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EB GUIDE Script reference card

You have to prefix model elements when referring to them.
The following prefixes exist: dp: for datapool items, ev: for events,
v: for local variables, f: for functions

Write a datapool item by placing it at the left side of an assignment. Read a
datapool item by using it anywhere else in an expression. The redirect refe-
rence (=>) is a special form of datapool item assignment.

Syntax:
fire ev:<identifier>(<parameter-list>);

Events can be fired after a timeout.
This delayed event can be canceled with the cancel_fire expression.

Syntax:
fire_delayed <timeout>, ev:<identifier>(<parameter-list>);
cancel_fire ev:<identifier>;

To react on events, use match_event. This is a special form of the if-then-
else statement. If and else branch must have the same type. If used at the
right side of an assignment, the else branch is mandatory.

Syntax:

match_event v:<identifier> = ev:<identifier>
in <sequence>

else <sequence>

The in expression of a match_event has access to the event parameters.
Use the dot notation to access event parameters.

If a script is part of a widget (widget actions, input reactions), it has access to
the properties of that widget. A special local variable called v:this is availa-
ble referring to the current widget. Use the dot notation to address widget
properties.

If a script is part of a widget, it has access to the properties of other widgets.
Use the widget tree navigation operator: ->. To access the parent widget, use
the identifier: A,

The + operator concatenates strings. For more string conversion functions,
refer to the documentation.

dp:x = 100; // set a datapool item
fire ev:back(); // fire an event
f:trace_string(“hello world”); // call a function

dp:x=5; //writing to x

dp:x =dp:y + dp:z; //readingy andz

length dp:aList; // read the length of a list datapool item
dp:refX =>dp:x; // redirect

fire ev:back();
fire ev:mouseClick(10, 20);

fire_delayed 3000, ev:back(); //send the event
“back” in 3 seconds.
cancel_fire ev:back; //cancel the event

match_event v:event = ev:back in {
f:trace_string(“back event received”);

}

v:this.x = match_event v:event = ev:back in 10 else
0;

match_event v:event = ev:mouseClick in {
v:this.x = v:event.x;
v:this.y = v:event.y;

v:this.text = “hello world”;
v:this.x = 10;

v:this->A->caption.text = “Play”;
// goto parent, goto caption, property text
v:this->A x-=1; // goto parent, property x

v:this.text = “current speed: ” +
f:int2string(dp:speed) + “km/h”;
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String constants may be written without quotes.
Color constants are RGBA quadruples.

Addition and string concatenation: +, subtraction: -, multiplication: ¥,
division: /, modulo: %, greater-than: >, less-than: <, greater-or-equal: >=,
less-or-equal: <=, equal: ==, not-equal: !=, and: &&, or: ||, not: |,
assignment: =, assign-increment: +=, assign-decrement: -=

A sequence is either a single expression or a series of expressions en-
closed in curly braces. The last expression in a sequence is the value of the
sequence.

Use let bindings to introduce local variables. It is not allowed to use
uninitialized variables.
let bindings may be nested.

Syntax:
let v:<identifier> = <expression>;
vi<identifier2> = <expression>;

in <sequence>

The while loop consists of two expressions: the condition and the body.
The body is repeatedly evaluated until the condition yields false.

Syntax:
while( <expression>) <sequence>

If-then-else behaves like the ternary conditional operator in C and Java. If it
is used at the right side of an assignment, the else branch is mandatory and
both branches must have the same type.

Syntax:
if( <expression>) <sequence> else <sequence>

C style block comments and
C++ style line comments are allowed.

The last expression in a script is the return value.
To force a return value of type void, use unit or {}.

“hello world” // string constant
Napoleon // string constant

5 //integer constant
color:0,235,0,255 // EB green

dp:myString = “Hello” + “World”;
dp:count +=1; //increment one

if( dp:something )
dp:x=5; //single expression
if( dp:other ) {
dp:x=5; //sequence enclosed
dp:y=10; //in curly braces

}

let vix =42;
v:text = “hello world”;

in{
v:this.x = v:x;
v:this.text = v:text;

}

dp:i=0;

while( dp:i<=10) {
dp:sum +=i;
dp:i+=1;

}

if( dp:buttonClicked ) {
v:this.x = dp:x;

}

else {
v:this.x = 0;

}

v:this.x = if( dp:buttonClicked ) dp:x else O;

/* this is a C style block comment */
// this is a C++ style line comment

dp:x +2; // returns datapool item x plus 2



