
EB GUIDE documentation
EB GUIDE Studio

Version 6.2.0.109176

EB GUIDE documentation

Page 2 of 248

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

ProOSEK®, tresos®, and street director® are registered trademarks of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2016, Elektrobit Automotive GmbH.

EB GUIDE documentation

Page 3 of 248

Table of Contents
1. About this documentation .. 13

1.1. Target audience: Modelers ... 13
1.2. Structure of user documentation ... 13
1.3. Typography and style conventions .. 14
1.4. Naming conventions ... 16

2. Safe and correct use .. 17
2.1. Intended use ... 17
2.2. Possible misuse ... 17

3. Support .. 18
4. Introduction to EB GUIDE ... 19

4.1. The EB GUIDE product line ... 19
4.2. EB GUIDE Studio .. 19

4.2.1. Modeling HMI behavior ... 19
4.2.2. Modeling HMI appearance ... 20
4.2.3. Handling data ... 20
4.2.4. Exporting the EB GUIDE model ... 20

4.3. EB GUIDE TF ... 20
5. Tutorial: Getting started .. 22

5.1. Starting EB GUIDE .. 22
5.2. Creating a project .. 23
5.3. Modeling HMI behavior .. 24
5.4. Modeling HMI appearance ... 27
5.5. Starting the simulation ... 30

6. Background information .. 31
6.1. Animations .. 31

6.1.1. Animations for widgets .. 31
6.1.2. Animations for view transitions ... 31

6.2. Application programming interface between application and model .. 32
6.3. Communication context .. 32
6.4. Components of the graphical user interface ... 33

6.4.1. Project center ... 33
6.4.1.1. Navigation area .. 33
6.4.1.2. Content area .. 34

6.4.2. Project editor .. 34
6.4.2.1. Navigation area .. 35
6.4.2.2. Content area .. 36
6.4.2.3. Command area .. 36
6.4.2.4. Toolbox .. 36
6.4.2.5. Properties panel ... 37

EB GUIDE documentation

Page 4 of 248

6.4.2.6. Status bar .. 38
6.4.2.7. Problems area .. 38

6.5. Datapool .. 38
6.5.1. Concept .. 38
6.5.2. Datapool items .. 38
6.5.3. Windowed lists .. 39

6.6. EB GUIDE model and EB GUIDE project .. 39
6.7. Event handling ... 40

6.7.1. Event system .. 40
6.7.2. Events .. 40

6.8. Extensions ... 41
6.8.1. EB GUIDE Studio extension .. 41
6.8.2. EB GUIDE GTF extension ... 41

6.9. Languages .. 41
6.9.1. Display languages in EB GUIDE Studio .. 41
6.9.2. Languages in the EB GUIDE model ... 42

6.10. Resource management .. 42
6.10.1. Fonts .. 42
6.10.2. Images ... 43

6.10.2.1. SVG images ... 43
6.10.2.2. 9-patch images ... 44

6.10.3. 3D graphics .. 45
6.11. Scripting language EB GUIDE Script ... 45

6.11.1. Capabilities and areas of application ... 45
6.11.2. Namespaces and identifiers ... 46
6.11.3. Comments .. 46
6.11.4. Types .. 47
6.11.5. Expressions .. 47
6.11.6. Constants and references .. 48
6.11.7. Arithmetic and logic expressions .. 49
6.11.8. L-values and r-values .. 49
6.11.9. Local variables .. 50
6.11.10. While loops ... 51
6.11.11. If-then-else .. 51
6.11.12. Foreign function calls ... 52
6.11.13. Datapool access .. 53
6.11.14. Widget properties .. 54
6.11.15. Lists .. 55
6.11.16. Events ... 56
6.11.17. String formatting .. 57
6.11.18. The standard library ... 58

6.12. Scripted values .. 58

EB GUIDE documentation

Page 5 of 248

6.13. Shortcuts, buttons and icons .. 60
6.13.1. Shortcuts .. 60
6.13.2. Buttons ... 60
6.13.3. Icons .. 61

6.14. State machines and states ... 61
6.14.1. State machines ... 61

6.14.1.1. Haptic state machine .. 62
6.14.1.2. Logic state machine .. 62
6.14.1.3. Dynamic state machine ... 62

6.14.2. States ... 62
6.14.2.1. Compound state ... 63
6.14.2.2. View state .. 64
6.14.2.3. Initial state ... 64
6.14.2.4. Final state .. 65
6.14.2.5. Choice state ... 66
6.14.2.6. History states ... 67

6.14.3. Transitions .. 69
6.14.4. Execution of a state machine ... 73
6.14.5. EB GUIDE notation in comparison to UML notation ... 77

6.14.5.1. Supported elements .. 78
6.14.5.2. Not supported elements .. 78
6.14.5.3. Deviations .. 78

6.15. Touch input .. 79
6.15.1. Non-path gestures ... 79
6.15.2. Path gestures ... 79
6.15.3. Input processing and gestures ... 80
6.15.4. Multi-touch input .. 80

6.16. Widgets ... 81
6.16.1. View ... 81
6.16.2. Widget categories ... 82
6.16.3. Widget properties .. 83
6.16.4. Widget templates .. 84

7. Modeling HMI behavior ... 86
7.1. Modeling a state machine .. 86

7.1.1. Adding a state machine ... 86
7.1.2. Adding a dynamic state machine ... 86
7.1.3. Defining an entry action for a state machine ... 87
7.1.4. Defining an exit action for a state machine ... 88
7.1.5. Deleting a state machine ... 88

7.2. Modeling states ... 89
7.2.1. Adding a state .. 89
7.2.2. Adding a state to a compound state ... 89

EB GUIDE documentation

Page 6 of 248

7.2.3. Adding a choice state .. 90
7.2.4. Defining an entry action for a state .. 92
7.2.5. Defining an exit action for a state .. 93
7.2.6. Deleting a model element from a state machine .. 93

7.3. Connecting states through transitions .. 94
7.3.1. Adding a transition between two states .. 94
7.3.2. Moving a transition .. 95
7.3.3. Defining a trigger for a transition .. 96
7.3.4. Adding a condition to a transition ... 97
7.3.5. Adding an action to a transition ... 98
7.3.6. Adding an internal transition to a state ... 100

7.4. Tutorial: Adding a dynamic state machine ... 101
7.5. Tutorial: Modeling button behavior with EB GUIDE Script ... 110

8. Modeling HMI appearance .. 116
8.1. Working with widgets ... 116

8.1.1. Adding a view ... 116
8.1.2. Adding a widget to a view ... 116
8.1.3. Deleting a widget from a view .. 117
8.1.4. Adding an image to a view .. 117
8.1.5. Adding a 3D graphic to a view ... 118
8.1.6. Changing the font of a label .. 118
8.1.7. Grouping widgets using a container .. 118
8.1.8. Adding an instantiator to a view ... 119

8.2. Working with widget properties ... 120
8.2.1. Positioning a widget .. 120
8.2.2. Resizing a widget .. 121
8.2.3. Linking between widget properties .. 122
8.2.4. Linking a widget property to a datapool item ... 123
8.2.5. Adding a user-defined property to a widget ... 125

8.3. Extending a widget by widget features .. 125
8.3.1. Adding a widget feature ... 125
8.3.2. Removing a widget feature .. 127

8.4. Adding a language to the EB GUIDE model .. 128
8.4.1. Adding a language .. 129
8.4.2. Deleting a language .. 129

8.5. Adding animations ... 130
8.5.1. Animating a widget .. 130
8.5.2. Animating a view transition .. 132

8.6. Re-using a widget .. 133
8.6.1. Adding a template ... 133
8.6.2. Defining the template interface ... 134
8.6.3. Using a template ... 134

EB GUIDE documentation

Page 7 of 248

8.7. Tutorial: Modeling a path gesture .. 135
8.8. Tutorial: Creating a list ... 137
8.9. Tutorial: Making a rectangle move across the screen ... 143

9. Handling data ... 147
9.1. Adding an event .. 147
9.2. Adding a parameter to an event ... 147
9.3. Addressing an event .. 148
9.4. Deleting an event ... 149
9.5. Adding a datapool item .. 149
9.6. Editing datapool items of a list type .. 150
9.7. Converting a property to a scripted value .. 151
9.8. Establishing external communication ... 152
9.9. Linking between datapool items .. 154
9.10. Deleting a datapool item ... 155
9.11. Tutorial: Adding a language dependent text to a datapool item .. 156

10. Handling a project ... 159
10.1. Creating a project .. 159
10.2. Opening a project .. 159

10.2.1. Opening a project from the file explorer .. 159
10.2.2. Opening a project within EB GUIDE Studio ... 160

10.3. Testing and improving an EB GUIDE model ... 160
10.3.1. Validating an EB GUIDE model .. 160
10.3.2. Starting the simulation ... 161

10.4. Exporting an EB GUIDE model ... 162
10.5. Changing the display language of EB GUIDE Studio .. 163
10.6. Configuring profiles .. 163

10.6.1. Cloning a profile .. 163
10.6.2. Adding a library ... 164
10.6.3. Adding messages .. 165
10.6.4. Configuring a scene .. 166

11. References ... 168
11.1. Android events ... 168
11.2. Datapool items ... 169
11.3. Data types ... 170

11.3.1. 3D graphic .. 170
11.3.2. Boolean .. 170
11.3.3. Color ... 170
11.3.4. Conditional script ... 171
11.3.5. Float ... 171
11.3.6. Font .. 172
11.3.7. Image ... 172
11.3.8. Integer .. 172

EB GUIDE documentation

Page 8 of 248

11.3.9. List ... 173
11.3.10. String .. 174

11.4. EB GUIDE Script .. 174
11.4.1. EB GUIDE Script keywords .. 174
11.4.2. EB GUIDE Script operator precedence ... 175
11.4.3. EB GUIDE Script standard library ... 176

11.4.3.1. EB GUIDE Script functions A ... 176
11.4.3.1.1. abs ... 176
11.4.3.1.2. absf ... 177
11.4.3.1.3. acosf ... 177
11.4.3.1.4. animation_before .. 177
11.4.3.1.5. animation_beyond .. 177
11.4.3.1.6. animation_cancel .. 178
11.4.3.1.7. animation_cancel_end .. 178
11.4.3.1.8. animation_cancel_reset .. 178
11.4.3.1.9. animation_pause ... 178
11.4.3.1.10. animation_play .. 179
11.4.3.1.11. animation_reverse .. 179
11.4.3.1.12. animation_running .. 179
11.4.3.1.13. animation_set_time .. 179
11.4.3.1.14. asinf ... 180
11.4.3.1.15. atan2f ... 180
11.4.3.1.16. atan2i ... 180
11.4.3.1.17. atanf ... 181

11.4.3.2. EB GUIDE Script functions C - H ... 181
11.4.3.2.1. ceil ... 181
11.4.3.2.2. changeDynamicStateMachinePriority 181
11.4.3.2.3. character2unicode .. 182
11.4.3.2.4. clearAllDynamicStateMachines .. 182
11.4.3.2.5. color2string ... 182
11.4.3.2.6. cosf ... 182
11.4.3.2.7. deg2rad ... 183
11.4.3.2.8. expf ... 183
11.4.3.2.9. float2string ... 183
11.4.3.2.10. floor ... 183
11.4.3.2.11. focusNext .. 184
11.4.3.2.12. focusPrevious .. 184
11.4.3.2.13. formatFloat .. 184
11.4.3.2.14. formatInteger .. 185
11.4.3.2.15. getTextHeight .. 186
11.4.3.2.16. getTextLength .. 186
11.4.3.2.17. getTextWidth .. 186

EB GUIDE documentation

Page 9 of 248

11.4.3.2.18. has_list_window .. 187
11.4.3.2.19. hsba2color .. 187

11.4.3.3. EB GUIDE Script functions I - R .. 187
11.4.3.3.1. int2float ... 187
11.4.3.3.2. int2string ... 188
11.4.3.3.3. isDynamicStateMachineActive .. 188
11.4.3.3.4. language ... 188
11.4.3.3.5. localtime_day ... 188
11.4.3.3.6. localtime_hour ... 189
11.4.3.3.7. localtime_minute .. 189
11.4.3.3.8. localtime_month ... 189
11.4.3.3.9. localtime_second .. 189
11.4.3.3.10. localtime_weekday .. 190
11.4.3.3.11. localtime_year .. 190
11.4.3.3.12. log10f ... 190
11.4.3.3.13. logf ... 190
11.4.3.3.14. nearbyint .. 191
11.4.3.3.15. popDynamicStateMachine .. 191
11.4.3.3.16. powf ... 191
11.4.3.3.17. pushDynamicStateMachine .. 191
11.4.3.3.18. rad2deg ... 192
11.4.3.3.19. rand ... 192
11.4.3.3.20. request_runlevel .. 192
11.4.3.3.21. rgba2color .. 192
11.4.3.3.22. round ... 193

11.4.3.4. EB GUIDE Script functions S - W .. 193
11.4.3.4.1. seed_rand ... 193
11.4.3.4.2. sinf ... 193
11.4.3.4.3. sqrtf ... 194
11.4.3.4.4. string2float ... 194
11.4.3.4.5. string2int ... 194
11.4.3.4.6. string2string ... 195
11.4.3.4.7. substring ... 195
11.4.3.4.8. system_time ... 195
11.4.3.4.9. system_time_ms ... 195
11.4.3.4.10. tanf ... 196
11.4.3.4.11. trace_dp .. 196
11.4.3.4.12. trace_string .. 196
11.4.3.4.13. transformToScreenX .. 196
11.4.3.4.14. transformToScreenY .. 197
11.4.3.4.15. transformToWidgetX .. 197
11.4.3.4.16. transformToWidgetY .. 197

EB GUIDE documentation

Page 10 of 248

11.4.3.4.17. trunc ... 198
11.4.3.4.18. widgetGetChildCount .. 198

11.5. Events ... 198
11.6. Scenes .. 199
11.7. Touch screen types supported by EB GUIDE GTF ... 200
11.8. Widgets ... 201

11.8.1. View .. 201
11.8.2. Basic widgets .. 202

11.8.2.1. Label .. 202
11.8.2.2. Rectangle ... 203
11.8.2.3. Image ... 203
11.8.2.4. Container .. 204
11.8.2.5. Instantiator .. 204

11.8.3. Animations .. 205
11.8.3.1. Animation ... 205
11.8.3.2. Constant curves .. 206
11.8.3.3. Fast start curves ... 206
11.8.3.4. Slow start curves .. 207
11.8.3.5. Quadratic curves ... 207
11.8.3.6. Sinus curves ... 208
11.8.3.7. Script curves .. 208
11.8.3.8. Linear curves .. 209
11.8.3.9. Linear interpolation curves ... 209

11.8.4. 3D widgets .. 210
11.8.4.1. 3D graphic .. 210

11.9. Widget features .. 210
11.9.1. Common ... 210

11.9.1.1. Text truncation .. 210
11.9.1.2. Enabled .. 211
11.9.1.3. Selected ... 211
11.9.1.4. Focused ... 211
11.9.1.5. Touched ... 212
11.9.1.6. Pressed .. 213
11.9.1.7. Child visibility selection .. 213
11.9.1.8. Multiple lines .. 214
11.9.1.9. Selection group ... 214
11.9.1.10. Spinning ... 214

11.9.2. Focus .. 215
11.9.2.1. User-defined focus .. 215
11.9.2.2. Auto focus .. 216

11.9.3. Input handling .. 217
11.9.3.1. Move over .. 217

EB GUIDE documentation

Page 11 of 248

11.9.3.2. Move out .. 217
11.9.3.3. Move in .. 217
11.9.3.4. Touch pressed .. 217
11.9.3.5. Touch released ... 218
11.9.3.6. Touch grab lost ... 218
11.9.3.7. Touch status changed ... 218
11.9.3.8. Touch move .. 218
11.9.3.9. Gesture .. 219
11.9.3.10. Key pressed ... 219
11.9.3.11. Key unicode .. 219
11.9.3.12. Key released .. 219
11.9.3.13. Key status changed ... 220
11.9.3.14. Rotary .. 220
11.9.3.15. Moveable .. 220

11.9.4. Gestures ... 221
11.9.4.1. Hold gesture ... 221
11.9.4.2. Long hold gesture ... 221
11.9.4.3. Flick gesture ... 222
11.9.4.4. Pinch gesture ... 222
11.9.4.5. Rotate gesture .. 223
11.9.4.6. Path gestures ... 224

11.9.4.6.1. Gesture IDs ... 224
11.9.5. Effects ... 225

11.9.5.1. Border .. 225
11.9.5.2. Coloration ... 225

11.9.6. Layout ... 226
11.9.6.1. Absolute layout ... 226
11.9.6.2. Flow layout ... 227
11.9.6.3. Grid layout .. 227
11.9.6.4. Box layout .. 228
11.9.6.5. List layout ... 228
11.9.6.6. Layout margins ... 229
11.9.6.7. Scale mode .. 229

11.9.7. List management ... 230
11.9.7.1. List index .. 230
11.9.7.2. Line index .. 230
11.9.7.3. Template index ... 230
11.9.7.4. View port .. 231

11.9.8. Model .. 231
11.9.8.1. 3D graphic extension .. 231

11.9.9. Transformations ... 231
11.9.9.1. Translation .. 232

EB GUIDE documentation

Page 12 of 248

11.9.9.2. Rotation .. 232
11.9.9.3. Scaling ... 232
11.9.9.4. Shearing ... 233
11.9.9.5. Pivot ... 233

11.9.10. Appearance ... 233
11.9.10.1. Rounded ... 233
11.9.10.2. Fill pattern .. 234
11.9.10.3. Linear fill gradient ... 234
11.9.10.4. Radial fill gradient ... 235

12. Installation .. 236
12.1. Background information .. 236

12.1.1. Restrictions ... 236
12.1.2. System requirements ... 236

12.2. Downloading from EB Command .. 237
12.3. Installing EB GUIDE ... 238
12.4. Uninstalling EB GUIDE ... 239

Glossary ... 240
Index .. 243

EB GUIDE documentation
Chapter 1. About this documentation

Page 13 of 248

1. About this documentation

1.1. Target audience: Modelers
Modelers use EB GUIDE Studio to create a human machine interface (HMI). In EB GUIDE the HMI is called
EB GUIDE model. Communication with applications is carried out through determined events using the event
mechanism, through datapool items using the datapool and through user-specific EB GUIDE Script functions.

Modelers perform the following tasks:

► Use an architecture of widgets and views to specify graphical elements on the displays

► Communicate with designers and usability experts to optimize user interfaces

► Use state machine functionality to specify when graphical elements are displayed

► Define how elements react to input from devices such as control panels or touch screens

► Define how elements receive information from hardware or software applications that offer services like
a navigation unit

► Define interfaces between model elements as well as input and output devices

Modelers have profound knowledge of the following:

► EB GUIDE Studio features

► The UML state machine concept

► The specifications and requirements of the domain

► The interchanged data and the EB GUIDE GTF communication mechanism

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

EB GUIDE documentation
Chapter 1. About this documentation

Page 14 of 248

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables as well as the EB GUIDE Monitor API
documentation.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
Throughout the documentation you will see that words and phrases are displayed in bold or italic font, or in
monospaced font. To find out what these conventions mean, please consult the following table. All default text
is written in Arial Regular font without any markup.

