graphic is a virtual picture of a 3D scene. A 3D scene is a collection of 3D

models (meshes or shapes), materials, light sources, and cameras. Materials
define the visual appearance of 3D models through colors and textures and
the behavior under virtual lighting. A camera provides the view point from
where a virtual picture of the 3D scene is taken.

A
API Application programming interface

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

Glossary

Page 183 of 190

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE product line. It
consists of EB GUIDE GTF and EB GUIDE STF. It is required to run an EB
GUIDE model.

G
GL Graphical library

GUI Graphical user interface

H
HMI Human machine interface

L
library A library is a set of resources used in EB GUIDE Studio. Libraries that are

necessary for an EB GUIDE project are defined in the project center.

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

Glossary

Page 184 of 190

O
OS Operating system

P
PBR Physically-based rendering

profile In the project center, a profile is a set of specifications. In a profile you define li-
braries, messages and scenes for your project. During export of an EB GUIDE
model the data in the profile is written to the model.json configuration file.

project center All project-related functions are located in the project center, for example pro-
files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

R
resource A resource is a data package that is part of the EB GUIDE project. Examples

for resources are fonts, images, meshes. Resources are stored outside of the
EB GUIDE model, for example in files, depending on the operating system.

S
shared library A shared library, as opposed to a static library, can be loaded when preparing

a program for execution. On Windows platforms shared libraries are called
dynamic link libraries and have a .dll file extension. On Unix systems shared
libraries are called shared objects and have an .so file extension.

state A state defines the status of the state machine. States and state transitions
are modeled in state charts.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

Glossary

Page 185 of 190

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

Index

Page 186 of 190

Index
Symbols
3D graphic, 182
3D widgets

reference, 139

A
absolute layout

reference, 165
alpha mask

reference, 130
ambient light

reference, 139
ambient texture

reference, 171
Android APK, 42
Android APK restrictions , 45
animation

reference, 131
API, 182
auto focus

reference, 151

B
basic widgets

reference, 129
boolean

data type, 84
boolean list

data type, 85
border

reference, 150
box layout

reference, 165

C
C++ exception, 46
camera

reference, 139
camera viewport

reference, 171
child visibility selection

reference, 145
color

data type, 85
coloration

reference, 150
command line, 30
communication context, 182
conditional script

data type, 85
configuration file, 29, 56, 113, 122
Configuration module, 32
constant curve

reference, 132
container

reference, 136
core modules, 32
custom stage, 28

D
data type

boolean, 84
boolean list, 85
color, 85
conditional script, 85
float, 86
font, 86
image, 86
integer, 87
list, 87
mesh, 84
mesh list, 84
string, 88

datapool, 182
datapool item, 182

reference, 84
DependencyResolver

backgound, 32
instructions, 63
interface, 33

Diagnostic module, 32

Index

Page 187 of 190

diffuse texture
reference, 172

directional light
reference, 140

DirectX 11, 29

E
EB GUIDE GTF, 182
EB GUIDE GTF SDK, 182
EB GUIDE Launcher, 43
EB GUIDE model, 182
EB GUIDE Model Chooser, 43
EB GUIDE Monitor, 42
EB GUIDE product line, 182
EB GUIDE Script, 182
EB GUIDE Script functions, 40
EB GUIDE SDK, 182
EB GUIDE Studio, 182
EB GUIDE Studio SDK;, 182
EB GUIDE TF, 182
effect

