Elektrobit

NAMESPACES

ACCESSING
DATAPOOL
ITEMS

SENDING
EVENTS

REACTING ON
EVENTS

ACCESSING
EVENT
PARAMETERS

ACCESSING
WIDGET
PROPERTIES

NAVIGATING
THE WIDGET
TREE

STRING
FORMATTING

EB GUIDE Script reference card

You have to prefix model elements when referring to them.
The following prefixes exist: dp: for datapool items, ev: for events,
v: for local variables, f: for functions

Write a datapool item by placing it at the left side of an assignment. Read a
datapool item by using it anywhere else in an expression. The redirect refe-
rence (=>) is a special form of datapool item assignment.

Syntax:
fire ev:<identifier>(<parameter-list>);

Events can be fired after a timeout.
This delayed event can be canceled with the cancel_fire expression.

Syntax:
fire_delayed <timeout>, ev:<identifier>(<parameter-list>);
cancel_fire ev:<identifier>;

To react on events, use match_event. This is a special form of the if-then-
else statement. If and else branch must have the same type. If used at the
right side of an assignment, the else branch is mandatory.

Syntax:

match_event v:<identifier> = ev:<identifier>
in <sequence>

else <sequence>

The in expression of a match_event has access to the event parameters.
Use the dot notation to access event parameters.

If a script is part of a widget (widget actions, input reactions), it has access to
the properties of that widget. A special local variable called v:this is availa-
ble referring to the current widget. Use the dot notation to address widget
properties.

If a script is part of a widget, it has access to the properties of other widgets.
Use the widget tree navigation operator: ->. To access the parent widget, use
the identifier: A,

The + operator concatenates strings. For more string conversion functions,
refer to the documentation.

dp:x = 100; // set a datapool item
fire ev:back(); // fire an event
f:trace_string(“hello world”); // call a function

dp:x=5; //writing to x

dp:x =dp:y + dp:z; //readingy andz

length dp:aList; // read the length of a list datapool item
dp:refX =>dp:x; // redirect

fire ev:back();
fire ev:mouseClick(10, 20);

fire_delayed 3000, ev:back(); //send the event
“back” in 3 seconds.
cancel_fire ev:back; //cancel the event

match_event v:event = ev:back in {
f:trace_string(“back event received”);

}

v:this.x = match_event v:event = ev:back in 10 else
0;

match_event v:event = ev:mouseClick in {
v:this.x = v:event.x;
v:this.y = v:event.y;

v:this.text = “hello world”;
v:this.x = 10;

v:this->A->caption.text = “Play”;
// goto parent, goto caption, property text
v:this->A x-=1; // goto parent, property x

v:this.text = “current speed: ” +
f:int2string(dp:speed) + “km/h”;

Elektrobit

CONSTANTS

ARITHMETIC,
LOGIC AND
ASSIGNMENT
OPERATORS

SEQUENCING

LOCAL
VARIABLES

WHILE LOOP

4

IF-THEN-ELSE

COMMENTS

A

RETURN VALUE

EB GUIDE Script reference card

String constants may be written without quotes.
Color constants are RGBA quadruples.

Addition and string concatenation: +, subtraction: -, multiplication: ¥,
division: /, modulo: %, greater-than: >, less-than: <, greater-or-equal: >=,
less-or-equal: <=, equal: ==, not-equal: !=, and: &&, or: ||, not: |,
assignment: =, assign-increment: +=, assign-decrement: -=

A sequence is either a single expression or a series of expressions en-
closed in curly braces. The last expression in a sequence is the value of the
sequence.

Use let bindings to introduce local variables. It is not allowed to use
uninitialized variables.
let bindings may be nested.

Syntax:
let v:<identifier> = <expression>;
vi<identifier2> = <expression>;

in <sequence>

The while loop consists of two expressions: the condition and the body.
The body is repeatedly evaluated until the condition yields false.

Syntax:
while(<expression>) <sequence>

If-then-else behaves like the ternary conditional operator in C and Java. If it
is used at the right side of an assignment, the else branch is mandatory and
both branches must have the same type.

Syntax:
if(<expression>) <sequence> else <sequence>

C style block comments and
C++ style line comments are allowed.

The last expression in a script is the return value.
To force a return value of type void, use unit or {}.

“hello world” // string constant
Napoleon // string constant

5 //integer constant
color:0,235,0,255 // EB green

dp:myString = “Hello” + “World”;
dp:count +=1; //increment one

if(dp:something)
dp:x=5; //single expression
if(dp:other) {
dp:x=5; //sequence enclosed
dp:y=10; //in curly braces

}

let vix =42;
v:text = “hello world”;

in{
v:this.x = v:x;
v:this.text = v:text;

}

dp:i=0;

while(dp:i<=10) {
dp:sum +=i;
dp:i+=1;

}

if(dp:buttonClicked) {
v:this.x = dp:x;

}

else {
v:this.x = 0;

}

v:this.x = if(dp:buttonClicked) dp:x else O;

/* this is a C style block comment */
// this is a C++ style line comment

dp:x +2; // returns datapool item x plus 2