Convention Item is used Example

Arial italics to emphasize If your project’s release version is mixed, all content
types are available. It is thus called mixed version.

Arial boldface for menus and submenus Select the Options menu.

Arial boldface for buttons Select OK.

Arial boldface for keyboard keys Press F2.

Arial boldface for keyboard combination of keys Press Ctrl + Alt + Delete.

Arial boldface for commands Convert the XDM file to the newer version by using
the legacy convert command.

Monospaced
font (Courier)

for file names, directory names and
chapter names

Put your script in the function_name\abcdirec-
tory.

Monospaced
font (Courier)

for code CC_FILES_TO_BUILD =(PROJECT_-

PATH)\source\network\can_node.-

c CC_FILES_TO_BUILD += $(PROJECT_-

PATH)\source\network\can_config.c

EB GUIDE documentation
Chapter 1. About this documentation

Page 15 of 248

Convention Item is used Example

Monospaced
font (Courier)

for function names, methods, or
routines

The cos function finds the cosine of each array ele-
ment. Syntax line example is MLGetVar ML_var_-
name.

Monospaced
font (Courier)

for user input or variable text Enter a three-digit prefix in the menu line.

Square brackets
[]

for optional parameters or for com-
mand syntax with optional parame-
ters

insertBefore [<opt>]

Curly brackets {} for mandatory parameters or for
command syntax with mandatory
parameters

insertBefore {<file>}

Three dots … for further parameters or for com-
mand syntax

insertBefore [<opt>…]

Warning to warn about danger of death or
severe personal injury

WARNING This is an example for a
warning
This is what a warning looks like.

Caution to warn about danger of slight per-
sonal injury or material damage

CAUTION This is an example for a cau-
tion
This is what a caution looks like.

Notice to give additional but not vital infor-
mation on a subject

NOTE This is an example for a no-
tice
This is what a notice looks like.

Tip to provide helpful hints and tips TIP This is an example for a tip
This is what a tip looks like.

Example to demonstrate or illustrate infor-
mation

Example 1.1.
This is an example

This is what an example looks like.

EB GUIDE documentation
Chapter 1. About this documentation

Page 16 of 248

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.2

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH\platform\<platform name>.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.2\platform\win32

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

C:\Users\[user name]\Documents\EB GUIDE 6.2\projects\

EB GUIDE documentation
Chapter 2. Safe and correct use

Page 17 of 248

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by EB to implement human machine interfaces in safety
relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact EB for clarification at chapter 3, “Support“.

EB GUIDE documentation
Chapter 3. Support

Page 18 of 248

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click Help. The version number is located in the lower right corner of
the dialog.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 19 of 248

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE prod-
uct line provides tooling and platform for graphical or speech user interfaces. The EB GUIDE product line is
intended to be used in projects for infotainment head units, cluster instruments and selected industry applica-
tions. Main use cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

The EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. The EB GUIDE TF is available
for development PCs and for different embedded platforms.

The EB GUIDE model that is created with EB GUIDE Studio and the exported EB GUIDE model that is executed
on the EB GUIDE TF are completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

► State machines

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

► States

States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 20 of 248

4.2.2. Modeling HMI appearance
► Widgets

To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that
define the look. They are mainly used to display information, for example text labels or images. Widgets
also allow users to control system behavior, for example buttons or sliders. Multiple widgets are assembled
to a structure, which is called view.

► Spidgets

To create a speech user interface EB GUIDE Studio offers spidgets. Spidgets are used to specify the
fundamental parts of a speech dialog. Speech recognition as user input and speech synthesis as system
output. A prompt spidget allows the modeling of text that is played through a text-to-speech synthesizer
(TTS). A command spidget allows the modeling of grammars that describe what a speech recognizer
understands. Related spidgets are grouped together through model elements. This group is called talk.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

► Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

► The datapool is an embedded database that holds all data that needs to be displayed and all other internal
information. Datapool items store and exchange data.

Application software can access events and the datapool through the API.

4.2.4. Exporting the EB GUIDE model
To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
The EB GUIDE TF is a set of libraries, executables, and software tools, which are required to execute an EB
GUIDE model.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 21 of 248

Depending on the project type selected in EB GUIDE Studio you execute:

► EB GUIDE GTF

EB GUIDE Graphics Trarget Framework is the run-time environment executing a graphical HMI.

► EB GUIDE STF

EB GUIDE Speech Target Framework is the run-time environment executing speech functionality in the
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile the EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE
Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstraction
to the real graphic system on your hardware. The EB GUIDE TF supports various renderers for different
platforms.

► Audio abstraction

The speech user interface requires access to audio hardware. The audio abstraction provides access to
microphones and speakers. EB GUIDE STF implements speech recognition and text-to-speech synthesis.
For this purpose EB GUIDE STF incorporates third-party speech engines.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 22 of 248

5. Tutorial: Getting started
The following section gives you a short overview on HMI modeling with EB GUIDE Studio. It explains you how
to start EB GUIDE Studio, how to create a project, how to model the behavior and appearance of an EB GUIDE
model, and how to simulate an EB GUIDE model.

5.1. Starting EB GUIDE

Starting EB GUIDE

Prerequisite:

■ EB GUIDE is installed.

Step 1
In the Windows Start menu, click All Programs.

Step 2
In the Elektrobit menu, click the version you want to start.

EB GUIDE Studio starts. The project center is displayed.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 23 of 248

Figure 5.1. Project center

5.2. Creating a project

Creating a project

Prerequisite:

■ EB GUIDE Studio is started.

■ A directory C:\temp is created.

Step 1
In the navigation area, click New.

Step 2
Select the C:\temp directory.

Step 3
Enter the project name MyProject.

Step 4
In the content area, click Create.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 24 of 248

The project is created. The project editor opens and displays the empty project.

The Main state machine is added by default and displayed in the content area.

Figure 5.2. Project editor with Main state machine

5.3. Modeling HMI behavior
The behavior of your EB GUIDE model is defined by state machines. EB GUIDE uses a syntax similar to UML
to do that.

In the following section, you learn how to model a state machine that displays a defined view on start-up and
changes to a different view when a button is pressed.

Adding states to the state machine

EB GUIDE offers a variety of states. The following section shows three different states. An initial state de-
fines the starting point of the state machine. A view state displays a view by default. And the final state of the
state machine terminates the state machine.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 25 of 248

Prerequisite:

■ The project MyProject is created.

■ The project editor is displayed.

■ The content area displays the Main state machine.

Step 1
Drag a view state from the Toolbox into the state machine.

Along with View state 1, a view is added to the EB GUIDE model.

Step 2
Repeat step 1.

View state 2 is added.

Step 3
Drag an initial state from the Toolbox into the state machine.

Step 4
Drag a final state from the Toolbox into the state machine.

The four states you added to the Main state machine are displayed both in the content area as a diagram
and in the navigation area as a hierarchical tree view.

Figure 5.3. Project editor with states

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 26 of 248

Adding a transition

Transitions are the connection between states and trigger state changes. There are different transition types.
The following section shows a default transition and an event-triggered transition.

Prerequisite:

■ The content area displays an initial state, two view states, and a final state.

Step 1
Select the initial state as a source state for the transition.

Step 2
Click the green drag point and keep the mouse button pressed.

Step 3
Drag the mouse into the target state, View state 1.

Step 4
When the target state is highlighted green, release the mouse button.

A transition is created and displayed as a green arrow.

Step 5
Add a transition between View state 1 and View state 2.

Select View state 1 and repeat steps 2 - 4.

Step 6
Select the transition between View state 1 and View state 2.

As a next step, you associate the transition to an event.

Step 7
In the Properties panel, expand the Trigger combo box.

Step 8
Enter Event 1 in the Trigger combo box and click Add event.

An event called Event 1 is created and added as a transition trigger. Whenever Event 1 is fired, the transi-
tion is executed.

Step 9
Add a transition between View state 2 and the final state.

Select View state 2, and repeat steps 2 - 4.

Add a new event Event 2 as a trigger.

At this point, your state machine resembles the following figure:

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 27 of 248

Figure 5.4. States linked by transitions with events

You have defined the behavior of a basic state machine.

5.4. Modeling HMI appearance
The state machine you created in the section above contains two view states. In the following section, you
learn how to model a view.

Opening a view

Prerequisite:

■ The navigationa area displays the All tab.

■ View state 1 is added.

Step 1
In the content area, double-click View state 1.

The content area displays View 1.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 28 of 248

Adding a button to a view

With EB GUIDE Studio you have a variety of options to model the appearance of a view.

To give you one example, the next section shows you how to add a rectangle widget to a view. The rectangle
reacts on user input and thus functions as a button.

Prerequisite:

■ The content area displays View 1.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
In the Properties panel, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select Touch released.

Click Accept.

The related widget feature properties are added to the Properties panel.

Step 4
In the Properties panel, for the touchPolicy property select Press then react.

The rectangle reacts on touch input.

Step 5
Go to the touchShortReleased property, and click Edit.

Step 6
Enter the following EB GUIDE Script:

 function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 1"()

 true

 }

If the rectangle is touched, Event 1 is fired after 500 milliseconds.

Step 7
Click Accept.

Step 8
In the Properties panel, for the fillColor property select red.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 29 of 248

Step 9
In the navigation area, double-click View 2.

The content area displays View 2.

Step 10
Repeat steps 1-5.

Step 11
Enter the following EB GUIDE Script:

 function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 fire_delayed 500, ev:"Event 2"()

 true

 }

Figure 5.5. Widget property with an EB GUIDE Script

Step 12
Click Accept.

If the rectangle is touched, Event 2 is fired after 500 milliseconds.

Step 13
In the Properties panel, for the fillColor property select blue.

EB GUIDE documentation
Chapter 5. Tutorial: Getting started

Page 30 of 248

5.5. Starting the simulation
EB GUIDE allows you to simulate your model on the PC before exporting it to the target device.

Starting the simulation

Step 1
In the command area, click .

The EB GUIDE model starts and shows the behavior and appearance you modeled.

First, View 1 is displayed. A click on the red rectangle changes the screen to View 2. This is because the
click fires Event 1 and Event 1 executes the transition from View state 1 to View state 2.

Then, View 2 is displayed. A click on the blue rectangle in View 2 terminates the state machine. This is be-
cause the click fires Event 2 and Event 2 executes the transition from View state 2 to the final state. The

simulation window remains open. To stop the simulation, click .

EB GUIDE documentation
Chapter 6. Background information

Page 31 of 248

6. Background information
The topics in this chapter are sorted alphabetically.

6.1. Animations
Animations bring motion and visual effects into your EB GUIDE model. In EB GUIDE, you can use animations
for different use cases. You can animate widgets within a view and you can animate the transition from one
view to another.

6.1.1. Animations for widgets
Animating a widget means moving a widget along a view. The movement is defined by curves. Therefore, the
Animations category in the Toolbox includes a widget called animation and a set of curves. For example,
there are constant curves, linear interpolation curves, or sinus curves. A curve has a target widget property
and describes the time-based change of the target property.

Each animation has one or more curves associated to it.

Among others, animating a widget can do the following:

► Move a widget within a view

► Change the size of a widget

► Gradually change the color of a widget

An animation is controlled by the EB GUIDE Script functions f:animation_play, f:animation_pause,
f:animation_cancel, etc.

TIP Concurrent animations
In EB GUIDE, animations are concurrent animations and curves are executed in parallel.
This means: If the curves of several animations use the same widget property as a target,
the curves overwrite that target property's value concurrently.

For animation and curve properties see section 11.8.3, “Animations”.

For instructions see section 8.5.1, “Animating a widget”.

6.1.2. Animations for view transitions

EB GUIDE documentation
Chapter 6. Background information

Page 32 of 248

To animate a view transition means to define a moving or fading animation for entering or exiting a view. A
view change triggers such an animation.

You define view transition animations for view templates. Every time you re-use the view template, the instance
inherits the entry and exit animations.

There are various types of view transition animations. An entry animation is, for example, move in from right
or move in from bottom. An exit animation is, for example, move out from top to bottom.

For animation properties in view templates see section 11.8.1, “View”.

For instructions see section 8.5.2, “Animating a view transition”.

6.2. Application programming interface between
application and model
EB GUIDE abstracts all communication data between an application and the EB GUIDE TF in an application
programming interface (API). An application is for example a media player or a navigation.

The API is defined by datapool items and events. Events are sent between HMI and application.

Example 6.1.
Contents of an API

► Event START_TRACK that is sent to the application and that contains the parameter track for the
number of the track that should be played

► Event TRACK_STOPPED that is sent from the application to the HMI when the played track has
ended

► The dynamic datapool item MEDIA_CURRENT_TRACK that is written by the application

► The dynamic datapool item MEDIA_PLAY_SPEED that defines the speed for playing and is set by
the user in the HMI

6.3. Communication context
The communication context describes the environment in which communication occurs. An example for a com-
munication context is a media or a navigation application which communicates with an HMI model. Changes
made by one communication context are invisible to other communication contexts until the changes are pub-
lished by the writer context and updated by the reader context.

EB GUIDE documentation
Chapter 6. Background information

Page 33 of 248

A communication context is identified by a unique name and numerical ID (0...255) in the project configuration.

A datapool item has one property for the communication context that writes a value, and another property for
the communication context that is notified about the changed value and reacts on the value change.

For instructions see section 9.8, “Establishing external communication”

6.4. Components of the graphical user interface
The graphical user interface of EB GUIDE Studio is divided into two components: the project center and the
project editor. In the project center, you administer your EB GUIDE projects, configure options, and export EB
GUIDE models for copying to the target device. In the project editor, you model HMI appearance and behavior.

6.4.1. Project center
The project center is the first screen that is displayed after starting EB GUIDE Studio. All project-related func-
tions are located in the project center. The project center consists of two parts: the navigation area and the
content area.

Figure 6.1. Project center with navigation area (1) and content area (2)

6.4.1.1. Navigation area

The navigation area of the project center consists of function tabs such as Configure or Export. You click a
tab in the navigation area and the content area displays the corresponding functions and settings.

EB GUIDE documentation
Chapter 6. Background information

Page 34 of 248

6.4.1.2. Content area

The content area of the project center is where project management and configuration takes place. For exam-
ple, you select a directory to save a project or define the start-up behavior for your EB GUIDE model. The
appearance of the content area depends on the tab selected in the navigation area.

6.4.2. Project editor
After creating a project the project editor is displayed. In the project editor you model the behavior and the
appearance of the HMI: you model state machines, create views, and manage events and the datapool. The
project editor consists of the following areas.

Figure 6.2. Project editor with its areas

1 Navigation area

2 Content area

3 Command area

4 Toolbox

5 Properties panel

6 Status bar

EB GUIDE documentation
Chapter 6. Background information

Page 35 of 248

7 Problems area

6.4.2.1. Navigation area

The navigation area displays the model elements of your EB GUIDE model as a hierarchical structure and
allows you to navigate to any element. Selecting a model element in the navigation area displays the model
element in the content area.

The navigation area is divided into two tabs, the All tab and the Outline tab.

► The All tab gives you an overview of all graphical and non-graphical elements of the EB GUIDE model
and reflects the state machine hierarchy.

The All tab is also where you add events and datapool items.

► The Outline tab displays the structure of the selected view tree element and its sub-elements.

At the top of the navigation area you find a search box to search for the name of any model element.

Figure 6.3. Navigation area in project editor

EB GUIDE documentation
Chapter 6. Background information

Page 36 of 248

6.4.2.2. Content area

What is displayed in the content area depends on the selection in the navigation area. To edit a model element,
you double-click the model element in the navigation area and the content area displays it. For example, you
model the states of a state machine, you arrange widgets in a view, or you edit an EB GUIDE Script in the
content area.

Figure 6.4. Content area in project editor

6.4.2.3. Command area

In the command area, you find the button to open the project center and further menus.

6.4.2.4. Toolbox

All tools you need for modeling are available in the Toolbox. Depending on the element that is displayed in the
content area, the Toolbox offers a different set of tools. For example, the Toolbox can contain the following:

EB GUIDE documentation
Chapter 6. Background information

Page 37 of 248

► If the content area displays a state machine, the Toolbox contains states you can add to the state machine.

► If the content area displays a view, the Toolbox contains widgets and animations you can arrange in the
view.

► If the content area displays a scripted value property, the Toolbox contains EB GUIDE Script functions
you can insert.

You drag model elements from the Toolbox into the content area.

Figure 6.5. Toolbox in project editor

6.4.2.5. Properties panel

The Properties panel displays the properties of the selected model element, for example of a widget or a state.
Properties in the Properties panel are grouped by categories. If a model element is selected, you can edit its
properties in the Properties panel.

Figure 6.6. Properties panel displaying properties of a widget

EB GUIDE documentation
Chapter 6. Background information

Page 38 of 248

6.4.2.6. Status bar

The status bar displays status information about EB GUIDE Studio.

6.4.2.7. Problems area

The Problems area displays errors and warning for the EB GUIDE model.

6.5. Datapool

6.5.1. Concept
During the execution, a model communicates with different applications. To enable the communication, your EB
GUIDE model has to provide an interface. The datapool is an interface which allows access to datapool items
to exchange data. Datapool items store values and communicate between HMI and applications. Datapool
items are defined in the EB GUIDE model.

6.5.2. Datapool items
Datapool items are used to do the following:

► send data from the applications to the HMI

► send data from the HMI to the applications

► store data which is only used in either HMI or applications.

For instructions see section 9.5, “Adding a datapool item”.

To channel communication, you use the communication context.

With the Writer context property you define which communication context writes new values.

With the Reader context property you define which communication context is notified about changed values
and reacts on the value change.

In internal communication, one communication context acts as both reader and writer of a datapool item. In-
ternal communication is used to store data. For example, datapool items with internal communication are used
in widget properties.

Using two different communication contexts establishes external communication. External communication is
only possible if the Read-only property of a datapool item is cleared.

EB GUIDE documentation
Chapter 6. Background information

Page 39 of 248

For instructions see section 9.8, “Establishing external communication”.

6.5.3. Windowed lists

Using the datapool item property Windowed, the EB GUIDE product line supports the concept of windowed
lists. The windowed list operating mode is often used to reduce memory consumption for the display of large
lists, for example all MP3 titles in a directory. Those lists are typically provided by one communication context,
for example media application, and are only partially displayed by another communication context, for example
HMI.

NOTE A datapool item with the enabled property Windowed needs a writer context and reader
contexts which differ.

The writer communication context defines a virtual list length and a number of windows, which possibly contain
only parts of the list. The reader communication context reads data only from locations that are covered by
windows. Reading from other locations fails. In such a use case, the reader communication context has to
inform the writer communication context about the currently required parts of the list. For example, HMI can
make application calls that provide the current cursor position within the complete list.

Example 6.2.
Windowed list

The MP3 title list of an audio player device has 1,000,000 elements. The HMI has to display this list on
three different displays in parallel: head unit display, cluster instrument display, and head-up display.

Each display is controlled separately, has a different number of display lines and has a different cursor
position within the complete list.

Whenever one of the three cursors moves, the HMI sends the new position asynchronously to the me-
dia application through an event. The media application provides a list with three windows. Each of the
three windows is associated to one of the three displays. Because of the asynchronous communication
based on events and datapool updates, window updates delay a little bit after the cursor moves. There-
fore it is advisable to use window positions and window sizes which cover an extended range around
the lines that are shown by the specific display.