widget feature, 150
ellipse

reference, 136
emissive texture

reference, 173
enabled

reference, 145
entry animation

reference, 129
event

reference, 113
executable file, 29
exit animation

reference, 129

F
fast start curve

reference, 132
flick gesture

reference, 153
float

data type, 86
flow layout

reference, 166
focused

reference, 145
font

data type, 86

G
gesture

reference, 153, 158
gesture ID

reference, 155
GL, 183
grid layout

reference, 167
GtfPluginLoader, 29
GtfStartup.exe, 29, 30
GUI, 183

H
hit testing, 42
HMI, 183
hold gesture

reference, 153

I
image

data type, 87
reference, 137

instantiator
line template, 137
reference, 137

integer
data type, 87

K
key pressed

reference, 158
key released

reference, 158
key status changed

Index

Page 188 of 190

reference, 159
key unicode

reference, 159

L
label

reference, 138
layout margins

reference, 167
library, 183
life cycle, 26
light map texture

reference, 174
line index

reference, 170
linear curve, 135
linear interpolation curve, 135
list

data type, 87
list index

reference, 170
list layout

reference, 168
long hold gesture

reference, 154

M
material

PBR GGX material, 141, 184
PBR Phong material, 142, 184
reference, 140, 141, 142

mesh
data type, 84
reference, 140

mesh list
data type, 84

model element, 183
model.json, 29, 30, 113

profile, 56
move in

reference, 160
move out

reference, 160
move over

reference, 161
moveable

reference, 161
multiple lines

reference, 146
multisampling, 128

N
normal map texture

reference, 175

O
opaque texture

reference, 176
OpenGL ES, 29
OS, 184

P
path gesture

reference, 154, 155
pinch gesture

reference, 156
pivot

reference, 179
platform.json, 30, 122
point light

reference, 142
POSIX signal, 47
pressed

references, 146
profile, 184

model.json, 56
project center, 184
project editor, 184

Q
quadratic curve

reference, 133

Index

Page 189 of 190

R
rectangle

reference, 138
reflection texture

reference, 176
resource, 184
RomFS, 47
rotary

reference, 161
rotate gesture

reference, 157
rotation

reference, 180

S
scale mode

reference, 169
scaling

reference, 180
scene configuration

reference, 126
scene graph

reference, 143
scene graph node

reference, 143
script curve, 134
selected

reference, 147
selection group

reference, 147
shared library, 29, 184
shearing

reference, 180
simulation, 42
sinus curve

reference, 134
slow start curve

reference, 133
specular texture

reference, 177
spinning

reference, 148

spot light
reference, 144

stage, 28
state, 184
state machine, 184
string

data type, 88
stroke

reference, 151

T
target framework, 42
template index

reference, 170
text truncation

reference, 148
tone mapping

reference, 178
touch handling, 42
touch lost

reference, 162
touch move

reference, 162
touch pressed

reference, 163
touch released

reference, 163
touch status changed

reference, 164
touched

reference, 149
transition, 184
translation

reference, 181

U
UI, 185
user-defined focus

reference, 152

V
view, 185

Index

Page 190 of 190

reference, 128
view template

reference, 128, 129
viewport

reference, 170

W
widget, 185
wigdets

rendering, 41

	EB GUIDE TF
	Table of Contents
	1.About this documentation
	1.1. Target audiences of the user documentation
	1.1.1. System integrators
	1.1.2. Application developers
	1.1.3. Extension developers

	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Simulating the EB GUIDE model
	4.2.5. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Background information
	5.1. Overview of EB GUIDE TF
	5.1.1. Architecture of EB GUIDE GTF
	5.1.2. Life cycle
	5.1.2.1. Core life cycle
	5.1.2.2. EB GUIDE model life cycle

	5.1.3. Deployment structure of EB GUIDE TF
	5.1.4. The GtfStartup.exe executable file
	5.1.4.1. Command line options

	5.2. EB GUIDE GTF core modules
	5.2.1. Diagnostic module
	5.2.2. Configuration module
	5.2.3. DependencyResolver module
	5.2.3.1. Interfaces

	5.3. Interaction between HMI and applications
	5.3.1. Event system
	5.3.1.1. Event publication
	5.3.1.2. Event receipt

	5.3.2. Datapool
	5.3.2.1. Identifiers of datapool items
	5.3.2.2. Synchronisation of datapool items
	5.3.2.3. Windowed lists

	5.4. Extensions to EB GUIDE TF
	5.4.1. Model elements
	5.4.1.1. Property descriptor
	5.4.1.2. Property constant descriptor

	5.4.2. Widgets
	5.4.3. EB GUIDE Script functions
	5.4.3.1. The EB GUIDE Script run-time stack
	5.4.3.2. The foreign function interface

	5.4.4. Rendering widgets
	5.4.4.1. Rendering
	5.4.4.2. Touch handling

	5.5. Simulation with EB GUIDE Monitor
	5.5.1. Communication with EB GUIDE TF

	5.6. Android APK
	5.6.1. System requirements
	5.6.2. Features of the EB GUIDE TF APK
	5.6.3. Description of the EB GUIDE TF APK files
	5.6.3.1. Released APK and custom APK
	5.6.3.2. Restrictions

	5.6.4. Android life cycle management
	5.6.5. Directory for EB GUIDE models
	5.6.6. Android layout handling

	5.7. Integration
	5.7.1. EB GUIDE TF and C++ exceptions
	5.7.2. EB GUIDE TF and POSIX signals
	5.7.3. Read-only file system support

	5.8. Programming concept
	5.8.1. Observer patterns and callbacks
	5.8.2. Functors
	5.8.2.1. Initialization of functor templates
	5.8.2.2. FunctorX value behavior
	5.8.2.3. Argument binding with functor objects

	5.8.3. Delegates
	5.8.3.1. Creation of a delegate

	5.9. Inter-process communication

	6.Executing an EB GUIDE model on target framework
	6.1. Configuring profiles
	6.2. Exporting an EB GUIDE model
	6.3. Configuring the system start

