
EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

       NAMESPACES You have to prefix model elements when referring to them.  
The following prefixes exist: dp: for datapool items, ev: for events,  
v: for local variables, f: for functions

dp:x = 100;   // set a datapool item
fire ev:back();   // fire an event
f:trace_string(“hello world”);   // call a function

         ACCESSING  
DATAPOOL 
ITEMS

Write a datapool item by placing it at the left side of an assignment. Read a 
datapool item by using it anywhere else in an expression. The redirect refe-
rence (=>) is a special form of datapool item assignment.

dp:x = 5;   // writing to x
dp:x = dp:y + dp:z;   // reading y and z
length dp:aList; //  read the length of a list datapool item
dp:refX => dp:x;  // redirect

         SENDING 
EVENTS

Syntax:
fire ev:<identifier>(<parameter-list>);

Events can be fired after a timeout.
This delayed event can be canceled with the cancel_fire expression.

Syntax:
fire_delayed <timeout>, ev:<identifier>(<parameter-list>);
cancel_fire ev:<identifier>;

fire ev:back();
fire ev:mouseClick(10, 20);

fire_delayed 3000, ev:back();    // send the event 
“back” in 3 seconds.

cancel_fire ev:back;   // cancel the event

         REACTING ON 
EVENTS

To react on events, use match_event. This is a special form of the if-then-
else statement. If and else branch must have the same type. If used at the 
right side of an assignment, the else branch is mandatory.

Syntax:
match_event v:<identifier> = ev:<identifier>
in <sequence>
else <sequence>

match_event v:event = ev:back in {
 f:trace_string(“back event received”);
}

v:this.x = match_event v:event = ev:back in 10 else 
0;

         ACCESSING 
EVENT  
PARAMETERS

The in expression of a match_event has access to the event parameters. 
Use the dot notation to access event parameters.

match_event v:event = ev:mouseClick in {
 v:this.x = v:event.x;
 v:this.y = v:event.y;
}

         ACCESSING  
WIDGET  
PROPERTIES

If a script is part of a widget (widget actions, input reactions), it has access to 
the properties of that widget. A special local variable called v:this is availa-
ble referring to the current widget. Use the dot notation to address widget 
properties.

v:this.text = “hello world”;
v:this.x = 10;

         NAVIGATING 
THE WIDGET 
TREE

If a script is part of a widget, it has access to the properties of other widgets. 
Use the widget tree navigation operator: ->. To access the parent widget, use 
the identifier: ^.

v:this->^->caption.text = “Play”; 
      // goto parent, goto caption, property text
v:this->^.x -= 1;   // goto parent, property x

         STRING  
FORMATTING

The + operator concatenates strings. For more string conversion functions, 
refer to the documentation.

v:this.text = “current speed: ” + 
f:int2string(dp:speed) + “km/h”;

Version 6.0 1Version 6.2 1



EB GUIDE Script reference card Language features

FEATURE DESCRIPTION EXAMPLE

       CONSTANTS String constants may be written without quotes.
Color constants are RGBA quadruples.

“hello world”   // string constant
Napoleon   // string constant
5    // integer constant
color:0,235,0,255   // EB green

         ARITHMETIC, 
LOGIC AND 
ASSIGNMENT 
OPERATORS

Addition and string concatenation: +, subtraction: -, multiplication: *,  
division: /, modulo: %, greater-than: >, less-than: <, greater-or-equal: >=, 
less-or-equal: <=, equal: ==, not-equal: !=, and: &&, or: ||, not: !,  
assignment: =, assign-increment: +=, assign-decrement: -=

dp:myString = “Hello” + “World”;
dp:count += 1;   // increment one

       SEQUENCING A sequence is either a single expression or a series of expressions en-
closed in curly braces. The last expression in a sequence is the value of the 
sequence.

if( dp:something )
    dp:x = 5;   // single expression
if( dp:other ) {
    dp:x = 5;   // sequence enclosed
    dp:y = 10;   // in curly braces 
}

         LOCAL  
VARIABLES

Use let bindings to introduce local variables. It is not allowed to use 
uninitialized variables. 
let bindings may be nested.

Syntax:
let v:<identifier> = <expression>;
     v:<identifier2> = <expression>;
     ...
     in <sequence>

let v:x = 42;
     v:text = “hello world”;
in {
     v:this.x = v:x;
     v:this.text = v:text;
}

       WHILE LOOP The while loop consists of two expressions: the condition and the body. 
The body is repeatedly evaluated until the condition yields false.

Syntax:
while( <expression> ) <sequence>

dp:i = 0;
while( dp:i <= 10 ) {
    dp:sum += i;
    dp:i += 1;
}

       IF-THEN-ELSE If-then-else behaves like the ternary conditional operator in C and Java. If it 
is used at the right side of an assignment, the else branch is mandatory and 
both branches must have the same type.

Syntax:
if( <expression> ) <sequence> else <sequence>

if( dp:buttonClicked ) {
    v:this.x = dp:x;
}
else {
    v:this.x = 0;
}

v:this.x = if( dp:buttonClicked ) dp:x else 0;

         COMMENTS C style block comments and
C++ style line comments are allowed.

/* this is a C style block comment */
// this is a C++ style line comment

       RETURN VALUE The last expression in a script is the return value.
To force a return value of type void, use unit or {}.

dp:x + 2;   // returns datapool item x plus 2

Version 6.0 2Version 6.2 2