6.6. EB GUIDE model and EB GUIDE project

EB GUIDE documentation
Chapter 6. Background information

Page 40 of 248

An EB GUIDE model is the sum of all elements that describe the look and behavior of an HMI. It is built entirely
in EB GUIDE Studio. You can simulate the EB GUIDE model on your PC.

To execute an EB GUIDE model on a target device, you export the EB GUIDE model and copy the resulting
binary files to the target device.

An EB GUIDE project consists of an EB GUIDE model and settings that are needed for modeling. It includes
project-specific options, extensions, resources, and, for graphical projects, the description of a haptic dialog.

An EB GUIDE project contains objects that are configured and linked within an EB GUIDE model. These objects
are called EB GUIDE model elements. Examples for EB GUIDE model elements are as follows:

► Datapool item

► Event

► State

► State machine

► Widget

► Resource

► Language

6.7. Event handling

6.7.1. Event system
The event system is an asynchronous mechanism for communication within or between communication con-
texts.

The EB GUIDE event system delivers all events exactly in the order they were sent. There is no pre-defined
order for delivering an event to different subscribers.

6.7.2. Events
Group ID

The group IDs 0...65535 are reserved for internal use within the EB GUIDE product line. The remaining
range of group IDs is available for customer-specific applications.

Event ID
If you set the property, the given numeric value defines the event ID used by EB GUIDE TF to send and
receive the event.

EB GUIDE documentation
Chapter 6. Background information

Page 41 of 248

For instructions see section 9.1, “Adding an event”.

6.8. Extensions

6.8.1. EB GUIDE Studio extension
A piece of software that extends EB GUIDE Studio and that is valid for all EB GUIDE models is called an EB
GUIDE Studio extension. The EB GUIDE Studio extension does not concern EB GUIDE GTF.

Typical EB GUIDE Studio extensions are:

► Additional toolbar buttons

► Additional data exporters

6.8.2. EB GUIDE GTF extension
An EB GUIDE GTF extension is a piece of software that extends EB GUIDE Studio, but is only valid for one
EB GUIDE model. The EB GUIDE GTF extension is based on the EB GUIDE GTF.

Typical EB GUIDE GTF extensions are:

► New widget features

► New EB GUIDE Script functions

EB GUIDE GTF extensions are dynamic link library (.dll) or shared object (.so) files.

Place the EB GUIDE GTF extension, including their third party libraries in the following directory:

$GUIDE_PROJECT_PATH/<project name>/resources/target

6.9. Languages

6.9.1. Display languages in EB GUIDE Studio
EB GUIDE Studio offers different display languages for the graphical user interface. You select the display
language in the project center, in the tab Options.

EB GUIDE documentation
Chapter 6. Background information

Page 42 of 248

For more details see: section 10.5, “Changing the display language of EB GUIDE Studio”.

6.9.2. Languages in the EB GUIDE model
Most human machine interfaces offer the possibility to display texts in the user's preferred language. Such
language management is also provided by EB GUIDE. You add a language for an EB GUIDE model in the
project configuration.

For instructions see section 8.4.1, “Adding a language”.

It is possible to make datapool items language dependent. A datapool item defines a value for each language.
To support languages select the Language support property.

Example 6.3.
Language dependent texts

In the project configuration three languages are added: English, German, and French. A datapool item
has the value Welcome in English and the values Willkommen in German and Bienvenue in French.

For instructions see section 9.11, “Tutorial: Adding a language dependent text to a datapool item”.

The current language of the exported EB GUIDE model can be set during run-time.

6.10. Resource management
Resources are content that is not created within EB GUIDE but is required by your projects. Locate all resources
of an EB GUIDE Studio project in the resources directory.

The resources directory is located at $GUIDE_PROJECT_PATH/<project name>/resources.

There are three types of resource in EB GUIDE:

1. Fonts

2. Images

3. 3D graphics

In order to use resources in the project, add the resource files to the directory.

6.10.1. Fonts

EB GUIDE documentation
Chapter 6. Background information

Page 43 of 248

In order to use a font in the project, add the font to the directory $GUIDE_PROJECT_PATH/<project name>/
resources.

Supported font types are TrueType fonts (*.ttf, *.ttc) and OpenType fonts (*.otf).

For instructions see section 8.1.6, “Changing the font of a label”.

6.10.2. Images

In order to use an image in the project, add the image to the directory $GUIDE_PROJECT_PATH/<project
name>/resources. If you select an image from a different directory, the image is copied to the directory .

The supported image formats are Portable Network Graphic (*.png), Portable Pixel Map (*.ppm), JPEG (*.-
jpg;*.jpeg), Scalable Vector Graphics (*.svg), and 9-patch images (*.9.png).

For instructions see section 8.1.4, “Adding an image to a view”.

6.10.2.1. SVG images

EB GUIDE supports the following SVG element types:

Basic shapes

► Rectangle

► Circle

► Ellipse

► Line

► Polyline

► Polygon

► Path: moveto, lineto, curve, closepath, cubic bézier curve, quadratic bézier curve

Painting modes

► Fill

► Stroke: solid and with dashes

Paint types

► Color

► Linear and radial gradients, including spread modes

EB GUIDE documentation
Chapter 6. Background information

Page 44 of 248

Only the OpenVG renderer can process SVG images.

NOTE Mandatory attributes for SVG files
For correct clipping and scaling, EB GUIDE Studio depends on the SVG attributes width
and height. The size of SVG files has to match the view area.

6.10.2.2. 9-patch images

EB GUIDE Studio supports images with additional meta information according to the 9-patch image approach.
9-patch images are stretchable PNG images. 9-patch images contain two black markers, one at the top and
one at the left side of the image. Areas that are not marked will not be scaled. Marked areas will be scaled.
Markers are not displayed in EB GUIDE Studio.

Figure 6.7. 9-patch example

When you work with 9-patch images, consider the following:

► 9-patch processing works with the OpenGL ES 2.0 and theDirectX renderer only.

► 9-patch processing works with PNG images only. PPM images do not support 9-patch processing.

► for 9-patch images the *.9.png extension is mandatory.

► It is possible to specify none, one, or more than one marker at the top and the left side. The 9-patch
definition also includes markers for text areas at the right side and at the bottom of the image. These
markers are not evaluated in EB GUIDE Studio.

EB GUIDE documentation
Chapter 6. Background information

Page 45 of 248

6.10.3. 3D graphics
It is possible to display 3D graphics in EB GUIDE Studio.

In order to use a 3D graphic in the project, add the 3D graphic to the directory $GUIDE_PROJECT_PATH/
<project name>/resources.

3D graphics can have textures. Textures are images that are mapped to the 3D graphic. Copy any 3D graphic
texture manually into a directory with a name equal to the 3D graphic file but without the file extension.

Example 6.4.
Naming of textures for 3D graphics

The 3D graphic is called car.dae. Place any related texture images in a directory called car that re-
sides in the same directory as the file car.dae.

Only the OpenGL ES 2.0 and DirectX 11 renderers can display 3D graphics. For supported 3D graphic formats
see section 11.8.4, “3D widgets”.

For instructions see section 8.1.5, “Adding a 3D graphic to a view”.

6.11. Scripting language EB GUIDE Script
EB GUIDE Script is the built-in scripting language of EB GUIDE. This chapter describes EB GUIDE Script
language features, syntax, and usage.

6.11.1. Capabilities and areas of application
You can use EB GUIDE Script in a variety of places in a project, for example:

► In a widget property

► In the state machine as part of a transition or state

► In a datapool item

Not all features of EB GUIDE Script are available in all cases. For example access to local widget properties is
only allowed when the script is part of a widget. Access to the datapool, on the other hand, is always allowed.

With EB GUIDE Script you can directly manipulate model elements, for example to do the following:

► Fire events

► Write datapool items

► Modify widget properties

EB GUIDE documentation
Chapter 6. Background information

Page 46 of 248

6.11.2. Namespaces and identifiers

In EB GUIDE, it is possible to give identical names to different kinds of objects. For example, you can name both
an event and a datapool item Napoleon. EB GUIDE Script namespaces make this possible. Every identifier, i.-
e. name of an object, in EB GUIDE Script must be prefixed with a namespace and a colon.

The set of namespaces is fixed in EB GUIDE Script, you cannot introduce new namespaces. The following
namespaces exist:

► ev: events

► dp: datapool items

► f: user-defined actions (foreign functions)

► v: local variables

For example, ev:Napoleon specifies the event named Napoleon while dp:Napoleon specifies the datapool
item named Napoleon.

Identifiers without a namespace prefix are string constants.

Identifiers in EB GUIDE contain many characters including spaces and punctuation. Thus it can be necessary
to quote identifiers in EB GUIDE Script. If an identifier does not contain special characters, for example a valid
C identifier consisting only of letters, numbers and underscores, it does not have to be quoted.

Example 6.5.
Identifiers in EB GUIDE Script

dp:some_text = foo; // foo is a string here

dp:some_text = "foo"; // this statement is identical to the one above

dp:some_text = v:foo; // foo is the name of a local variable

// of course you can quote identifiers, even if it is not strictly necessary

dp:some_text = v:"foo";

// again, a string constant

dp:some_text = "string with spaces, and -- punctuation!";

// identifiers can also contain special characters, but you have to quote them

dp:some_text = v:"identifier % $ with spaces @ and punctuation!";

6.11.3. Comments

EB GUIDE Script has two kinds of comment: C style block comments and C++ style line comments. Block
comments must not be nested.

Example 6.6.

EB GUIDE documentation
Chapter 6. Background information

Page 47 of 248

Comments in EB GUIDE Script

/* this is a C style block comment */

// this is a C++ style line comment

For every EB GUIDE Script comment that contains a string "todo", EB GUIDE Studio shows a warning in the
problems area when you validate a project. Use this feature to mark all your open tasks and display them at
a glance.

NOTE Default comment for conditional scripts
By default, a datapool item or a property of type conditional script contains a comment //
todo: auto generated return value, please adapt. To eliminate the warning,
delete the todo string from the comment once you entered the required EB GUIDE Script
code.

6.11.4. Types
EB GUIDE Script is a strongly-typed and statically-typed programming language. Every expression has a well
defined type. Supplying an unexpected type results in an error.

EB GUIDE Script supports the following types:

► Integer

► Unicode strings (string)

► Objects with reference counting

► Type definitions to the above listed types and to the following:

► Color (integer for 32-bit RGBA value)

► Boolean

► IDs of different model elements: datapool items, views, state machines, pop-ups (all of integer type)

► Void, also known as the unit type. This type has a role as in functional programming, for example Haskell.

► Widget and event references. These are record types, the fields of which you may access by using the dot
notation, as known in C or Java. You cannot directly create new objects of these kinds, they are created
automatically where appropriate.

All types and type definitions are incompatible with each other and there are no typecasts. This feature ensures
type safety once a script is successfully compiled.

6.11.5. Expressions

EB GUIDE documentation
Chapter 6. Background information

Page 48 of 248

EB GUIDE Script is expression-based. Every language construct is an expression. You form larger expressions
by combining smaller expressions with operators.

To evaluate an expression means to replace it by its value.

Example 6.7.
Evaluation of an integer value

1 + 2 // when this expression is evaluated, it yields the integer 3

6.11.6. Constants and references

The basic expressions are integer, color, boolean, and string constants and references to model elements.

The void type also has a value constant that can be written in two different but semantically equivalent ways:

► With the opening curly brace followed by the closing curly brace {}

► With the keyword unit

Example 6.8.
Usage of constants

"hello world" // a string constant

true // one of the two boolean constants

ev:back // the event named "back" of type event_id

dp:scrollIndex // the datapool item named "scrollIndex",

 // the type is whichever type the dp item has

5 // integer constants have a dummy type "integer constant"

5::int // typecast your constants to a concrete type!

color:255,255,255,255 // the color constant for white in RGBA format

 // the following are two ways to express the same

 if(true)

{

}

else

{

}

if(true)

 unit

else

 unit

EB GUIDE documentation
Chapter 6. Background information

Page 49 of 248

6.11.7. Arithmetic and logic expressions
EB GUIDE Script supports the following arithmetic expressions:

► Addition (+), subtraction (-), multiplication (*), division (/), and modulo (%) can be applied to ex-
pressions of type integer.

► The logical operators or (||), and (&&), not (!) can be applied to expressions of type boolean.

► Integers and strings can be compared with the comparison operators greater-than (>), less-than (<),
greater-than-or-equal (>=), less-than-or-equal (<=).

► Data types can be compared with the equality operators (==) and (!=).

Strings can be compared without case sensitivity with the equality operator (=Aa=).

NOTE Availability of equality operators
Events and resource data types, for example 3D graphics, fonts and images, do not
support the equality operators (==) and (!=).

► Strings can be concatenated with the (+) operator.

Example 6.9.
Arithmetic and logic expressions

10::int + 15::int // arithmetic expression of type int

dp:scrollIndex % 2 // arithmetic expression of type int,

 // the concrete type depends on the type

 // of dp:scrollIndex

"Morning Star" == "Evening Star" // type bool and value false (wait, what?)

"name" =Aa= "NAME" // type bool and value true

!true // type bool, value false

!(0 == 1) // type bool, value true

// as usual, parenthesis can be used to group expressions

((10 + dp:scrollIndex) >= 50) && (!dp:buttonClicked)

// string concatenation

"Napoleon thinks that " + "the moon is made of green cheese"

f:int2string(dp:speed) + " km/h" // another string concatenation

6.11.8. L-values and r-values
There are two kinds of expressions in EB GUIDE Script: l-values and r-values. L-values have an address and
can occur on the left hand side of an assignment. R-values do not have an address and may never occur on
the left hand side of an assignment.

EB GUIDE documentation
Chapter 6. Background information

Page 50 of 248

► L-values are datapool references, local widget properties, and local variables.

► R-values are event parameters and constant expressions such as string or integer constants.

6.11.9. Local variables
The let expression introduces local variables. It consists of a list of variable declarations and the in expres-
sion, in which the variables are visible. Variables are l-values, you can use them on the left hand side of as-
signments. Variables have the namespace v:. The syntax of the let expression is as follows:

let v:<identifier> = <expression> ;

 [v:<identifier> = <expression> ;]...

in

 <expression>

The type and value of the let expression are equal to the type and value of the in expression.

let expressions may be nested, variables of the outer let expressions are also visible in the inner expres-
sions.

Example 6.10.
Usage of the let expression

// assign 5 to the datapool item "Napoleon"

let v:x = 5 in dp:Napoleon = v:x;

// define several variables at once

let v:morning_star = "Venus";

 v:evening_star = "Venus";

in

 v:morning_star == v:evening_star; // Aha!

let v:x = 5;

 v:y = 20 * dp:foo;

in

{

 // Of course you may have a sequence as the in expression,

 // but parenthesis or braces are required then.

 v:x = v:y * 10;

 dp:foo = v:x;

}

// Because let expression also have types and values, we can have them

// at the right hand side of assignments.

dp:x = let v:sum = dp:x + dp:y + dp:z

 in v:sum; // this is the result

 // of the let expression

EB GUIDE documentation
Chapter 6. Background information

Page 51 of 248

// A nested let expression

let v:x = dp:x + dp:y;

in

 let v:z = v:x + v:a;

 in

 dp:x = v:z;

6.11.10. While loops
while loops in EB GUIDE Script have a syntax similar to that in C or Java, they consist of a condition expression
and a do expression. The syntax is as follows:

while (<condition expression>) <do expression>

The do expression is evaluated repeatedly until the condition expression yields false. The condition ex-
pression must be of type boolean, the do expression must be of type void. The while expression is of type
void and must not occur at the left or right hand side of an assignment.

Example 6.11.
Usage of the while loop

// Assume dp:whaleInSight is of type bool

while(! dp:whaleInSight)

{

 dp:whaleInSight = f:lookAtHorizon();

}

6.11.11. If-then-else
if-then-else in EB GUIDE Script behaves like the ternary conditional operator (?:) in C and Java.

The if-then-else expression consists of the following sub-expressions:

► condition expression

► then expression

► else expression

The syntax is as follows:

if (< condition expression>) <then expression> else <else expression>

if-then-else is processed as follows:

1. First, the condition expression is evaluated. It must be of type boolean.

EB GUIDE documentation
Chapter 6. Background information

Page 52 of 248

2. If the condition is true, the then expression is evaluated.

3. If the condition is false, the else expression is evaluated.

if-then-else itself is an expression. The type of the whole expression is the type of the then expression and
the else expression, which must be identical. The value of if-then-else expressions is either the value of
the then expression, or the value of the else expression, in accordance with the rules above.

There is a special form of if-then-else, in which you may omit the else branch. This special form is of
type void and can not be used to return values from scripts.

Example 6.12.
Usage of if-then-else

// Assume dp:whaleInSight is of type bool

// and dp:user is of type string.

if(dp:whaleInSight && dp:user == "Captain Ahab")

{

 dp:mode = "insane";

}

else

{

 dp:mode = "normal";

}

// Because if-then-else is also an expression,

// we may simplify the previous example:

dp:mode = if(dp:whaleInSight && dp:user == "Captain Ahab")

 "insane"

 else

 "normal"

if (<expression>) <expression> // This is the reduced way of

 writing if-then-else

 //It is an alternative to the following

 if(<expression>) { <expression> ; {} } else {}

6.11.12. Foreign function calls

You can extend EB GUIDE Script with functions written in C, so-called foreign functions.

An identifier prefixed by f: is the name of a foreign function. Foreign functions have an argument list and a
return value, as they do in C. The syntax of foreign function calls is as follows:

f:<identifier> (<expression> [, <expression>] ...)

EB GUIDE documentation
Chapter 6. Background information

Page 53 of 248

Example 6.13.
Calling foreign functions

// write some text to the connection log

f:trace_string("hello world");

// display dp:some_index as the text of a label

v:this.text = f:int2string(dp:some_index);

// passing different parameters of matching type

f:int2string(v:this.x)

f:int2string(4)

f:int2string(dp:myInt)

f:int2string(v:myVar)

//passing parameters of different types

// starts an animation (parameter type GtfTypeRecord) from a script

// located in its parent widget

f:animation_play(v:this->Animation);

// checks the number of child widgets of a widget (parameter type widget)

f:widgetGetChildCount(v:this);

// traces debugging information about a datapool item (parameter type dp_id)

// to the connection log; uses the address of the datapool item as parameter

f:trace_dp(&dp:myFlag);

6.11.13. Datapool access
Scripts written in EB GUIDE Script can read and write datapool items. An identifier prefixed by a namespace
dp: is called datapool item expression. Its type is datapool item of type X, where X is the type of the datapool
entry it refers to.

If a datapool item of type X occurs on the left hand side of an assignment, and an expression of type X occurs
on the right hand side of the assignment, the value of the datapool item is written.

If a datapool item occurs somewhere in a program but not on the left hand side of an assignment, the value
of the datapool item is read.

Example 6.14.
Assignment of datapool values

// Assume intA to be of type int. Assign 10 to it.

dp:intA = 10;

// Assume strA to be of type string. Assign the string "blah" to it.