	7.Using the Configuration module
	7.1. Retrieving an item from the Configuration module
	7.2. Adding a scalar item to the Configuration module
	7.3. Adding a list item to the Configuration module
	7.4. Creating a path value using the Configuration module
	7.5. Adding elements of a .json file to the Configuration module

	8.Using the Diagnostic module
	8.1. Logging messages
	8.2. Redirecting your logged messages into a file

	9.Using the DependencyResolver module
	9.1. Retrieving an item from DependecyContainer
	9.2. Retrieving all instances registered to an interface
	9.3. Registering an instance to the container
	9.4. Unregistering an instance
	9.5. Registering a catalog
	9.6. Unregistering a catalog
	9.7. Creating a container

	10.Using the EB GUIDE TF plugin mechanism
	10.1. Creating an EB GUIDE TF plugin
	10.2. Adding an EB GUIDE TF plugin
	10.3. Writing an EB GUIDE TF plugin
	10.4. Copying the resulting .dll file
	10.5. Starting the simulation with GtfStartup.exe

	11.Extending EB GUIDE Script with foreign functions
	12.Adding widgets and widget features
	12.1. Example of the extended container widget
	12.2. Example of the widget feature for focus behavior of rectangles

	13.Using and creating an Android APK for EB GUIDE TF
	13.1. Executing an exported EB GUIDE model on Android
	13.2. Creating your own Android APK using the template
	13.3. Creating your own Android APK from scratch

	14.Evaluating memory usage
	15.Creating a read-only file system (RomFS) container
	16.References
	16.1. Android events
	16.2. Datapool items
	16.3. Data types
	16.3.1. Mesh
	16.3.2. Boolean
	16.3.3. Color
	16.3.4. Conditional script
	16.3.5. Float
	16.3.6. Font
	16.3.7. Image
	16.3.8. Integer
	16.3.9. List
	16.3.10. String

	16.4. EB GUIDE Script
	16.4.1. EB GUIDE Script keywords
	16.4.2. EB GUIDE Script operator precedence
	16.4.3. EB GUIDE Script standard library
	16.4.3.1. EB GUIDE Script functions A
	16.4.3.1.1. abs
	16.4.3.1.2. absf
	16.4.3.1.3. acosf
	16.4.3.1.4. animation_before
	16.4.3.1.5. animation_beyond
	16.4.3.1.6. animation_cancel
	16.4.3.1.7. animation_cancel_end
	16.4.3.1.8. animation_cancel_reset
	16.4.3.1.9. animation_pause
	16.4.3.1.10. animation_play
	16.4.3.1.11. animation_reverse
	16.4.3.1.12. animation_running
	16.4.3.1.13. animation_set_time
	16.4.3.1.14. asinf
	16.4.3.1.15. atan2f
	16.4.3.1.16. atan2i
	16.4.3.1.17. atanf

	16.4.3.2. EB GUIDE Script functions C - H
	16.4.3.2.1. ceil
	16.4.3.2.2. changeDynamicStateMachinePriority
	16.4.3.2.3. character2unicode
	16.4.3.2.4. clearAllDynamicStateMachines
	16.4.3.2.5. color2string
	16.4.3.2.6. cosf
	16.4.3.2.7. deg2rad
	16.4.3.2.8. expf
	16.4.3.2.9. float2string
	16.4.3.2.10. floor
	16.4.3.2.11. focusNext
	16.4.3.2.12. focusPrevious
	16.4.3.2.13. format_float
	16.4.3.2.14. format_int
	16.4.3.2.15. getLineCount
	16.4.3.2.16. getTextHeight
	16.4.3.2.17. getTextLength
	16.4.3.2.18. getTextWidth
	16.4.3.2.19. has_list_window
	16.4.3.2.20. hsba2color

	16.4.3.3. EB GUIDE Script functions I - R
	16.4.3.3.1. int2float
	16.4.3.3.2. int2string
	16.4.3.3.3. isDynamicStateMachineActive
	16.4.3.3.4. language
	16.4.3.3.5. localtime_day
	16.4.3.3.6. localtime_hour
	16.4.3.3.7. localtime_minute
	16.4.3.3.8. localtime_month
	16.4.3.3.9. localtime_second
	16.4.3.3.10. localtime_weekday
	16.4.3.3.11. localtime_year
	16.4.3.3.12. log10f
	16.4.3.3.13. logf
	16.4.3.3.14. nearbyint
	16.4.3.3.15. popDynamicStateMachine
	16.4.3.3.16. powf
	16.4.3.3.17. pushDynamicStateMachine
	16.4.3.3.18. rad2deg
	16.4.3.3.19. rand
	16.4.3.3.20. shutdown
	16.4.3.3.21. rgba2color
	16.4.3.3.22. round

