From navigation towards autonomous driving – How maps and dynamic services support

Tobias Engelen October 05, 2016

Autonomous Driving – The Vision

wepods.com

volvocars.com

google.com

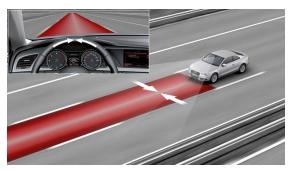
mercedes-benz.com

Key goals of autonomous driving

- Increased safety based on the assumption that autonomous vehicles will cause less accidents than manually operated cars
- Enhanced driving comfort and possibility to work, relax or access entertainment while driving
- New mobility models based on driverless taxis/transport
- Freeing up of city land due to more condensed and/or off-site parking capabilities of future autonomous cars
- Less traffic jams and improved traffic flow by autonomous driving

Autonomous Driving – Piloted Driving Today

Mercedes Drive Pilot incl. Active Lance-Change Assistant


Mercedes-Benz Deutschland

Tesla Autopilot incl. Auto Lane Change

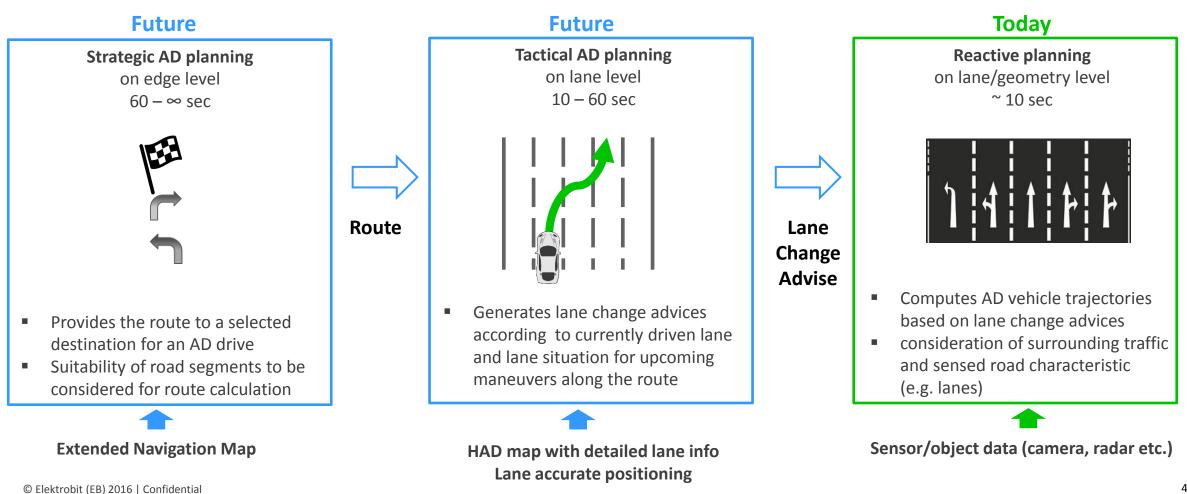
www.tesla.com

Audi Active Lane Assist and Predictive Efficiency Assistant

www.audi.com

BMW Active Driving Assistant Plus

www.bmw.ch


Major Scope

- Speed Control
 - Adjust speed according to set maximum speed and traffic ahead
 - Advanced systems additionally adjust speed according to the topography of the route and speed limits
- Steering Control
 - Follow current lane and/or car for a certain time
 - Perform lane change manually triggered by driver

Piloted Driving – Closing the gap – Next Steps

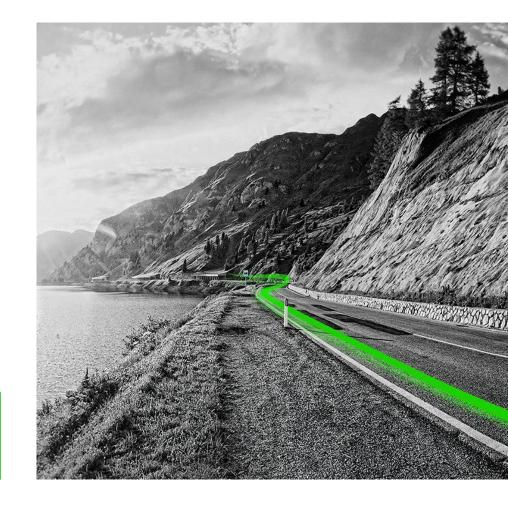
Combining strategical, tactical and reactive planning for autonomous driving

Piloted Driving Today – Reactive Planning

Characteristics

- Current auto drive systems are heavily relying on locally sensed data
 - Typical sensor set: camera and radar
 - Lane geometries based on camera sensed lane markings for steering control
 - Object detection for velocity control and collision prevention
- Map data only used to certain extend
 - e.g. road class for system activation/deactivation
 - Speed limits and road geometries for speed control
- Lane changes not triggered automatically
 - Driver initiates lane change

Piloted driving uses locally sensed data, driver triggers activities



Piloted Driving Next – Strategical Planning

Closing the gap: Selection of a suitable route

- Autonomous Driving is based on a routing destination
- Route calculation using suitable AD road preferences for entire trip
 - e.g. selection of route with smallest possible length of segments not suited for AD
 - Routing needs to consider parameters like road class, lane separation and ADAS accuracy in addition to route length and travel time
- Route might be updated while driving based on dynamic information
 - traffic situation
 - Local hazard warnings

Routing technology provided by common navigation systems based on extended navigation map data