EB GUIDE documentation
Chapter 6. Background information

Page 54 of 248

dp:strA = blah; // Yes, we can omit the quotes, remember?

dp:strA = 42; // Error: integer cannot be assigned to string

// Assign the value of the datapool item intB to intA.

// Both datapool items must have the same type.

dp:intA = dp:intB;

// Multiply the value of intB by two and assign it to intA.

dp:intA = 2 * dp:intB;

// Use the value of a datapool item in an if-clause.

if(dp:speed > 100)

{

 // ...

}

The following operators can be applied to the datapool items:

► The reference operator (&) can be applied to datapool items. It refers to the address of a datapool item
rather than to its value. The reference operator is used in foreign function calls to pass parameters of
type dp_id.

► The redirect-reference operator (=>) assigns a different datapool item to a datapool reference. It is only
applied to datapool references.

6.11.14. Widget properties
If a script is part of a widget, it can access the local properties of that widget. EB GUIDE Script creates a local
variable called v:this to access the properties using the dot notation.

A script is part of a widget if it is attached to a local widget property, for example as an input reaction such
as click or button press.

Example 6.15.
Setting widget properties

// assume this script is part of a widget

v:this.x = 10; // if the widget has an x coordinate

v:this.text = "hello world"; // if the widget is a label and has a text property

// assume testEvent has one integer parameter

fire ev:testEvent(v:this.x);

If a script is part of a widget, it can also access properties of other widgets in the widget tree.

The go-to operator (->) is used to refer to other widgets within the widget tree. The syntax is as follows:

<expression> -> <expression>

EB GUIDE documentation
Chapter 6. Background information

Page 55 of 248

The expression on the left hand side must refer to a widget and the expression on the right hand side must
be a string, the name of a child widget. To navigate to the parent widget, use the symbol ^ on the right hand
side. The whole go-to expression refers to a widget.

Navigating the widget tree might affect run-time performance. Widgets are assigned to local variables for the
efficient manipulation of multiple properties.

Example 6.16.
Accessing widget properties

v:this.x // access the properties of the current widget

v:this->^.x // access the x property of the parent widget

v:this->^->caption.text // access the text property of a label called caption,

 // read: "go-to parent, go-to caption, text"

// Modify several properties of the caption.

// This way, the navigation to the caption is only performed once.

let v:cap = v:this->^->caption

in

{

 v:cap.textColor = color:0,0,0,255;

 v:cap.x += 1;

 v:cap.y += 1;

}

6.11.15. Lists
Datapool items and widget properties can hold lists. The subscript operator ([]) accesses list elements. The
syntax is as follows:

<expression> [<expression>]

The first expression must evaluate to a list type, the second expression must evaluate to an integer value. If
the list is of type list A, the whole list subscript expression must be of type A.

If the list subscript expression occurs at the left hand side of an assignment, the value of the referred list
element is written.

The length keyword returns the number of elements of a list. If it is put in front of a list expression, the whole
expression must be of type integer.

Example 6.17.
Lists

// Assume this widget is a label and dp:textList is a list of strings

v:this.text = dp:textList[3];

EB GUIDE documentation
Chapter 6. Background information

Page 56 of 248

dp:textList[1] = v:this.text; // writing the value of the list element

v:this.width = length dp:textList;// checking the length of the list

dp:textList[length dp:textList - 1] = "the end is here";

Adding elements to and removing elements from lists is currently not supported in EB GUIDE Script.

Trying to access list elements beyond the end of a list stops the execution of the script immediately. Make sure
that all your list accesses are in range.

6.11.16. Events
EB GUIDE Script offers the following expressions to handle events:

► The fire expression sends events. The syntax is as follows:

fire ev:<identifier> (<parameter list>)

Events can, but do not need to have parameters. The parameter list of the fire expression must match
the parameters of the fired event. If an event has no parameters, the parentheses must be empty.

Example 6.18.
Using the fire expression

fire ev:toggleView(); // the event "toggleView" has no parameters

fire ev:mouseClick(10, 20); // "mouseClick" has two integer parameters

fire ev:userNameEntered("Ishmael"); // string event parameter

► The fire_delayed expression sends events after a specified time delay. The syntax is as follows:

fire_delayed <time> , ev:<identifier> (<parameter list>)

The time parameter is an integer value that specifies the delay in milliseconds.

Example 6.19.
Using the fire_delayed expression

fire_delayed 3000, ev:mouseClick(10, 20); // send the event "mouseClick"

 //in 3 seconds.

► The cancel_fire expression cancels the delayed event. The syntax is as follows:

cancel_fire ev:<identifier>

► The match_event expression checks whether the execution of a script has been triggered by an event.
The syntax is as follows:

EB GUIDE documentation
Chapter 6. Background information

Page 57 of 248

match_event v:<identifier> = ev:<identifier>

in

 <expression>

else

 <expression>

The type of the match_event expression is the type of the in expression and the else expression,
which must be identical.

There is a special form of the match_event expression, in which you can omit the else branch. This
special form is of type void and cannot be used to return values from scripts.

Example 6.20.
Using the match_event expression

match_event v:theEvent = ev:toggleView in

{

 // this code will be executed when the "toggleView" event

 // has triggered the script

 dp:infoText = "the view has been changed";

}

else {}

match_event (<expression>) in <expression> //special form

 //without an else branch

 //The special form is an alternative way to express the following

 match_event (<expression>) in { <expression> ; {} } else {}

If a script has been triggered by an event with parameters, the parameters are accessible in the in expression
of a match_event expression. Read parameters using the dot notation, as you would access fields of a
structure in C. Event parameters are not available in the else expression.

Example 6.21.
Event parameters

// assume that "mouseClick" has two parameters: x and y

match_event v:event = ev:mouseClick in

{

 dp:rectX = v:event.x;

 dp:rectY = v:event.y;

}

6.11.17. String formatting

EB GUIDE documentation
Chapter 6. Background information

Page 58 of 248

String formatting in EB GUIDE Script is done using the concatenation operator (+) on strings in combination
with various data-to-string conversion functions. The EB GUIDE Script standard library comes with the following
conversion functions:

► int2string for simple integer-to-string conversion

► formatInteger for advanced integer-to-string conversion including features like fill characters and for-
matting in binary, hexadecimal, and decimal format

Example 6.22.
String formatting

// Assume this widget is a label and has a text property.

// Further assume that the datapool item dp:time_hour and

// dp:time_minute hold the current time.

v:this.text = "the current time is: " + f:int2string(dp:time_hour)

 + ":" + f:int2string(dp:time_minute);

6.11.18. The standard library

EB GUIDE Script comes with a standard library that consists of a set of foreign functions for example as follows:

► String formatting

► Language management

► Tracing

► Time and date

► Random number generation

For more information on the standard library, see section 11.4.3, “EB GUIDE Script standard library”.

6.12. Scripted values
A scripted value is an alternative notation for the value of a widget property or a datapool item. Such properties
of widgets or datapool items use other model elements to evaluate their own value or to react on events or
property updates. Scripted values are written in the EB GUIDE Script scripting language.

A property in EB GUIDE can be converted to a scripted value and back to its plain value.

For instructions see section 9.7, “Converting a property to a scripted value”

EB GUIDE documentation
Chapter 6. Background information

Page 59 of 248

For editing a scripted value, EB GUIDE Studio contains a script editor which is divided into different categories.

Figure 6.8. EB GUIDE Script editor in EB GUIDE Studio

► The Read script is called when the scripted value property is read. If the property is of a list type, the
parameters include the list index.

The return value of the Read script represents the current value of the property.

► The Write script is called when the scripted value property is written.

The new property value is a parameter of the Write script. If the property is of a list type, the parameters
includes the list index.

The return value of the Write script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

► The Trigger list contains a list of events, datapool items and widget properties that trigger the execution
of the On trigger script.

► The On trigger script is called on initialization, after an event trigger or after a property update.

The parameter of the On trigger script indicates the cause for the execution of the script. Execution can
be caused by initialization or by one of the triggers in the Trigger list.

The return value of the On trigger script controls change notifications for the property.

► true: trigger a change notification

► false: do not trigger a change notification

EB GUIDE documentation
Chapter 6. Background information

Page 60 of 248

► The Length script is only available for properties of a list type.

The return value of the Length script represents the current length of the list.

6.13. Shortcuts, buttons and icons

6.13.1. Shortcuts

The following table lists shortcuts available in EB GUIDE Studio and explains their meaning.

Table 6.1. Shortcuts

Shortcut Description

Ctrl + Y Redo

Ctrl + Z Undo

Ctrl + S Save

Del Deletes the selected model element from the content area or the navi-
gation area

F1 Opens the user documentation

F2 Renames the selected model element in the navigation area

Up/Down/Left/Right Moves the selected state or widget in the content area one pixel up,
down, left, or right

6.13.2. Buttons

The following table lists buttons that are used in EB GUIDE Studio and explains their meaning.

Table 6.2. Buttons in EB GUIDE Studio

Button Description

Undo

Redo

Save

Validate

EB GUIDE documentation
Chapter 6. Background information

Page 61 of 248

Button Description

Starts the simulation

Stops the simulation

Opens the project center

Opens an additional editor

Synchronizes content area and navigation area

Adds an event, a datapool item, or a state machine

Opens a property-related context menu.

Depending on the button's color it indicates the following:

 Property is local.

 Property is linked to another property.

 Property is linked to a datapool item.

 Property value is equal to template value.

6.13.3. Icons
The following table lists icons that are used in EB GUIDE Studio and explains their meaning.

Table 6.3. Icons in EB GUIDE Studio

Icon Description

Indicates a template

Indicates a transition

Widget template:

Indicates that a property is added to the widget template interface

6.14. State machines and states

6.14.1. State machines

EB GUIDE documentation
Chapter 6. Background information

Page 62 of 248

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system. In EB
GUIDE, a state machine consists of an arbitrary number of hierarchically ordered states and of transitions
between the states.

In EB GUIDE you can create the following types of state machines:

6.14.1.1. Haptic state machine

Haptic state machine allows the specification of GUI.

6.14.1.2. Logic state machine

Logic state machine allows the specification of some logic without GUI.

6.14.1.3. Dynamic state machine

Dynamic state machine runs parallel to other state machines.

Dynamic state machine does not start automatically at system start. The start and stop of dynamic state ma-
chines is initiated by another state machine.

There are two kinds of dynamic state machines:

► Haptic dynamic state machine

► Logic dynamic state machine

For instructions see section 7.4, “Tutorial: Adding a dynamic state machine”

6.14.2. States

EB GUIDE uses a concept of states. States determine the status and behavior of a state machine. States
are linked by transitions. Transitions are the connection between states and define the destination of a state
change.

A state has the following properties:

EB GUIDE documentation
Chapter 6. Background information

Page 63 of 248

► Entry action

► Exit action

► Internal transitions

6.14.2.1. Compound state

A compound state can have other states within it as child states. The compound state structure is hierarchical
and the number of possible child states is arbitrary. Any type of state can be nested in a compound state.

Figure 6.9. Compound states

In the navigation area, the state hierarchy is shown as a tree structure.

EB GUIDE documentation
Chapter 6. Background information

Page 64 of 248

Figure 6.10. State hierarchy as a tree

A compound state can have an arbitrary number of incoming and outgoing transitions, and of internal transitions.
Child states inherit the transitions of parent states.

6.14.2.2. View state

A view state contains a view. A view represents a project specific HMI screen. The view is displayed while
the corresponding view state is active. The view consists of widgets which are the interface between user and
system.

6.14.2.3. Initial state

An initial state defines the starting point of the state machine. An initial state has an outgoing default transition
that points to the first state. An initial state has no incoming transition.

Initial state can be used as starting point of a compound state or to enter a compound state in the following ways:

► With a transition to compound state, initial state is mandatory

► With a transition to a child state of a compound state

EB GUIDE documentation
Chapter 6. Background information

Page 65 of 248

Figure 6.11. An example of an initial state

6.14.2.4. Final state

A final state is used to exit a compound state. If the final state of the state machine is entered, the state machine
terminates. Any history states within the compound state are reset. A final state does not have any outgoing
transitions.

A compound state can have only one final state. The final state is triggered by the following actions:

► A transition from a child state to the outside of the compound state (the transition with event z)

► An outgoing transition from the compound state (the transition with event y)

► A transition to the final state in a compound state (the transition with event x)

If a compound state contains a final state, the compound state must have an outgoing transition.

EB GUIDE documentation
Chapter 6. Background information

Page 66 of 248

Figure 6.12. Final state usage in a compound state

6.14.2.5. Choice state

A choice state realizes a dynamic conditional branch. It is used when firing an event depends on conditions. A
choice state is the connection between a source state and a destination state. A choice state can have several
incoming and outgoing transitions. Every outgoing transition is assigned a condition and is only executed if the
condition evaluates to true. One outgoing transition is the else transition. It is executed if all other conditions
evaluate to false. The else transition is mandatory.

It is possible that several of the outgoing transitions are true, thus it is necessary to define the order in which
the outgoing transitions are evaluated.

EB GUIDE documentation
Chapter 6. Background information

Page 67 of 248

Figure 6.13. Choice state with incoming and outgoing transitions

6.14.2.6. History states

EB GUIDE supports two types of history states:

► Shallow history state stores the most recent active sub-state: the sub-state that was active just before
exiting the compound state.

► Deep history state stores a compound state and its complete sub-hierarchy just before the compound
state is exited.

When the parent state of a history state is entered for the first time, the last active child state is restored.

A shallow history state only remembers the last state that was active before compound state was exited. It
cannot remember hierarchies.

A shallow history state restores the last active state recorded within a compound state. It has an outgoing
default transition without conditions but can have multiple incoming transitions.

When a compound state is entered for the first time the shallow history state is empty. When an empty shallow
history state is entered the shallow history state default transition determines the next state.

EB GUIDE documentation
Chapter 6. Background information

Page 68 of 248

Example 6.23.
Shallow history state

A shallow history state can be used as follows.

Figure 6.14. Shallow history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the shallow history state is entered.

3. From the shallow history state, the state machine enters state D because state D was the last
active state in Compound State.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again the shallow history state is entered.

3. From the shallow history state, the state machine enters Inner state because shallow his-
tory states remember the state last active but cannot remember hierarchies.

4. Entering Inner state leads to state A.

A deep history state is able to save hierarchical histories.

Example 6.24.

EB GUIDE documentation
Chapter 6. Background information

Page 69 of 248

Deep history state

A deep history state can be used as follows.

Figure 6.15. Deep history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state D because state D was the last ac-
tive state in Compound State.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state B because state B was the last ac-
tive state and deep history state remembers state hierarchies.

One state can have either a shallow history state or deep history state. You can have a history state in a parent
state and another history state in a child state.

6.14.3. Transitions

EB GUIDE documentation
Chapter 6. Background information

Page 70 of 248

A transition is a directed relationship between a source state and a target state. It takes the state machine from
one state to another. A transition has the following properties:

► A trigger to execute the transition

A trigger can either be an event or the change of a datapool item.

► A condition that must be evaluated as true to execute the transition

► An action that is executed along with the transition

Figure 6.16. A transition

NOTE Transitions are deterministic
It is not possible to have more than one transition for the same event even with different
conditions. If the state machine is supposed to jump to different destination states depending
on different conditions, use a choice state.

A state inherits all transitions from its parent states. If a number of states share the same transitions to another
state, an enclosing compound state can be used to bundle the transitions and thus reduce the number of
conditions.

Example 6.25.

EB GUIDE documentation
Chapter 6. Background information

Page 71 of 248

Transition inheritance

Figure 6.17. Transition inheritance

If the event b is fired while the state machine is in State B1, the transition to State C is executed be-
cause the child states State B1 and State B2 inherit the transitions of state State B.

If an internal transition from the child state uses the same event as the external transition from the parent state,
transition inheritance is overridden.

Example 6.26.

EB GUIDE documentation
Chapter 6. Background information

Page 72 of 248

Transition override

Figure 6.18. Transition override

If event d is fired while the state machine is in state State B, the transition to State C is executed.

If event d is fired while the state machine is in state State B1, the transition to State B2 is executed
instead of the transition to State C. Because the two transitions have the same name, the inner transi-
tion overrides the outer one.

NOTE Execution hierarchy
In a state machine the hierarchy for the execution of transitions that use the same event
is always from the inside out.

There are different types of transitions.

► Default transition

A default transition is triggered automatically and not by any event or datapool item update. It has no
condition, but can have an action. It is used with initial state, final state, choice state, and history states.

► Choice transition

EB GUIDE documentation
Chapter 6. Background information

Page 73 of 248

A choice transition is an outgoing transition with a condition assigned to it. Its source state is a choice
state. Choice transitions are triggered by the evaluation of their condition. They result in an action. The
first choice transition that has condition true is executed.

► Else transition

An else transition is the mandatory counterpart of a choice transition. Every choice state needs to have
one else transition which is executed if the conditions of all its choice transitions evaluate to false.

► Internal transition

An internal transition is a transition that has no destination state and thus does not change the active state.
The purpose of an internal transition is to react to an event without leaving the present state. It can have
a condition and it results in an action.

It is possible to have several internal transitions for the same event in a state. The order of execution is
defined.

► Self transition

A self transition is a transition with the same state as source state and destination state. Unlike an internal
transition, a self transition leaves and re-enters the state and thus executes its entry and exit actions.

6.14.4. Execution of a state machine

When a state machine is executed, at any moment in time it has exactly one active state. A state machine
is event-driven.

The state machine cycle is as follows:

1. The state machine is started by entering its initial state.

2. The state machine waits for incoming events.

a. Internal transitions are found.

i. Start at the current state and search for the first internal transition that is triggered by the current
event and has condition true. If such a transition is found, it is executed.

ii. If no transition is found, go to the parent state and search for the first internal transition that is
triggered by the current event and has condition true.

iii. If no transition is found, repeat the previous step until the top-level state is reached.

b. Internal transitions are processed.

Executing an internal transition only triggers the action that is connected to the internal transition. The
state is not exited and re-entered.

EB GUIDE documentation
Chapter 6. Background information

Page 74 of 248

c. Transitions are found.

i. Start at the current state and search for a transition that is triggered by the current event and has
condition true. If such a transition is found, it is executed.

ii. If no transition is found, go up to the parent state and search for a transition.

iii. Repeat the previous step until the first fitting transition is found.

d. Transitions are processed.

Executing a transition changes the state machine from one state to another state. The source state
is exited and the destination state is entered.

A transition is only executed when its corresponding event is fired and the condition is evaluated to
true.

A transition can exit and enter several compound states in the state hierarchy. Between the exit cas-
cade and the entry cascade the transition's action is executed.

Entering a state can require a subsequent transition, for example entering a compound state requires
executing the transition of an initial state as a subsequent transition. A chain of several subsequent
transitions is possible.

3. The state machine stops when the final state of the state machine is reached.

If a transition crosses several states in the state hierarchy, a cascade of exit and entry actions is executed.

Example 6.27.

EB GUIDE documentation
Chapter 6. Background information

Page 75 of 248

Executing a transition

Figure 6.19. Executing a transition

When event a is fired, the following happens:

1. State B is exited.

2. State C is entered.

When event b is fired, the following happens:

1. State B is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

When event c is fired, the following happens:

1. If state B or state C is active, state B or state C is exited.

2. State A is exited.

EB GUIDE documentation
Chapter 6. Background information

Page 76 of 248

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

Example 6.28.
Executing a transition

Figure 6.20. Executing a transition

When event a triggers the transition, the following happens:

1. State S4 is exited.

2. State S3 is exited.

3. State S1 is exited.

4. State S2 is entered.

5. State S5 is entered.

Example 6.29.