	16.4.3.4. EB GUIDE Script functions S - W
	16.4.3.4.1. seed_rand
	16.4.3.4.2. sinf
	16.4.3.4.3. skin
	16.4.3.4.4. sqrtf
	16.4.3.4.5. string2float
	16.4.3.4.6. string2int
	16.4.3.4.7. string2string
	16.4.3.4.8. substring
	16.4.3.4.9. system_time
	16.4.3.4.10. system_time_ms
	16.4.3.4.11. tanf
	16.4.3.4.12. trace_dp
	16.4.3.4.13. trace_string
	16.4.3.4.14. transformToScreenX
	16.4.3.4.15. transformToScreenY
	16.4.3.4.16. transformToWidgetX
	16.4.3.4.17. transformToWidgetY
	16.4.3.4.18. trunc
	16.4.3.4.19. widgetGetChildCount

	16.5. Events
	16.6. model.json configuration file
	16.6.1. Example model.json in EB GUIDE Studio

	16.7. platform.json configuration file
	16.7.1. Example platform.json in EB GUIDE Studio

	16.8. Scenes
	16.9. Touch screen types supported by EB GUIDE GTF
	16.10. Widgets
	16.10.1. View
	16.10.2. Basic widgets
	16.10.2.1. Alpha mask
	16.10.2.2. Animation
	16.10.2.2.1. Constant curves
	16.10.2.2.2. Fast start curves
	16.10.2.2.3. Slow start curves
	16.10.2.2.4. Quadratic curves
	16.10.2.2.5. Sinus curves
	16.10.2.2.6. Script curves
	16.10.2.2.7. Linear curves
	16.10.2.2.8. Linear interpolation curves

	16.10.2.3. Container
	16.10.2.4. Ellipse
	16.10.2.5. Image
	16.10.2.6. Instantiator
	16.10.2.7. Label
	16.10.2.8. Rectangle

	16.10.3. 3D widgets
	16.10.3.1. Ambient light
	16.10.3.2. Camera
	16.10.3.3. Directional light
	16.10.3.4. Material
	16.10.3.5. Mesh
	16.10.3.6. PBR GGX material
	16.10.3.7. PBR Phong material
	16.10.3.8. Point light
	16.10.3.9. Scene graph
	16.10.3.10. Scene graph node
	16.10.3.11. Spot light

	16.11. Widget features
	16.11.1. Common
	16.11.1.1. Child visibility selection
	16.11.1.2. Enabled
	16.11.1.3. Focused
	16.11.1.4. Multiple lines
	16.11.1.5. Pressed
	16.11.1.6. Selected
	16.11.1.7. Selection group
	16.11.1.8. Spinning
	16.11.1.9. Text truncation
	16.11.1.10. Touched

	16.11.2. Effect
	16.11.2.1. Border
	16.11.2.2. Coloration
	16.11.2.3. Stroke

	16.11.3. Focus
	16.11.3.1. Auto focus
	16.11.3.2. User-defined focus

	16.11.4. Gestures
	16.11.4.1. Flick gesture
	16.11.4.2. Hold gesture
	16.11.4.3. Long hold gesture
	16.11.4.4. Path gestures
	16.11.4.4.1. Gesture IDs

	16.11.4.5. Pinch gesture
	16.11.4.6. Rotate gesture

	16.11.5. Input handling
	16.11.5.1. Gestures
	16.11.5.2. Key pressed
	16.11.5.3. Key released
	16.11.5.4. Key status changed
	16.11.5.5. Key unicode
	16.11.5.6. Move in
	16.11.5.7. Move out
	16.11.5.8. Move over
	16.11.5.9. Moveable
	16.11.5.10. Rotary
	16.11.5.11. Touch lost
	16.11.5.12. Touch move
	16.11.5.13. Touch pressed
	16.11.5.14. Touch released
	16.11.5.15. Touch status changed

	16.11.6. Layout
	16.11.6.1. Absolute layout
	16.11.6.2. Box layout
	16.11.6.3. Flow layout
	16.11.6.4. Grid layout
	16.11.6.5. Layout margins
	16.11.6.6. List layout
	16.11.6.7. Scale mode

	16.11.7. List management
	16.11.7.1. Line index
	16.11.7.2. List index
	16.11.7.3. Template index
	16.11.7.4. Viewport

	16.11.8. 3D
	16.11.8.1. Camera viewport
	16.11.8.2. Ambient texture
	16.11.8.3. Diffuse texture
	16.11.8.4. Emissive texture
	16.11.8.5. Light map texture
	16.11.8.6. Normal map texture
	16.11.8.7. Opaque texture
	16.11.8.8. Reflection texture
	16.11.8.9. Specular texture
	16.11.8.10. Tone mapping

	16.11.9. Transformation
	16.11.9.1. Pivot
	16.11.9.2. Rotation
	16.11.9.3. Scaling
	16.11.9.4. Shearing
	16.11.9.5. Translation

	Glossary
	Index