Piloted Driving Next – Tactical Planning

Closing the gap: Choice of lanes along the route

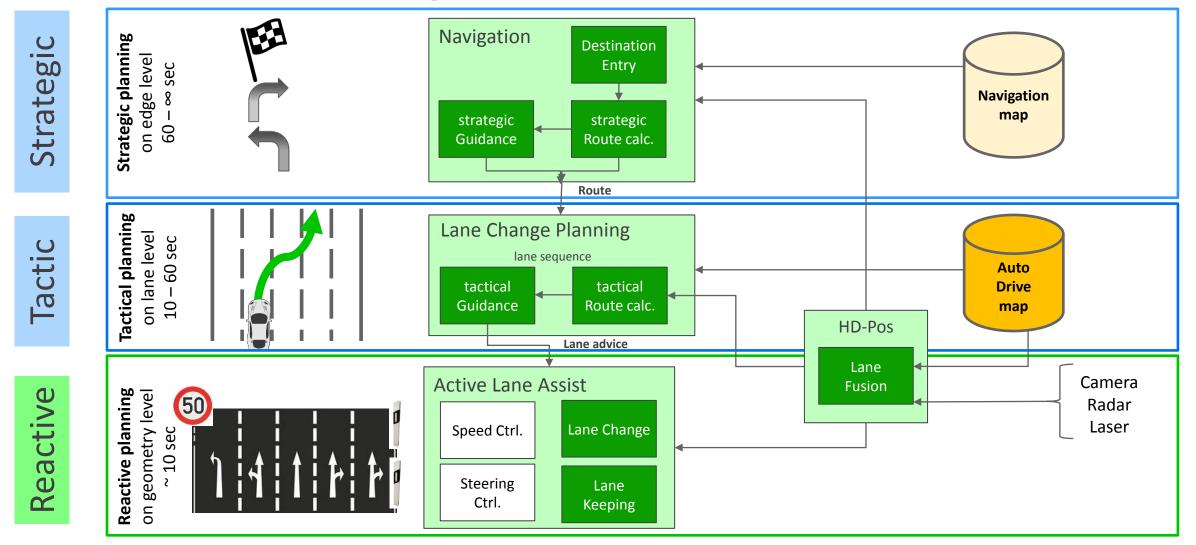
- Selection of suitable lanes along the route based on map data with detailed lane information (e.g. lane connectivity, lane marking types)
- Determination of current lane based on HAD map with detailed lane information (e.g. lane geometry)
- Planning of required lane changes based on current lane and recommended lane(s)
- Hand over of lane change advises to active lane-change assistant

Combination of lane accurate map matching and lane accurate maneuver generation based on HAD map data



Map Data for Autonomous Driving

HAD map data for autonomous driving

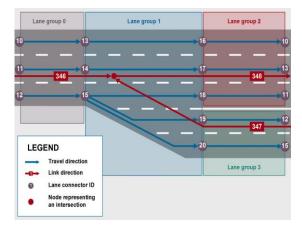

- AD support for areas with continuous lane markings
 - Precise lane information is needed for lane accurate positioning and tactical planning of lane changes
 - Required data includes lane geometries, lane markings and lane connectivity
- Extensions required for areas without continuous lane markings
 - Geometry of driving path(s) along road segments
 - Geometries of intersection internal lane transitions

HAD Map data is a crucial prerequisite for autonomous driving

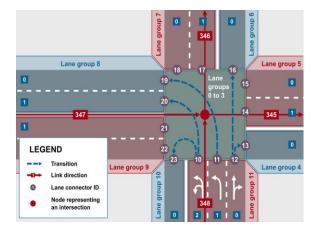
Architecture: Strategic – Tactic – Reactive

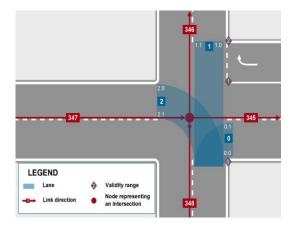
Map Data for Autonomous Driving

Standardization



- NDS Working Group 3 AutoDrive is working on the definition of maps for autonomous driving NDS Association has publically released the NDS Open Lane Model
- ADASIS_

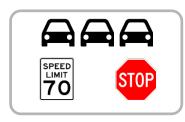

ADASIS Forum is working on a new version of the ADASIS protocol allowing the distribution of lane accurate AD map data within the vehicle


Open AutoDrive acts as cross-domain platform driving standardizations in the area of autonomous driving

Lane connectivity

Lane transitions across intersections

Lane boundaries at intersections



Dynamic Services for Autonomous Driving

Dynamic map download of Auto Drive map data can support handling

- Increased size of HAD maps caused by increased level of detail
- Need for always up to date map data

Dynamic information with lane accuracy for best-possible usage within HAD services

- Example: Traffic information
- Example: Dynamic opening of hard shoulder, variable speed signs

Standardization consortia already discuss concepts for dynamic services for HAD

- NDS Working Group 2 "Hybrid": concepts for loadable map data and volatile data
- TISA TPEG: Introduction of lane level accuracy for traffic information
- Open Auto Drive Live Map Delivery Chain Taskforce: Coordination of TISA and NDS activities regarding dynamic services for autonomous driving

Summary

- Today's AD systems requiring driver control
- Navigation's strategical and tactical planning improves AD systems significantly
- HAD maps are building the foundation for accurate vehicle positioning and lane change planning
- Innovative map update/download concepts and enhanced dynamic services ensure accuracy of HAD data bases
- TomTom, Elektrobit are actively contributing with industry key players to further define standards of map data and dynamic services targeting autonomous driving

Thank you for your attention!

Tobias.Engelen@elektrobit.com www.elektrobit.com