EB GUIDE documentation
Chapter 6. Background information

Page 77 of 248

Executing a transition

Figure 6.21. Executing a transition

The transition that is triggered by event a causes the following transition sequence:

1. The state machine goes to state S2.

2. The default transition leads to state S3.

3. The next default transition enters the shallow history state.

4. Shallow history state restores the last active state of state S3, either state S4 or state S5.

For each step the entry-exit-cascade is executed separately.

6.14.5. EB GUIDE notation in comparison to UML notation

In this section the EB GUIDE notation is compared to the Unified Modeling Language (UML) 2.5 notation.

EB GUIDE documentation
Chapter 6. Background information

Page 78 of 248

6.14.5.1. Supported elements

The following table shows all UML 2.5 elements that are supported by EB GUIDE. The names of some elements
deviate from the naming convention in UML 2.5, but the functionality behind these elements remains the same:

Name in EB GUIDE Name in UML 2.5

Initial state Initial (pseudostate)

Final state Final state

Compound state State

Choice state Choice (pseudostate)

Deep history state DeepHistory (pseudostate)

Shallow history state ShallowHistory (pseudostate)

Internal transition Internal transition

Transition External/local transition a

aEB GUIDE does not differentiate between external and local transitions.

6.14.5.2. Not supported elements

The following UML 2.5 elements are not supported in EB GUIDE:

► Join

► Fork

► Junction

► Entry point

► Exit point

► Terminate

6.14.5.3. Deviations

Some elements of the UML 2.5 notation are not implemented in EB GUIDE. But the functionality of these
elements can be modeled with EB GUIDE concepts.

Concept in UML 2.5 Workaround with EB GUIDE

Parallel states Concept is implemented using dynamic state machines.

Number of triggers per transition Concept is implemented using EB GUIDE Script in a datapool item or a
view.

EB GUIDE documentation
Chapter 6. Background information

Page 79 of 248

Concept in UML 2.5 Workaround with EB GUIDE

Time triggers at transitions Concept is implemented using EB GUIDE Script (fire_delayed) in a
state machine, a datapool item, a transition, or a view.

6.15. Touch input
EB GUIDE supports two types of touch input: Touch gestures and multi-touch input.

Each touch gesture is represented in EB GUIDE Studio as a widget feature. Enabling the widget feature adds
a set of properties to a widget.

The gestures are divided into two basic types:

► Non-path gestures

► Path gestures

6.15.1. Non-path gestures

EB GUIDE implements the following non-path gestures:

► Flick

► Pinch

► Rotate

► Hold

► Long hold

Non-path gestures include multi-touch and single-touch gestures. Multi-touch gestures require an input device
that supports multi-touch input. Single-touch gestures work with any supported input device.

Each gesture reacts independently of the others. If several gestures are enabled, the modeler is responsible
to make sure that the EB GUIDE model behaves consistently.

6.15.2. Path gestures

Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device. When
a widget has the widget feature enabled, the user can enter a shape starting on the widget. The shape has to

EB GUIDE documentation
Chapter 6. Background information

Page 80 of 248

exceed a configurable minimal bounding box to be considered by the path gesture recognizer. The shape is
matched against a set of known shapes and, if a match is found, a gesture is recognized.

For instructions see section 8.7, “Tutorial: Modeling a path gesture”

6.15.3. Input processing and gestures
Gesture recognition runs in parallel to ordinary input processing. Each gesture can request that the contact
involved in the gesture is removed from ordinary input processing. The moment at which a gesture requests
contact removal depends on the actual gesture and for some gestures this can be configured.

Contact removal is only relevant for fingers involved in a gesture. Once a contact is removed, it is ignored by
ordinary input handling until a release event is received for the contact. On a touch screen without proximity
support this implies that a contact, once removed, does not trigger any further touch reactions.

TIP Removing a contact from ordinary input processing
Consider a window with a button and a widget feature for gestures. When a contact is
involved in a gesture it should not cause the action associated with the button to be triggered,
even if the contact is released while on the button.

6.15.4. Multi-touch input
EB GUIDE is able to handle multi-touch input, if a compatible multi-touch input device is used.

Multi-touch is the ability of a surface to recognize and track more than one point of contact on an input device.
The typical scenario are multiple fingers touching a touch screen.

► Multi-touch event handling

Multi-touch events are dispatched using the mechanism for touch events, in the same way events from
the mouse and from single-touch touch screens are dispatched. The only difference is that each contact
triggers touch reactions independently of all others. To be able to distinguish individual contacts, each
touch reaction is supplied with a parameter called fingerid.

► Finger ID

Each contact tracked by an input device is assigned a number that identifies it. This identifier is called
fingerid and is unique per input device. However, the same value can be assigned to another contact
at a later time when it is no longer in use.

Consider the extra touch interaction sequences the end user is allowed to make when multi-touch input is
enabled. They include the following:

EB GUIDE documentation
Chapter 6. Background information

Page 81 of 248

► The end user can interact with multiple elements of the interface at the same time, for example press a
button while scrolling in a list.

► The end user can place multiple fingers on a single widget.

Two typical situations where this manifests are scrolling and dragging. They can be handled correctly by em-
ploying fingerid. Depending on the required behavior, possible solutions include the following:

► Allow only the first finger that pressed a widget to do scrolling and/or dragging.

► Always use the last finger to land on a widget to do scrolling and/or dragging. This is easily achieved by
a slight modification of the previous approach.

6.16. Widgets
Widgets are the basic graphical elements an EB GUIDE model is composed of.

Widgets can be customized: Editing the properties of a widget adapts the widget to individual needs. Example
properties are size, color, layout, or behavior when being touched or moved.

Widgets can be combined: Out of small building blocks, complex structures are created. For example, a button
can be made up of a rectangle, an image, and a label.

Widgets can be nested: In a widget hierarchy, the subordinate widgets are referred to as child widgets, the
superordinate widgets are referred to as parent widgets.

6.16.1. View

A view is the topmost widget of each scene. While modeling, basic widgets, 3D widgets and animations are
placed into views. Every view is associated to exactly one view state. A view cannot exist without a view state.

EB GUIDE documentation
Chapter 6. Background information

Page 82 of 248

Figure 6.22. A view that contains a rectangle, a label, and an image

6.16.2. Widget categories

In the Toolbox, widgets are grouped by categories. The following categories are available.

► Basic widgets

The basic widgets are label, rectangle, container, image, and instantiator.

► Animations

The Animations category provides the animation and a set of curves to specify animation details. For
each curve, there is one widget per supported data type.

► 3D widgets

The 3D widgets category contains a widget which displays a 3D graphic.

EB GUIDE documentation
Chapter 6. Background information

Page 83 of 248

NOTE Supported renderers
To display 3D graphics, OpenGL ES 2.0 or DirectX 11 renderer is required.

6.16.3. Widget properties

A widget is defined by a set of properties which specify the appearance and behavior of the widget. The
Properties panel displays the properties of the currently focused widget and allows editing the properties.

Figure 6.23. A rectangle and its properties

There are three types of widget properties:

► Default widget properties are created along with each widget instance. For a list of default properties for
all widgets see section 11.8, “Widgets”.

► User-defined widget properties are created by the modeler in addition to the default ones.

► Widget features supply widgets with additional properties. Adding a widget feature to a widget means
adding one or more properties. Widget feature properties are grouped by categories.

EB GUIDE documentation
Chapter 6. Background information

Page 84 of 248

Figure 6.24. Widget features

For example, the Touched widget features defines if and how a widget reacts to being touched by adding
four properties. The two properties of type boolean touchable and touched determine if the widget
reacts on touch input. The two properties of type integer touch policy and touch behavior determine
how the widget reacts on touch input.

6.16.4. Widget templates

A widget template allows adding a customized widget in several locations of an EB GUIDE model. You can
define templates on the basis of existing widgets and then modify the template according to your needs. Widget
templates allow you to built a library of complex widgets.

A widget template has a template interface. The template interface specifies the properties of the template which
are passed on to widget instances. A widget instance thus inherits the properties of its template's interface.
Inherited properties are called template properties. Template properties are marked with the button.

When you change the value of a template property, the property is turned into a local property. Local properties
are marked with the button.

Example 6.30.

EB GUIDE documentation
Chapter 6. Background information

Page 85 of 248

Relation of the properties of a widget template and its instances

You add a widget template Square to the EB GUIDE model. Let Square have a property color. Let
the value of color be red.

You add an instance of the widget template Square to a view. The instance is named BlueSquare.

► BlueSquare inherits color with the value red.

► Change the value of color in the Square template to green.

=> The value of color in BlueSquare changes to green, too.

► Change the value of color in BlueSquare to blue.

Change the value of color in the Square template to yellow.

=> The value of color in BlueSquare remains blue.

For instructions see section 8.6, “Re-using a widget”

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 86 of 248

7. Modeling HMI behavior

7.1. Modeling a state machine

7.1.1. Adding a state machine

Adding a state machine

Prerequisite:

■ The navigation area displays the All tab.

Step 1
In the navigation area, point to State machines.

The button appears.

Step 2
Click .

A menu expands.

Step 3
Click a type for the state machine.

A new state machine of the selected type is added.

Step 4
Rename the state machine.

7.1.2. Adding a dynamic state machine
Dynamic state machines run in parallel to other state machines and can be started (pushed) and stopped
(popped) during run-time.

Adding a dynamic state machine

You use a dynamic state machine for example to show an error message that overlays the regular screen.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 87 of 248

Prerequisite:

■ The navigation area displays the All tab.

■ A state machine, view state, or compound state is added to the EB GUIDE model.

Step 1
In the navigation area, point to Dynamic state machines.

The button appears.

Step 2
Click .

A menu expands.

Step 3
Click a type for the dynamic state machine.

A new dynamic state machine of the selected type is added.

Step 4
In the navigation area, click a state machine, view state, or compound state to which you want to run in par-
allel the dynamic state machine.

Step 5
In the Properties panel, select the Dynamic state machine list check box.

With these steps done, you use EB GUIDE Script functions that are related to dynamic state machines.

For a detailed example of how to use dynamic state machines see section 7.4, “Tutorial: Adding a dynamic
state machine”.

7.1.3. Defining an entry action for a state machine

Defining an entry action for a state machine

Prerequisite:

■ A state machine is added to the EB GUIDE model.

Step 1
Select a state machine.

Step 2
In the Properties panel, go to the Entry action property, and click Add....

Step 3
Enter an action using EB GUIDE Script.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 88 of 248

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

You defined an entry action for a state machine.

7.1.4. Defining an exit action for a state machine

Defining an exit action for a state machine

Prerequisite:

■ A state machine is added to the EB GUIDE model.

Step 1
Select a state machine.

Step 2
In the Properties panel, go to the Exit action property, and click Add....

Step 3
Enter an action using EB GUIDE Script.

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

You defined an exit action for a state machine.

7.1.5. Deleting a state machine

Deleting a state machine

Prerequisite:

■ The navigation area displays the All tab.

■ A state machine is added to the EB GUIDE model.

Step 1
In the navigation area, right-click the state machine.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 89 of 248

Step 2
In the context menu, click Delete.

The state machine is deleted.

7.2. Modeling states

7.2.1. Adding a state

Adding a state

Prerequisite:

■ The content area displays a state machine.

Step 1
Drag a state from the Toolbox into the state machine.

A state is added to the state machine.

NOTE Initial state and final state are unique
Inserting initial state and final state is only possible once per compound state.

7.2.2. Adding a state to a compound state

Adding a state to a compound state

To create a state hierarchy, you create a state as a child to another state. You do so by adding a state to a
compound state.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains a compound state.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 90 of 248

Step 1
In the content area, click to expand the compound state.

Step 2
Drag a state from the Toolbox into the compound state.

The state is added as a child state to the compound state.

Figure 7.1. A compound state with a nested view state

7.2.3. Adding a choice state

Adding a choice state

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

Step 1
Drag a choice state from the Toolbox into the state machine.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 91 of 248

Step 2
Add an outgoing transition from the choice state.

Step 3
Add a condition to the outgoing transition.

The condition is assigned priority one. When the state machine enters the choice state, the condition with pri-
ority one is evaluated first.

Step 4
To add more choice transitions, repeat the two previous steps.

A new choice transition is assigned a lower priority than the transition that was created before.

Step 5
Add an outgoing transition from the choice state.

Step 6
Right-click the transition, and in the context menu click Convert to else.

You added an else transition. The else transition is executed when all conditions which are assigned to out-
going choice transitions evaluate to false.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 92 of 248

Figure 7.2. A choice state with its choice transitions

7.2.4. Defining an entry action for a state

Defining an entry action for a state

For view states and compound states you can define an entry action. The entry action is executed every time
the state is entered.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains a view state or a compound state.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 93 of 248

Step 1
Select a state.

Step 2
In the Properties panel, go to the Entry action property, and click Add....

Step 3
Enter an action using EB GUIDE Script.

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

7.2.5. Defining an exit action for a state

Defining an exit action for a state

For view states and compound states you can define an exit action. The exit action is executed every time
the state is exited.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains a view state or a compound state.

Step 1
Select a state.

Step 2
In the Properties panel, go to the Exit action property, and click Add....

Step 3
Enter an action using EB GUIDE Script.

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

7.2.6. Deleting a model element from a state machine

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 94 of 248

Deleting a model element from a state machine

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least one model element.

Step 1
In the navigation area, right-click a model element.

Step 2
In the context menu, click Delete.

The model element is deleted.

7.3. Connecting states through transitions

7.3.1. Adding a transition between two states

Adding a transition between two states

With a transition, you connect a source state to a target state.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

Step 1
Select a state as a source state for the transition.

Step 2
Click the green drag point, and keep the mouse button pressed.

Step 3
Drag the mouse into the target state.

Step 4
When the target state is highlighted green, release the mouse button.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 95 of 248

Figure 7.3. A transition

A transition is added and displayed as a green arrow.

TIP Connect transitions to the state machine
The state machine is the top-most compound state. Therefore, you can create transitions
to and from the border of the state machine. All states in the state machine inherit such a
transition.

7.3.2. Moving a transition

Moving a transition

You move a transition by moving one of its end points.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 96 of 248

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
In the content area, click a transition.

Two green drag points are displayed.

Step 2
Click the drag point you would like to move, and keep the mouse button pressed.

Step 3
Drag the mouse into a different state.

Step 4
When the state is highlighted green, release the mouse button.

The transition is moved.

7.3.3. Defining a trigger for a transition

Defining a trigger for a transition

For a transition, you can define an event that triggers it.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
In the Properties panel, expand the Trigger combo box.

Step 3
Select an event.

Step 4
To create a new event, enter a name in the Trigger combo box, and click Add event.

The event is added as a transition trigger.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 97 of 248

Figure 7.4. A transition with a trigger

7.3.4. Adding a condition to a transition

Adding a condition to a transition

For every transition, you can define a condition that needs to be fulfilled to execute the transition.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 98 of 248

Step 2
To add a condition to the transition, click Add in the Properties panel.

Step 3
Enter a condition using EB GUIDE Script.

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

The condition is added to the transition.

Figure 7.5. A transition with a condition

7.3.5. Adding an action to a transition

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 99 of 248

Adding an action to a transition

For every transition, you can define an action that is executed along with the transition.

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add an action to the transition, click Add... in the Properties panel.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 6.11, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

The action is added to the transition.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 100 of 248

Figure 7.6. A transition with an action

7.3.6. Adding an internal transition to a state

Adding an internal transition to a state

Prerequisite:

■ The content area displays a state machine.

■ The state machine contains a state.

Step 1
In the content area, select a state.

Step 2
In the Properties panel, go to Internal transitions, and click Add....

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 101 of 248

An internal transition is added to the state. The internal transition is visible in the navigation area.

7.4. Tutorial: Adding a dynamic state machine
Dynamic state machines allow pop-ups during run-time. You use dynamic state machines for example to display
error messages that overlay the regular display.

The following instructions guide you through the process of creating a dynamic state machine. The instructions
show you how to model a dynamic state machine for volume control. For best results, work through the following
steps in the order presented.

Approximate duration: 20 minutes.

Adding events and datapool items

The following instructions guide you through the process of adding events and datapool items. These events
are used to change the volume afterwards. The purpose of the datapool item is to change the position of a
graphical element in a later section.

Prerequisite:

■ The navigation area displays the All tab.

Step 1
In the navigation area, point to Events.

The button appears.

Step 2
Click .

An event is added to the navigation area.

Step 3
Rename the event to Volume up.

Step 4
Add an event, and rename it to Volume down.

Step 5
Add an event, and rename it to Close volume control.

Step 6
In the navigation area, point to Datapool.

The button appears.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 102 of 248

Step 7
Click .

A menu expands.

Step 8
In the menu, click Integer.

A datapool item of type integer is added.

Step 9
Rename the datapool item to Volume indicator.

You added three events and a datapool item.

Adding a dynamic state machine and modeling the behavior

The following instructions guide you through the process of adding a dynamic state machine. The haptic dy-
namic state machine that you model is used to control the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, point to Dynamic state machines.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu, click Haptic dynamic state machine.

A haptic dynamic state machine is added.

Step 4
Rename the dynamic state machine to Volume control.

Step 5
In the navigation area, double-click Volume control.

The dynamic state machine is displayed in the content area.

Step 6
Drag an initial state from the Toolbox into the state machine.

Step 7
Drag a view state from the Toolbox into the state machine.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 103 of 248

Along with the view state, a view is added to the model.

Step 8
In the navigation area, click the view state.

Step 9
Press the F2 key, and rename the view state to Volume.

Step 10
In the content area, click the initial state.

Step 11
Click the green drag point, and keep the mouse button pressed.

Step 12
Drag the mouse into the view state.

Step 13
When the view state is highlighted green, release the mouse button.

A transition is added and displayed as a green arrow.

Modeling a slider

The following instructions guide you through the process of modeling a horizontal slider indicator. The slider
indicator shows the volume during run-time.

The slider indicator consists of two rectangle. One rectangle represents the background of the slider. The
second rectangle indicates the volume.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, click the view state.

Step 2
In the content area, double-click the Volume view state.

The content area displays the view.

Step 3
Drag a rectangle from the Toolbox into the view.

Step 4
In the navigation area, click the rectangle, and press the F2 key.

Step 5
Rename the rectangle to Slider background.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 104 of 248

Step 6
To change the appearance of Slider background, click the rectangle widget, and go to the Properties
panel.

Step 6.1
Enter 500 in the width text box.

Step 6.2
Enter 125 in the x text box.

Step 6.3
Enter 300 in the y text box.

Step 7
Drag a rectangle from the Toolbox into Slider background in the content area.

The rectangle is added as a child widget to Slider background.

Step 8
In the navigation area, click the rectangle, and press the F2 key.

Step 9
Rename the rectangle to Indicator.

Step 10
To change the appearance of Indicator, click the rectangle, and go to the Properties panel.

Step 10.1
Enter 40 in the width text box.

Step 10.2
Enter 80 in the height text box.

Step 10.3
Next to the x property, click the button.

A menu expands.

Step 10.4
In the menu, click Add link to datapool item.

A dialog opens.

Step 10.5
Select the Volume indicator datapool item from the drop-down list box.

Step 10.6
Click Accept.

The dialog closes. The button is displayed next to the x property. The values of x and Volume indi-
cator are now linked.

Step 10.7
Enter 10 in the y text box.

Step 10.8
Select black for the fillColor property.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 105 of 248

You added two rectangles to the view. You changed the appearance of the rectangles.

Figure 7.7. Appearance of Volume view with two rectangle

Step 11
In the navigation area, click the Volume indicator datapool item.

Step 12
Go to the Properties panel, and enter 10 in the Value text box.

In the content area, the Indicator rectangle changes the position.

The Volume indicator datapool item controls the x position of the Indicator rectangle.

Adding states to the Main state machine

In the following instructions, you add an initial state and a view state to the Main state machine. You use the
view state to run the dynamic state machine in parallel to other state machines.

Prerequisite:

■ You completed the previous instruction.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 106 of 248

Step 1
In the navigation area, double-click Main.

The Main state machine is displayed in the content area.

Step 2
Drag an initial state from the Toolbox into the state machine.

Step 3
Drag a view state from the Toolbox into the state machine.

Along with the view state, a view is added to the model.

Step 4
Rename the view state to Home.

Step 5
In the content area, click the initial state.

Step 6
Add a transition from the initial state to the Home view state.

Step 7
In the navigation area, click Main.

Step 8
In the Properties panel, select the Dynamic state machine list check box.

With these steps done, you can use EB GUIDE Script functions that are related to dynamic state machines.

You added an initial state and a view state to the Main state machine. The haptic dynamic state machine
runs in parallel to the Main state machine.

Adding internal transitions to the Main state machine

In the following instruction, you add internal transitions. You use the internal transitions to start (push) and
stop (pop) the dynamic state machine during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, click the Main state machine.

Step 2
In the Properties panel, go to Internal transitions, and click Add.

An internal transition is added to the state machine. The internal transition is visible in the navigation area.

Step 3
Add two more internal transitions.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 107 of 248

Step 4
In the navigation area, click the first internal transition.

Step 4.1
Go to the Properties panel.

Step 4.2
In the Trigger combo box, select Volume up.

Step 4.3
Next to the Action property, click Add....

Step 4.4
Enter the following EB GUIDE Script:

 function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" + 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 4.5
Click Accept.

The action is added to the transition. In the navigation area, the internal transition is renamed to Volume
up.

Step 5
In the navigation area, click the second internal transition.

Step 5.1
Go to the Properties panel.

Step 5.2
In the Trigger combo box, select Volume down.

Step 5.3
Next to the Action property, click Add....

Step 5.4
Enter the following EB GUIDE Script:

 function()

 {

 dp:"Volume indicator" = dp:"Volume indicator" - 20

 f:pushDynamicStateMachine(popup_stack:Main, sm:"Volume control", 0)

 }

Step 5.5
Click Accept.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 108 of 248

The action is added to the transition. In the navigation area, the internal transition is renamed to Volume
down.

Step 6
In the navigation area, click the third internal transition.

Step 6.1
Go to the Properties panel.

Step 6.2
In the Trigger combo box, select Close volume control.

Step 6.3
Next to the Action property, click Add....

Step 6.4
Enter the following EB GUIDE Script:

 function()

 {

 f:popDynamicStateMachine(popup_stack:Main,sm:"Volume control")

 }

Step 6.5
Click Accept.

The action is added to the transition. In the navigation area, the internal transition is renamed to Close
volume control.

You added three internal transitions which start and stop the dynamic state machine. Furthermore, the in-
ternal transitions Volume up and Volume down change the position of the Indicator rectangle wid-
get.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 109 of 248

Figure 7.8. EB GUIDE model with all model elements

Starting the simulation and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. The EB GUIDE model displays the Home view state.
Step 1
In the EB GUIDE Monitor toolbar, click Connect.

Step 2
In EB GUIDE Monitor, double-click Volume up to fire the event.

The dynamic state machine is started and shows the slider indicator. The dynamic state machine overlays
the Home view state.

When you fire the events Volume up or Volume down the black Indicator rectangle moves. If you fire
the event Close volume control, the slider disappears from the view.

If you add additional states to the Main state machine, the Volume control dynamic state machine will
overlay the other states as well.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 110 of 248

7.5. Tutorial: Modeling button behavior with EB
GUIDE Script
With EB GUIDE Script you can express property values, actions, or conditions and evaluate them during run-
time.

The following instructions guide you through the process of using EB GUIDE Script to model the behavior of
a button. The button increases in size when it is clicked and shrinks back to its original size when it reaches a
defined maximum size. For best results, work through the steps in the order presented.

Approximate duration: 10 minutes.

Adding widgets

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

■ The content area displays a view.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
In the navigation area, click the rectangle, press the F2 key, and rename the rectangle to Background.

Step 3
Drag a rectangle from the Toolbox into the navigation area. Place it as a child widget to the Background
rectangle.

Step 4
In the navigation area, click the new rectangle, press the F2 key, and rename the rectangle to Button.

Step 5
Drag a label from the Toolbox into the navigation area. Place the label as a child widget to the Button rec-
tangle.

Step 6
In the navigation area, click the label, press the F2 key, and rename the label to Button text.

Your widget hierarchy now looks as follows.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 111 of 248

Figure 7.9. Widget hierarchy

Configuring the background

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, click the Background rectangle, and go to the Properties panel.

Step 2
Next to the width property, click the button.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 112 of 248

Step 6
Link the height property of the Background rectangle to the height property of the view.

Step 7
Link the x property of the Background rectangle to the x property of the view.

Step 8
Link the y property of the Background rectangle to the y property of the view.

The Background rectangle covers the exact size and position of the view.

Defining the maximum button width

A datapool item holds the value for the maximum width of the button. It can be changed during run-time.

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, point to Datapool.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu, click Integer.

A new datapool item of type integer is added.

Step 4
Rename the datapool item to Maximum width.

Step 5
Go to the Properties panel, and enter 400 in the Value text box.

Configuring the button

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, click the Button rectangle, and go to the Properties panel.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 113 of 248

Step 1.1
Enter 50 in the height text box.

Step 1.2
Enter 350 in the x text box.

Step 1.3
Enter 215 in the y text box.

Step 1.4
Select blue for the fillColor property.

The button is now colored blue.

Step 2
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Input handling category, and select the Touch pressed wid-
get feature.

Step 4
Click Accept.

The related widget feature properties are added to the Button rectangle and displayed in the Properties
panel.

Step 5
Next to the touchPressed property, click Edit....

Step 6
Replace the existing EB GUIDE Script with the following code:

function(v:touchId::int, v:x::int, v:y::int, v:fingerId::int)

 {

 if (v:this.width > dp:"Maximum width") // If the button has grown

 // beyond its maximum size...

 {

 // ...reset its dimensions to the default values.

 v:this.height = 50

 v:this.width = 100

 v:this.x = 350

 v:this.y = 215

 }

 else // Otherwise...

 {

 // ... increase button size...

 v:this.width += 80

 v:this.height += 40

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 114 of 248

 // ...and move the button to keep it centered.

 v:this.x -= 40

 v:this.y -= 20

 }

 false

 }

Step 7
Click Accept.

You configured the Button rectangle and wrote an EB GUIDE Script which changes the size of the Button
rectangle in run-time.

Configuring the button text

Prerequisite:

■ You completed the previous instruction.

Step 1
In the navigation area, click the Button text label, and go to the Properties panel.

Step 2
Enter grow! in the text text box.

Step 3
Link the width property of the Button text label to the width property of the Button rectangle.

Step 4
Link the height property of the Button text label to the height property of the Button rectangle.

Step 5
Enter 0 in the x text box.

Step 6
Enter 0 in the y text box.

Step 7

Next to the horizontalAlign property, click .

Now the Button text label and the Button rectangle are equal in size and position.

Saving and testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

EB GUIDE documentation
Chapter 7. Modeling HMI behavior

Page 115 of 248

Step 1

To save the project, click in the command area.

Step 2
To start the simulation, click in the command area.

Result:

The simulation starts the EB GUIDE model you created. It behaves as follows.

1. First, it displays a grey screen with a blue button in its center. The screen looks as follows.

Figure 7.10. Result

2. Whenever you click the button, it increases in size but keeps its position at the center of the screen.

3. As soon as the button width reaches the value of the Maximum width datapool item, it shrinks back to
its original size and position.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 116 of 248

8. Modeling HMI appearance

8.1. Working with widgets

8.1.1. Adding a view

Adding a view

Prerequisite:

■ The content area displays a state machine.

Step 1
Drag a view state from the Toolbox into the state machine.

Along with the view state, a view is added to the model.

Step 2
In the navigation area, click the view.

Step 3
Press the F2 key, and rename the view.

Step 4
Double-click the view state in the content area.

The content area displays the new view.

8.1.2. Adding a widget to a view

Adding a widget to a view

Prerequisite:

■ The content area displays a view.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 117 of 248

Step 1
Drag a widget from the Toolbox into the view.

The widget is added to the view.

8.1.3. Deleting a widget from a view

Deleting a widget from a view

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget.

Step 2
Press the Delete key.

The widget is deleted from the view.

8.1.4. Adding an image to a view

Adding an image to a view

Prerequisite:

■ An image file is located in the $GUIDE_PROJECT_PATH\resources directory. For supported file types
see section 11.8.2.3, “Image”.

■ The content area displays a view.

Step 1
Drag an image from the Toolbox into the view.

Step 2
In the Properties panel, select an image from the image drop-down list box.

The view displays the image.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 118 of 248

8.1.5. Adding a 3D graphic to a view

Adding a 3D graphic to a view

Prerequisite:

■ A 3D graphic file is located in the $GUIDE_PROJECT_PATH\resources directory. For supported 3D
graphic formats see section 11.8.4, “3D widgets”.

■ The content area displays a view.

Step 1
Drag a 3D graphic widget from the Toolbox into the view.

Step 2
In the Properties panel, select a 3D graphic file from the model drop-down list box.

The view displays the 3D graphic.

8.1.6. Changing the font of a label

Changing the font of a label

Prerequisite:

■ A TTF file is located in the $GUIDE_PROJECT_PATH\resources directory.

■ The content area displays a view.

■ The view contains a label.

Step 1
Select the label in the view.

Step 2
In the Properties panel, select a font from the font drop-down list box.

The view displays the label with the new font.

8.1.7. Grouping widgets using a container

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 119 of 248

Grouping widgets

A container allows grouping widgets.

Prerequisite:

■ The content area displays a view.

Step 1
Drag a container from the Toolbox into the view.

Step 2
In the content area, enlarge the container by dragging one of its corners.

Step 3
Drag two or more widgets from the Toolbox into the container.

The widgets are modeled as child widgets of the container. Moving the container moves its child widgets
along with it.

8.1.8. Adding an instantiator to a view

Adding an instantiator

Prerequisite:

■ The content area displays a view.

Step 1
Drag an instantiator from the Toolbox into the view.

Step 2
Drag a label, a rectangle, or an image from the Toolbox into the instantiator.

Step 3
Select the instantiator, and go to the Properties panel.

Step 3.1
For the numItems property enter a value that is greater than one.

Step 3.2
Add one of the following widget features to the instantiator:

► Flow layout

► Box layout

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 120 of 248

► Grid layout

► List layout

For details see section 8.3.1, “Adding a widget feature”.

In the view, the basic widget is displayed as many times as specified by the numItems property and in the
layout specified for the instantiator widget.

For a detailed example of how to use instantiators see section 8.8, “Tutorial: Creating a list”.

8.2. Working with widget properties

8.2.1. Positioning a widget

Positioning a widget

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget.

The Properties panel displays the properties of the selected widget.

Step 2
To define the x coordinate of the widget enter a value in the x text box.

Step 3
To define the y coordinate of the widget enter a value in the y text box.

Step 4
Click outside the text box.

The content area displays the widget at the entered position.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 121 of 248

TIP Alternative approach
To position a widget by visual judgment, select the widget and move it with the mouse.

8.2.2. Resizing a widget

Resizing a widget

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget.

The Properties panel displays the properties of the selected widget.

Figure 8.1. Properties of an image

Step 2
To define the height of the widget enter a value in the height text box.

Step 3
To define the width of the widget enter a value in the width text box.

Step 4
Click outside the text box.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 122 of 248

The content area displays the widget with the entered size.

TIP Alternative approach
To resize a widget by visual judgment, select the widget and drag one of its corners with
the mouse.

8.2.3. Linking between widget properties

Linking between widget properties

In order to make sure that two widget properties have the same value at all times, you can link two widget
properties. As an example, the following instructions show you how to link the width property of a rectangle
to the width property of a view.

Linking widget properties is only possible in the following cases:

► Between child widgets of the same parent widget

► Between a parent widget and a child widget

Prerequisite:

■ The content area displays a view.

■ The view contains a rectangle.

■ The width property of the rectangle is not a scripted value.

Step 1
In the content area, click the rectangle.

The Properties panel displays the properties of the rectangle widget.

Step 2
In the Properties panel, go to the width property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the view, and select its width property.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 123 of 248

Figure 8.2. Linking between widget properties

Step 5
Click Accept.

The dialog closes. The button is displayed next to the width property. It indicates that the width property
of the rectangle is now linked to the width property of the view. Whenever you change the width of the view,
the width of the rectangle changes and vice versa.

8.2.4. Linking a widget property to a datapool item

Linking a widget property to a datapool item

In order to make sure that a widget property and a datapool item have the same value at all times, you can
link a widget property to a datapool item. As an example, the following instructions show you how to link the
image property of an image to a new datapool item.

Prerequisite:

■ The content area displays a view.

■ The view contains an image.

■ The image property of the image is not a scripted value.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 124 of 248

Step 1
In the content area, click the image.

The Properties panel displays the properties of the image widget.

Step 2
In the Properties panel, go to the image property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the combo box.

Step 5
Click Add datapool item.

A dialog opens.

Step 6
Click Accept.

A new datapool item is added.

Figure 8.3. Linking to a datapool item

Step 7
To link the datapool item, click Accept.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 125 of 248

The dialog closes. The button is displayed next to the image property. It indicates that the image property
is now linked to a datapool item. Whenever you change the image, the datapool item changes and vice ver-
sa.

8.2.5. Adding a user-defined property to a widget

Adding a user-defined property to a widget

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget in the content area.

The Properties panel displays the properties of the selected widget.

Step 2
In the Properties panel, go to the User-defined properties category, and click .

A menu expands.

Step 3
In the menu, click a type for the user-defined property.

A new widget property of the selected type is added to the widget.

Step 4
Rename the user-defined property.

8.3. Extending a widget by widget features

8.3.1. Adding a widget feature

Adding a widget feature

Widget features supply widgets with additional properties. Adding a widget feature to a widget means adding
one or more properties.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 126 of 248

For a list of widget features grouped by categories see section 11.9, “Widget features”.

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

Step 1
Select a widget in the content area.

The Properties panel displays the properties of the selected widget.

Step 2
In the Properties panel, go to the Widget feature properties category, and click Add/Remove.

The Widget features dialog is displayed.

Figure 8.4. Widget features dialog

Step 3
Under Available widget features, expand a category, and select the widget feature you want to add.

The selected widget feature as well as dependent widget features that are activated automatically along with
it, is listed under Preview.

Click Accept.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 127 of 248

TIP Dependencies between widget features
Some widget features require other widget features. Therefore, in some cases, if you select
a widget feature, other widget features are selected automatically.

For example, you want to add the widget feature Moveable. In addition the widget features
Touched and Touch Move are added automatically.

For a detailed example of how to use widget features see section 8.7, “Tutorial: Modeling a path gesture”.

8.3.2. Removing a widget feature

Removing a widget feature

Prerequisite:

■ The content area displays a view.

■ The view contains a widget.

■ Widget features are added to the widget.

Step 1
Select the widget in the content area.

The Properties panel displays the properties of the selected widget.

Step 2
In the Properties panel, go to the Widget feature properties category and click Add/Remove.

The Widget features dialog is displayed.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 128 of 248

Figure 8.5. Widget features dialog

Step 3
Under Preview, expand a category and clear the widget feature you want to remove.

Click Accept.

The related widget feature properties are removed from the Properties panel.

NOTE Removing widget features with dependencies
Widget feature with dependencies to other widget features cannot be removed directly. Clear
the parent widget feature before you clear the child widget feature.

8.4. Adding a language to the EB GUIDE model
To enable language support during run-time, you add languages to the EB GUIDE model.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 129 of 248

8.4.1. Adding a language

Adding a language

The first language in the list is always the default language and can not be deleted. If you add a language,
the language uses the standard language settings as initial values.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

The available languages are displayed.

Step 3
In the content area, click Add.

A language is added to the table.

Step 4
Press F2, and enter a name for the language.

Step 5
Select a language from the Language drop-down list box.

Step 6
Select a country from the Country drop-down list box.

You added a language.

8.4.2. Deleting a language

Deleting a language

Prerequisite:

■ At minimum two languages are added to the EB GUIDE model.

Step 1

Click .

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 130 of 248

The project center opens.

Step 2
In the navigation area, click Configure > Languages.

The available languages are displayed.

Step 3
In the content area, select a language.

Step 4
In the content area, click Delete.

The language is deleted from the table.

8.5. Adding animations

8.5.1. Animating a widget

Animating a widget

Prerequisite:

■ The Main state machine contains an initial state with a transition to a view state.

Step 1
Double-click the view state.

The view is displayed in the content area.

Step 2
Drag one of the basic widgets from the Toolbox into the view.

Step 3
Drag an animation from the Toolbox into the widget you added.

Step 4
Drag a curve from the Toolbox into the widget you added.

Step 5
In the navigation area, move the curve in the hierarchy so that it becomes a child widget of the animation.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 131 of 248

Figure 8.6. Widget hierarchy with an animation and a curve child widget

Step 6
Select the basic widget, and add a user-defined property of type Conditional script. For details see sec-
tion 8.2.5, “Adding a user-defined property to a widget”.

Step 7
Next to the name of the property, click Edit....

A script editor opens in the content area.

Step 8
Enter the following EB GUIDE Script:

 function(v:arg0::bool)

 {

 f:animation_play(v:this->"Animation 1")

 }

"Animation 1" is the default name of the animation that is added first. If the animation you added in step two
has a different name, replace the name in the On trigger script.

Step 9
Select the curve you added in step four.

Step 10
Add a link from the curve's target property to the property you would like to animate. For details see sec-
tion 8.2.3, “Linking between widget properties”.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 132 of 248

NOTE Identical types for linked properties
The type of the curve's target property and the basic widget's animated property must
be identical. If the basic widget does not have a property of the required type, change the
curve to a different type.

Step 11
Start the simulation.

The linked property of your widget gradually changes as specified by the curve you added.

As a follow-up step, you can change the properties of the animation or the curve to change the way the basic
widget is animated. For details on curves and for a description of curve properties see section 11.8.3, “Ani-
mations”. For a concrete animation example see section 8.9, “Tutorial: Making a rectangle move across the
screen”.

8.5.2. Animating a view transition

Adding an entry animation

To make a view appear with a moving or fading animation, you add an entry animation to a view template.

Prerequisite:

■ A view template is added.

Step 1
In the navigation area, click a view template.

Step 2
To define an animation that is played when the view is entered, select the Entry animation check box.

Step 3
Select a type from the Transition animation drop-down list box.

Step 4
Enter a duration in milliseconds in the Duration text box.

Step 5
Select the Play after exit animation check box.

Result: Every view you derive from this view template is entered with the animation you defined. With the
Play after exit animation check box you defined that the entry animation waits until the exit animation of the
previous view is finished.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 133 of 248

Adding an exit animation

To make a view disappear with a moving or fading animation, you add an exit animation to a view template.

Prerequisite:

■ A view template is added.

Step 1
In the navigation area, click a view template.

Step 2
To define an exit animation that is played when the view is entered, select the Exit animation check box.

Step 3
Select a type from the Transition animation drop-down list box.

Step 4
Enter a duration in milliseconds in the Duration text box.

Step 5
Enter a delay in milliseconds in the Delay text box.

Result: Every view you derive from this view template is exited with the animation you defined.

8.6. Re-using a widget

8.6.1. Adding a template

Adding a template

Step 1
In the navigation area, point to Templates.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu, click a type for the template.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 134 of 248

A new template of the selected type is added. The content area displays the template.

Step 4
Rename the template.

Step 5
In the Properties panel, edit the template's properties, and define the template interface.

8.6.2. Defining the template interface

Defining the template interface

Prerequisite:

■ The content area displays a template.

Step 1
In the content area, click a template.

Step 2
To add a property to the template interface, click the button next to the property. In the menu, click Add to
template interface.

The icon is displayed next to the property.

Step 3
To remove a property from the template interface, click the button next to the property. In the menu, click
Remove from template interface.

The icon is no longer displayed next to the property.

8.6.3. Using a template

Using a template

Prerequisite:

■ The content area displays a view.

■ In the Toolbox, a template is available.

Step 1
Drag a widget template from the Toolbox into the view.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 135 of 248

An instance of the template is added to the view. The Properties panel displays the properties which belong
to the template interface.

TIP Define the template interface
If the Properties panel does not display any properties for a template instance, no prop-
erties have been added to the template interface. Define the template interface to change
that.

Step 2
In the Properties panel, edit the properties of the template instance.

After editing a property, the button changes to the button.

Step 3
To reset a property value to the value of the template, click the button next to the property. In the menu,
click Reset to template value.

8.7. Tutorial: Modeling a path gesture
Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device.

The following instructions guide you through the process of modeling a path gesture.

Approximate duration: 10 minutes

Adding widgets and configuring default widget properties

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

■ The content area displays a view.

Step 1
Drag a rectangle from the Toolbox into the view.

Step 2
Drag a label from the Toolbox into the rectangle.

The label is added as a child widget to the rectangle.

The Properties panel displays the properties of the label widget.

Step 3
In the Properties panel, enter 500 in the width text box.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 136 of 248

Step 4
Select the rectangle.

The Properties panel displays the properties of the rectangle widget.

Step 5
Enter 500 in the width text box.

Step 6
In the Properties panel, go to fillColor, and select red.

You added two widgets and configured default widget properties.

Adding widget features to a rectangle

To enable the user to enter a shape starting on the widget, you add the widget feature Path gesture to the
rectangle. The shape is matched against a set of known shapes and, if a match is found, a gesture is recog-
nized.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the rectangle.

The Properties panel displays the properties of the rectangle widget.

Step 2
In the Properties panel, go to Widget feature properties, and click Add/Remove.

The Widget features dialog is displayed.

Step 3
Under Available widget features, expand the Gestures category, and select Path gestures.

The Touched widget feature is automatically selected, as it is required for the Gestures widget feature.

Step 4
Click Accept.

The related widget feature properties are added to the rectangle and displayed in the Properties panel.

Step 5
For the Path gestures widget feature edit the following properties:

Step 5.1
Next to the onPath property, click Edit....

Step 5.2
Enter the following EB GUIDE Script:

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 137 of 248

 function(v:gestureId::int)

 {

 v:this->"Label 1".text = "recognized path gesture #"

 + f:int2string(v:gestureId);

 }

Step 5.3
Click Accept.

Step 5.4
Next to the onPathNotRecognized property, click Edit....

Step 5.5
Enter the following EB GUIDE Script:

 function()

 {

 v:this->"Label 1".text = "shape not recognized";

 }

Step 5.6
Click Accept.

Step 5.7
Next to the onPathStart property, click Edit....

Step 5.8
Enter the following EB GUIDE Script:

 function()

 {

 v:this->"Label 1".text = "path gesture start";

 }

Step 5.9
Click Accept.

Step 6
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. To see a reaction, draw a shape with the mouse inside the rec-
tangle.

8.8. Tutorial: Creating a list

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 138 of 248

Instantiators allow creating lists dynamically during run-time. Based on a datapool item of a list type, an instan-
tiator displays all list elements in a pre-defined layout. If the content of the datapool item is modified, so is the
appearance of the instantiator.

The following instructions guide you through the process of creating a list with dynamic content. Each list
element consists of a labeled rectangle.

Approximate duration: 10 minutes.

Adding a datapool item

The following instructions guide you through the process of adding a datapool item of a list type. The dat-
apool item provides a value for every list element of the instantiator widget.

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state.

Step 1
To display content in your list, you add a datapool item of type string list. In the navigation area, point to Dat-
apool.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu, click String list.

A new datapool item of type string list is added.

Step 4
Rename the datapool item to MyStringList.

Step 5
Select the MyStringList datapool item, and go to the Properties panel.

Step 6
Next to the Value property, click the button.

An editor opens.

Step 6.1
Click Add.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 139 of 248

A new entry is added to the table.

Step 6.2
Enter One in the Value text box.

Step 6.3
Add the values Two, Three, Four, and Five to the MyStringList datapool item.

Step 6.4
Click Accept.

You added a datapool item of type string list. The datapool item contains five entries.

The content of the list is displayed next to the Value property.

Adding widgets and arranging the widget hierarchy

Prerequisite:

■ You completed the previous instruction.

Step 1
To add widgets to your view, double-click the view state.

The view is displayed in the content area.

Step 2
Drag the following widgets from the Toolbox into the view:

► An instantiator

► A rectangle

► A label

Step 3
Rename the instantiator to MyInstantiator, the rectangle to MyRectangle, and the label to MyLabel.

Step 4
In the navigation area, move the widgets in the hierarchy so that the rectangle becomes a child widget of the
instantiator, and the label becomes a child widget of the rectangle.

The widget hierarchy now looks as follows.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 140 of 248

Figure 8.7. Widget hierarchy with an instantiator

You added three widgets to the view and changed the hierarchy of the widgets.

Configuring the instantiator

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the properties of instantiator, select the instantiator, and go to the Properties panel.

Step 2
Enter 300 in the width text box, and in the height text box.

Step 3
Enter 5 in the numItems text box.

Step 4
In the Widget feature properties category, click Add/Remove.

The Widget features dialog is displayed.

Step 5
Under Available widget features, expand the Layout category, and select the Flow layout widget feature.

Step 6
Click Accept.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 141 of 248

The related widget feature properties are added to the instantiator and displayed in the Properties panel.

Step 7
Enter 5 in the verticalGap text box.

Configuring list element texts

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the label, select the label, and go to the Properties panel.

Step 2
Enter 0 in the x and y text box.

Step 3
Add a link from the label's width property to the rectangle's width property.

Step 3.1
Next to the width property, click the button.

A menu expands.

Step 3.2
In the menu, click Add link to widget property.

A dialog opens.

Step 3.3
In the dialog, go to the rectangle, and select its width property.

Step 3.4
Click Accept.

The dialog closes. The button is displayed next to the width property.

Step 4
Add a link from the label's height property to the rectangle's height property.

Step 5

Next to the horizontalAlign property, click .

You changed the appearance of the label. The height and the width are equal to the properties of the rectan-
gle.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 142 of 248

Configuring list elements

Prerequisite:

■ You completed the previous instruction.

Step 1
To change the appearance of the rectangle, select the rectangle, and go to the Properties panel.

Step 2
To make sure that the list elements use all available width, add a link from the rectangle's width property to
the instantiator's width property.

Step 3
Enter 50 in the height text box.

Step 4
To refer to each line of your list, you add the Line index widget feature.

The lineIndex property is added to the rectangle's properties.

Step 5
To assign the elements of MyStringList to MyLabel for every element of your list, add a user-defined
property.

In the User-defined properties category, click .

A menu expands.

Step 6
In the menu, click Conditional script.

Step 7
Rename the property to SetText.

Step 8
Next to the SetText property, click Edit....

A script editor opens in the content area.

Step 9
In the Trigger category, add the lineIndex property of the rectangle.

Step 10
Enter the following EB GUIDE Script:

 function(v:arg0::bool)

 {

 v:this->"MyLabel".text=dp:MyStringList[v:this.lineIndex];

 false

 }

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 143 of 248

You changed the appearance of the rectangle. With the SetText property, the elements of MyStringList
are assigned to MyLabel for every entry of your list.

Testing the EB GUIDE model

Prerequisite:

■ You completed the previous instruction.

Step 1
To start the simulation, click in the command area.

Result:

Five rectangles that are labeled from one to five are displayed in vertical arrangement.

Figure 8.8. List created with an instantiator

8.9. Tutorial: Making a rectangle move across the
screen
The following instructions guide you through the process of animating a rectangle so that it continually moves
across the screen when the simulation starts.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 144 of 248

Approximate duration: Five minutes.

Adding widgets

In the following steps, you add three widgets to the view and organize the hierarchy of the widgets.

Prerequisite:

■ The Main state machine contains an initial state and a view state.

■ The initial state has a transition to the view state

Step 1
In the content area, double-click the view state.

The view is displayed in the content area.

Step 2
Drag a rectangle from the Toolbox into the view.

Step 3
Drag an animation from the Toolbox into the rectangle.

Step 4
In the navigation area, click the animation, and press the F2 key. Rename the animation to MyAnimation.

Step 5
Drag a linear interpolation integer widget from the Toolbox into the rectangle.

Step 6
In the navigation area, move the linear interpolation integer widget in the hierarchy so that it becomes a child
widget of the animation.

Now, if you start the simulation, a rectangle is displayed in a view. The rectangle does not move yet.

Adding a user-defined property of type conditional script

As a next step, you add a user-defined property to the rectangle. With the conditional script property, render-
ing the rectangle during simulation starts the animation.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the rectangle.

Step 2
In the Properties panel, go to the User-defined properties category, and click .

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 145 of 248

A menu expands.

Step 3
In the menu, click Conditional script.

A user-defined property of type Conditional script is added to the rectangle.

Step 4
Rename the property to startAnimation.

Step 5
Next to the startAnimation property, click Edit....

A script editor opens in the content area.

Step 6
Enter the following EB GUIDE Script:

 function(v:arg0::bool)

 {

 f:animation_play(v:this->MyAnimation)

 }

Making the animation visible

The following instructions guide you through the process of making the animation visible.

Prerequisite:

■ You completed the previous instruction.

Step 1
Select the linear interpolation integer widget.

Step 2
In the Properties panel, go to the target property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to widget property.

A dialog opens.

Step 4
In the dialog, go to the rectangle, and select its x property.

EB GUIDE documentation
Chapter 8. Modeling HMI appearance

Page 146 of 248

Figure 8.9. Linking between widget properties

Step 5
Click Accept.

The dialog closes. The button is displayed next to the target property.

Step 6
Link the end property to the view's width property.

With these settings, when the animation starts, the x property of the rectangle changes from zero to the
width of the view. Thus the rectangle moves from the left boundary to the right boundary of the view.

Step 7
To make the animation run in infinite repetitions, enter 0 in the repeat property.

Step 8
Save the project.

Step 9
To start the simulation, click in the command area.

Result:

The rectangle continually moves from the left side of the view to the right side of the view.

EB GUIDE documentation
Chapter 9. Handling data

Page 147 of 248

9. Handling data

9.1. Adding an event

Adding an event

Prerequisite:

■ The navigation area displays the All tab.

Step 1
In the navigation area, point to Events.

The button appears.

Step 2
Click .

An event is added to the navigation area.

Step 3
Rename the event.

9.2. Adding a parameter to an event

Adding a parameter to an event

Prerequisite:

■ The navigation area displays the All tab.

■ An event is added.

Step 1
In the navigation area, click an event.

The Properties panel displays the properties of the selected event.

EB GUIDE documentation
Chapter 9. Handling data

Page 148 of 248

Step 2
In the Properties panel, point to Parameters.

Step 3
Click .

Step 4
Select a type for the parameter.

A parameter of the selected type is added to the event.

Step 5
Rename the parameter.

9.3. Addressing an event
Event IDs and event group IDs are used to address events. EB GUIDE TF uses the IDs to send and receive
the events at run-time.

Adding an event group

The group IDs 0 to 65535 are reserved for internal use within the EB GUIDE product line.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Event groups.

Step 3
In the content area, click Add.

An event group is added to the table.

Step 4
Rename the event group.

Step 5
To change an event group ID, type a number for ID.

EB GUIDE documentation
Chapter 9. Handling data

Page 149 of 248

Addressing an event for EB GUIDE TF

Prerequisite:

■ An event group is added.

■ The project editor is displayed.

■ The navigation area displays the All tab.

■ An event is added.

Step 1
In the navigation area, click an event.

The Properties panel displays the properties of the selected event.

Step 2
In the Properties panel, insert an ID in the Event ID text box.

Step 3
In the Properties panel, select an event group from the Event group drop-down list box.

9.4. Deleting an event

Deleting an event

Prerequisite:

■ The navigation area displays the All tab.

■ An event is added.

Step 1
In the navigation area, right-click the event.

Step 2
In the context menu, click Delete.

The event is deleted.

9.5. Adding a datapool item

EB GUIDE documentation
Chapter 9. Handling data

Page 150 of 248

Adding a datapool item

Prerequisite:

■ The navigation area displays the All tab.

Step 1
In the navigation area, point to Datapool.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu, click a type for the datapool item.

A new datapool item of the selected type is added. The datapool item is prepared for internal use.

Step 4
Rename the datapool item.

9.6. Editing datapool items of a list type

Editing datapool items of a list type

Prerequisite:

■ The navigation area displays the All tab.

■ A datapool item of a list type is added.

Step 1
In the navigation area, click a datapool item of a list type.

The Properties panel displays the properties of the selected datapool item.

Step 2
In the Properties panel, go to the Value property, and click the button next to the property.

An editor opens.

Step 3
To add an item to the list datapool item, click Add.

EB GUIDE documentation
Chapter 9. Handling data

Page 151 of 248

A new entry is added to the table.

Step 4
Enter a value for the new entry in the Value text box or select a value from the drop-down list box.

Step 5
Repeat steps three and four to add more items to the list.

Step 6
Click Accept.

The content of the list is displayed next to Value.

9.7. Converting a property to a scripted value

Converting a property to a scripted value

Properties of datapool items and widgets can be converted to a scripted value and back to their plain value.
The following instruction shows the procedure with a datapool item value. With a widget property, the proce-
dure is the same.

Prerequisite:

■ The navigation area displays the All tab.

■ A datapool item is added.

■ The datapool item is not language-dependent.

■ The datapool item is not linked.

Step 1
In the navigation area, click a datapool item.

The Properties panel displays the properties of the selected datapool item.

Step 2
Go to the Properties panel, and click the button next to the Value property.

A menu expands.

Step 3
In the menu, click Convert to script.

The datapool item is converted to a scripted value.

Step 4
Next to the Value property, click Edit....

EB GUIDE documentation
Chapter 9. Handling data

Page 152 of 248

A script editor opens in the content area.

Step 5
Edit the EB GUIDE Script.

Step 6
To convert the datapool item back to its plain value, click the button next to the Value property.

A menu expands.

Step 7
In the menu, click Convert to plain values.

The datapool item is converted to its plain value.

9.8. Establishing external communication
To establish external communication for example between the EB GUIDE model and an application, you add
communication contexts to the EB GUIDE model.

Adding a communication context

With communication contexts you are able to channel communication.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Configure > Communication contexts.

Step 3
In the content area, click Add.

A communication context is added to the table.

Step 4
Rename the communication context, for example to Media.

Step 5
To change a communication context ID, enter a number in the ID text box.

Step 6
To run the communication context in an own thread, select Use own thread.

EB GUIDE documentation
Chapter 9. Handling data

Page 153 of 248

Figure 9.1. Communication context Media.

Using external communication in a datapool item

Prerequisite:

■ At minimum two communication contexts are added to the EB GUIDE model .

■ The project editor is displayed.

■ The navigation area displays the All tab.

■ A datapool item is added.

Step 1
In the navigation area, click the datapool item.

The Properties panel displays the properties of the selected datapool item.

Step 2
In the Properties panel, select a communication context from the Reader context drop-down list box, for
example HMI.

Step 3
In the Properties panel, select a different communication context from the Writer context drop-down list
box, for example Media.

The datapool item has two different communication contexts. After the export of the EB GUIDE model, the
datapool item sends data from Reader context to Writer context.

EB GUIDE documentation
Chapter 9. Handling data

Page 154 of 248

In the instruction above, the data is sent from HMI to Media.

9.9. Linking between datapool items

Linking between datapool items

Prerequisite:

■ A datapool item is added.

■ The datapool item is not language-dependent.

■ The datapool item is not a scripted value.

Step 1
In the navigation area, click a datapool item.

The Properties panel displays the properties of the datapool item.

Step 2
In the Properties panel, go to the Value property, and click the button next to the property.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the combo box.

Step 5
Click Add datapool item.

A dialog opens.

Step 6
Click Accept.

Step 7
If the datapool item is of a list type, enter an index in the Value text box.

EB GUIDE documentation
Chapter 9. Handling data

Page 155 of 248

Figure 9.2. Linking between datapool items

Step 8
Click Accept.

The dialog closes. Next to the Value property, the button is displayed. It indicates that the Value proper-
ty is linked to a datapool item. Whenever one of the datapool items changes its value, the value of the other
changes as well.

9.10. Deleting a datapool item

Deleting a datapool item

Prerequisite:

■ The navigation area displays the All tab.

■ A datapool item is added.

Step 1
In the navigation area, right-click the datapool item.

Step 2
In the context menu, click Delete.

EB GUIDE documentation
Chapter 9. Handling data

Page 156 of 248

The datapool item is deleted.

9.11. Tutorial: Adding a language dependent text
to a datapool item
EB GUIDE offers the possibility to display texts in the user's preferred language. The following instructions
show you how to model a label that changes with an English, French, and German user interface.

Approximate duration: 10 minutes

NOTE Prerequisites to language dependency
To add language support to a datapool item, do the following:

► If its Value property is linked to another datapool item or widget property, remove the
link.

► If its Value property is a scripted value, convert the property to a plain value.

Linking a widget property to a datapool item

The following instructions guide you through the process of linking the label's text property to a datapool
item. In run-time the displayed text is provided by the datapool item.

Prerequisite:

■ Three languages are added to the EB GUIDE model: English, German and French.

■ The content area displays a view.

■ The view contains a label.

■ The text property of the label is not a scripted value.

Step 1
In the content area, click the label.

Step 2
In the Properties panel, go to the text property, and click the button next to the property.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter Welcome string in the combo box.

EB GUIDE documentation
Chapter 9. Handling data

Page 157 of 248

Step 5
Click Add datapool item Welcome string.

A dialog opens.

Step 6
Click Accept.

The datapool item Welcome string is added.

In the content area, the label no longer displays any text.

Enter language dependent text to the datapool item

The following instructions guide you through the process of adding language dependent text to the datapool
item. For every language the Value property has a different text.

Step 1
In the navigation area, click the Welcome string datapool item.

Step 2
In the Properties panel, click Language support.

Step 3
In the Value text box, enter Welcome.

In the content area, the label displays Welcome.

Step 4
Below the navigation area, select a language from the drop-down list box, for example German.

Figure 9.3. Language drop-down list box

Step 5
Go to the Properties panel.

Step 6
In the Value text box, enter Willkommen.

In the content area, the label displays Willkommen.

Step 7
Below the navigation area, select a language from the drop-down list box, for example French.

EB GUIDE documentation
Chapter 9. Handling data

Page 158 of 248

Step 8
Go to the Properties panel.

Step 9
In the Value text box, enter Bienvenue.

In the content area, the label displays Bienvenue.

Result:

You added a datapool item of type string to the EB GUIDE model. The datapool item has different values for
languages. In English the value is Welcome. In German the value is Willkommen. In French the value is
Bienvenue. The datapool item is linked to the text property of the label. Every time you change the language
of the EB GUIDE model the text of the label changes too. You can add a button for language switching so the
user can select the preferred language during run-time.

EB GUIDE documentation
Chapter 10. Handling a project

Page 159 of 248

10. Handling a project

10.1. Creating a project

Creating a project

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click New.

Step 3
Enter a project name, and select a location.

Step 4
Click Create.

The project is created. The project editor opens and displays the new project.

10.2. Opening a project

10.2.1. Opening a project from the file explorer

Opening a project from the file explorer

Prerequisite:

■ An EB GUIDE Studio project is created.

Step 1
Open the file explorer, and select the EB GUIDE Studio project file you would like to open. EB GUIDE Studio
project files have the file extension .ebguide.

EB GUIDE documentation
Chapter 10. Handling a project

Page 160 of 248

Step 2
Double-click the EB GUIDE Studio project file.

The project opens in EB GUIDE Studio.

10.2.2. Opening a project within EB GUIDE Studio

Opening a project within EB GUIDE Studio

Prerequisite:

■ An EB GUIDE Studio project is created.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Open tab.

Step 3
Select a project that is listed under Recent projects or click Browse, and select the EB GUIDE Studio
project file you would like to open. EB GUIDE Studio project files have the file extension .ebguide.

The project opens in EB GUIDE Studio.

10.3. Testing and improving an EB GUIDE model
Before exporting an EB GUIDE model to the target device, you resolve errors and simulate the model on your
PC.

10.3.1. Validating an EB GUIDE model

Validating an EB GUIDE model

In the problems area, EB GUIDE displays the following:

EB GUIDE documentation
Chapter 10. Handling a project

Page 161 of 248

► errors

► warnings

Step 1

In the problems area, click .

The number of errors and warnings is displayed.

Step 2
Click Problems to expand the problems area.

A list of errors and warnings is displayed.

Figure 10.1. Problems area

Step 3
To navigate to the source of a problem, double-click the corresponding line.

The element that causes the problem is highlighted.

Step 4
Solve the problem.

Step 5

Click .

The problem you solved is no longer listed in the problems area.

Step 6
To collapse the problems area, click Problems once again.

10.3.2. Starting the simulation

Starting and stopping the simulation

Step 1
To start the simulation, click in the command area.

EB GUIDE documentation
Chapter 10. Handling a project

Page 162 of 248

The simulation and EB GUIDE Monitor start. The simulation starts with its own configuration.

To change the configuration, go to the project center, and click Configure > Profiles.

Step 2
To stop the simulation, click in the command area.

The simulation and EB GUIDE Monitor stop.

10.4. Exporting an EB GUIDE model

Exporting an EB GUIDE model

To copy the EB GUIDE model to the target device, you need to export it in EB GUIDE Studio.

For every export of an EB GUIDE model you select an profile. Profiles write the EB GUIDE TF start-up con-
figuration file gtfStartup.cfg.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the Export tab.

Step 3
From the Profiles drop-down list box select a profile.

Step 4
Click Browse, and select a location where to export the binary files.

Step 5
Click Select folder.

Step 6
Click Export.

The binary files are exported to the selected location.

EB GUIDE documentation
Chapter 10. Handling a project

Page 163 of 248

10.5. Changing the display language of EB GUIDE
Studio

Changing the display language of EB GUIDE Studio

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click Options.

Step 3
Select a language from the Display language drop-down list box.

Step 4
Restart EB GUIDE Studio.

After restarting the graphical user interface is displayed in the selected language.

10.6. Configuring profiles
EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model. Profiles write the
EB GUIDE TF start-up configuration file gtfStartup.cfg.

You use profiles to do the following:

► Send messages

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

10.6.1. Cloning a profile

EB GUIDE documentation
Chapter 10. Handling a project

Page 164 of 248

Cloning a profile

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, click Configure > Profiles.

Step 2
In the content area, select the Simulation profile.

Step 3
Click Clone.

A profile is added to the table. The profile is a clone of the default profile Simulation.

Step 4
Rename the profile to MySimulation.

Step 5
Select the radio button Use for simulation.

The MySimulation profile is used for simulation on the PC.

10.6.2. Adding a library

Adding a library

The default delivery of EB GUIDE TF runs on operating systems that support shared object files, for exam-
ple Windows 8, Linux or QNX. EB GUIDE TF is divided into executable files and libraries to fit most customer
projects out of the box.

The following sections shows you how to add a user-defined library that interacts with the EB GUIDE model
and provide additional functionality.

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab Configure > Profiles is selected.

■ A profile MySimulation is added.

■ A library MyLibraryA is available in $GUIDE_PROJECT_PATH\resources.

EB GUIDE documentation
Chapter 10. Handling a project

Page 165 of 248

Step 1
In the content area, select the MySimulation profile.

Step 2
Click to expand the libraries.

The Load table with all included libraries is displayed.

Step 3
Click Add.

A new row is added to the table.

Step 4
In the table select MODEL_PATH from the drop-down list box under Location.

Step 5
Enter MyLibraryA in the Name text box.

Figure 10.2. Table of libraries

You added the library MyLibraryA to the start-up code. MODEL_PATH indicates a directory relative to the gt-
fStartup.cfg configuration file.

Use FW_PATH to indicate a directory relative to the GtfStartup.exe executable file.

10.6.3. Adding messages
You can start and stop software modules or alter the behavior of software modules by sending system mes-
sages. System messages have a run level that defines at which point during the start-up process they are sent.
Additionally system messages have an identifying ID and optional parameters.

EB GUIDE documentation
Chapter 10. Handling a project

Page 166 of 248

For details see Software module structure of EB GUIDE TF in the EB GUIDE TF documentation.

NOTE Predefined messages in EB GUIDE TF
Message ID range 0...0xFFFF is reserved for EB GUIDE TF and the EB GUIDE product line.

Message ID range 0x10000...0xFFFFFFFF can be managed by you.

Message IDs and parameters of pre-defined messages are documented in the GtfMessageId.h file.

Adding messages

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab Configure > Profiles is selected.

Step 1
In the content area, select a profile.

Step 2
Click to expand the libraries.

Step 3
The Messages table with all included libraries is displayed.

Step 4
Click Add.

A new row is added to the table.

Step 5
Enter 0 in Run level text box.

Step 6
Enter 300 in Message ID text box.

Step 7
Enter UINT32 0xDEADBEAF in the Parameter text box.

You added a system message.

The message GTF_MID_GTF_CORE_CREATE_MODEL makes EB GUIDE GTF create a GtfCoreModel with
the ID 0xDEADBEAF.

10.6.4. Configuring a scene
In EB GUIDE Studio it is possible to configure a scene for every state machine.

../../tf/gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 10. Handling a project

Page 167 of 248

Projects can have more than one state machine for one of the following reasons:

► To separate the logic of the model into different state machines

► To use more than one display or layer

Configuring a scene

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab Configure > Profiles is selected.

Step 1
In the content area, click to expand the scenes.

Step 2
From the State machines drop-down list box select the state machine of your main display, for example
Main.

Step 3
To set the initial position of the window on the PC desktop, enter a value for x and y.

Step 4
Select a renderer from the Renderer drop-down list box.

Step 5
Adjust further properties. For information on each property see section 11.6, “Scenes”.

EB GUIDE documentation
Chapter 11. References

Page 168 of 248

11. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

11.1. Android events
Android events belong to the SystemNotifications event group and have event group ID 13.

Table 11.1. Android events

Event ID Name Description

1 RendererEnabled Is sent by the application when Android
lifecycle management stops or starts the
renderer

Parameters:

► enabled: If true, the renderer is en-
abled. If false, the renderer is set to
sleep mode.

2 setKeyboardVisibility Is sent by the EB GUIDE model if a virtual
keyboard is intended to be shown

Parameters:

► visibility: If true, a virtual key-
board is made visible. If false, it is in-
visible.

3 onKeyboardVisibilityChanged Is sent by the application if a virtual key-
board is shown

Parameters:

► visibility: If true, a virtual key-
board is visible. If false, it is invisible.

4 onLayoutChanged Is sent by the application when the visible
area of the screen changes

Parameters (in pixels):

► x: The x-coordinate of the top left cor-
ner of the visible screen area

EB GUIDE documentation
Chapter 11. References

Page 169 of 248

Event ID Name Description

► y: The y-coordinate of the top left cor-
ner of the visible screen area

► width: The width of the visible
screen area

► height: The height of the visible
screen area

11.2. Datapool items
Table 11.2. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

If the value is provided by EB GUIDE Studio, the exporter provides the property
value to EB GUIDE GTF. Otherwise EB GUIDE GTF initializes the property val-
ue at system start-up.

Read-only If true, only internal communication is available. Value is static during run-time
and only changes if you reinitialize it at language switching.

If false, external communication is available. Value can change during run-time.

Reader ID The address that the reader’s communication context uses to access the dat-
apool item. If Reader ID is not defined, it is calculated automatically. If you
modify an EB GUIDE model, it is possible that the Reader ID for the datapool
item changes.

Reader context The communication context which is notified about changed values and reacts
on value changes.

Writer ID The address that the writer’s communication context uses to access the dat-
apool item. If Writer ID is not defined, it is calculated automatically. If you
modify an EB GUIDE model, it is possible that the Writer ID for the datapool
item changes.

Writer context The communication context which writes new values

Windowed Available in lists only

If true, EB GUIDE TF handles the datapool item in windowed list operating
mode. No default value is used for initialization.

If false, EB GUIDE TF handles the datapool item in standard list operating
mode.

EB GUIDE documentation
Chapter 11. References

Page 170 of 248

11.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

11.3.1. 3D graphic

3D graphics use a three-dimensional representation of geometric data to perform calculations and render 2D
images.

For supported file types, see section 11.8.4, “3D widgets”.

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store 3D graphics in a list. For details about lists, see section 11.3.9, “List”.

11.3.2. Boolean

Boolean properties can have the values true and false.

Available operations are as follows:

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

It is possible to store boolean properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.3. Color

Colors are stored in the RGBA8888 format.

EB GUIDE documentation
Chapter 11. References

Page 171 of 248

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

It is possible to store color properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.4. Conditional script

Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections.

► The Trigger drop-down list box contains a list of events and datapool items that trigger the execution of
the On trigger script.

► The On trigger script is called on initialization, after an event trigger, or after a value update of a datapool
item..

The parameter of the On trigger script indicates the cause for the execution of the script.

The return value of the On trigger script controls change notifications for the property.

If true, it triggers a change notification.

If false, it does not trigger a change notification.

11.3.5. Float

Float-point number data type represents a single-precision 32-bit IEEE 754 value.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

EB GUIDE documentation
Chapter 11. References

Page 172 of 248

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.6. Font

To add a font to an EB GUIDE project, copy the font file in the following directory: $GUIDE_PROJECT_PATH/
<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.7. Image

To add an image to an EB GUIDE project, copy the image file in the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.8. Integer

EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

EB GUIDE documentation
Chapter 11. References

Page 173 of 248

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 11.3.9, “List”.

11.3.9. List

EB GUIDE supports a list of values with the same data type.

The following list types are available:

► 3D graphic list

► Boolean list

► Color list

► Float list

► Font list

► Image list

► Integer list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

EB GUIDE documentation
Chapter 11. References

Page 174 of 248

► length: (length)

► element accessor: ([])

11.3.10. String
EB GUIDE supports character strings, for example Hello world.

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=aA=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 11.3.9, “List”.

11.4. EB GUIDE Script

11.4.1. EB GUIDE Script keywords
The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Keyword Description

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

l: A language follows.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

EB GUIDE documentation
Chapter 11. References

Page 175 of 248

Keyword Description

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

font: A font resource follows, for example {PT Sans,12}.

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

image: An image resource follows.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

function Declares a function

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows.

view: A view follows.

while Repeats a statement as long as the condition is true

11.4.2. EB GUIDE Script operator precedence
The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 11.3. EB GUIDE Script operator precedence

Operator Associativity

(()), ({}) none

EB GUIDE documentation
Chapter 11. References

Page 176 of 248

Operator Associativity

([]) none

(->) left

(.) none

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

(;) left

11.4.3. EB GUIDE Script standard library

The following chapter provides a description of all EB GUIDE Script functions.

11.4.3.1. EB GUIDE Script functions A

11.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 11.4. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

EB GUIDE documentation
Chapter 11. References

Page 177 of 248

11.4.3.1.2. absf

The function returns the absolute value of the float number x.

Table 11.5. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

11.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

Table 11.6. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

11.4.3.1.4. animation_before

The function checks if an animation running backwards has already passed a given point in time.

Table 11.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

11.4.3.1.5. animation_beyond

The function checks if an animation running forward has already passed a given point in time.

Table 11.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

EB GUIDE documentation
Chapter 11. References

Page 178 of 248

Parameter Type Description

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

11.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

Table 11.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

11.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 11.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

11.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 11.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

11.4.3.1.9. animation_pause

The function pauses an animation.

EB GUIDE documentation
Chapter 11. References

Page 179 of 248

Table 11.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

11.4.3.1.10. animation_play

The function starts or continues an animation.

Table 11.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

11.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 11.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

11.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 11.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

11.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

EB GUIDE documentation
Chapter 11. References

Page 180 of 248

Table 11.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

11.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

Table 11.17. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

11.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 11.18. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

11.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 11.19. Parameters of atan2i

Parameter Type Description

y integer Argument y

EB GUIDE documentation
Chapter 11. References

Page 181 of 248

Parameter Type Description

x integer Argument x

<return> float The return value

11.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 11.20. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

<return> float The return value

11.4.3.2. EB GUIDE Script functions C - H

11.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 11.21. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

11.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 11.22. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE documentation
Chapter 11. References

Page 182 of 248

11.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 11.23. Parameters of character2unicode

Parameter Type Description

str string The input string

<return> integer The character as Unicode

0 in case of errors

11.4.3.2.4. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 11.24. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

11.4.3.2.5. color2string

The function converts a color to eight hexadecimal values.

Table 11.25. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color chan-
nels red, green, blue and alpha.

For example, opaque pure red is converted to "#ff0000ff", semi-transparent pure green is
converted to "#00ff007f".

11.4.3.2.6. cosf

The function returns the cosine of x, where x is given in radians.

EB GUIDE documentation
Chapter 11. References

Page 183 of 248

Table 11.26. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

11.4.3.2.7. deg2rad

The function converts an angle from degrees to radians.

Table 11.27. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

<return> float The return value

11.4.3.2.8. expf

The function returns the value of e (the base of natural logarithms) raised to the power of x.

Table 11.28. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

11.4.3.2.9. float2string

The function converts simple float to string.

Table 11.29. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

11.4.3.2.10. floor

The function returns the largest integral value not greater than the parameter value.

EB GUIDE documentation
Chapter 11. References

Page 184 of 248

Table 11.30. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

11.4.3.2.11. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 11.31. Parameters of focusNext

Parameter Type Description

<return> void

11.4.3.2.12. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 11.32. Parameters of focusPrevious

Parameter Type Description

<return> void

11.4.3.2.13. formatFloat

The function converts advanced float to string.

Table 11.33. Parameters of formatFloat

Parameter Type Description

minStrLen integer The minimum length of the result string

maxStrLen integer The maximum length of the result string

minPrecision integer The minimum number of decimal places

maxPrecision integer The maximum number of decimal places

showAbsolute-

Value

boolean If true, a negative value is negated and thus turned positive.

alwaysShowSign boolean If true, the sign of value is shown.

EB GUIDE documentation
Chapter 11. References

Page 185 of 248

Parameter Type Description

roundingMode integer The rounding mode for limiting the result string to the maximum
length.

Possible values:

► 0: trunc

► 1: round

fillStyle integer The character for filling up the result string to the minimum
length.

Possible values:

► 0: fills with blanks

► 1: fills with zeros

value float The number to format

<return> string The formatted result string

11.4.3.2.14. formatInteger

The function converts advanced integer to string.

Table 11.34. Parameters of formatInteger

Parameter Type Description

minStrLen integer The minimum length of the result string

maxStrLen integer The maximum length of the result string

showAbsolute-

Value

boolean If true, a negative value is negated and thus turned positive.

alwaysShowSign boolean If true, the sign of value is shown.

fillStyle integer The character for filling up the result string to the minimum
length.

Possible values:

► 0: fills with blanks

► 1: fills with zeros

base integer Possible values:

► 2: binary

EB GUIDE documentation
Chapter 11. References

Page 186 of 248

Parameter Type Description

► 10: decimal

► 16: hexadecimal

value integer The number to format

<return> string The formatted result string

11.4.3.2.15. getTextHeight

The function returns the height of a text with regard to its font resource.

Table 11.35. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

11.4.3.2.16. getTextLength

The function returns the number of characters in a text.

Table 11.36. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

11.4.3.2.17. getTextWidth

The function returns the width of a text with regard its font resource.

Table 11.37. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

EB GUIDE documentation
Chapter 11. References

Page 187 of 248

11.4.3.2.18. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 11.38. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

11.4.3.2.19. hsba2color

The function converts an HSB/HSV color to a GTF color.

Table 11.39. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting GTF color with the alpha value applied

11.4.3.3. EB GUIDE Script functions I - R

11.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 11.40. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

EB GUIDE documentation
Chapter 11. References

Page 188 of 248

11.4.3.3.2. int2string

The function converts a simple integer to string.

Table 11.41. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

11.4.3.3.3. isDynamicStateMachineActive

The function checks if the state with the dynamic state machine list is active.

Table 11.42. Parameters of isDynamicStateMachineActive

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

11.4.3.3.4. language

The function switches the language of all datapool items.

Table 11.43. Parameters of language

Parameter Type Description

language languageType The language to switch to, for example
l:MyUserDefinedLanguageName

<return> void

11.4.3.3.5. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 11.44. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

EB GUIDE documentation
Chapter 11. References

Page 189 of 248

11.4.3.3.6. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 11.45. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

11.4.3.3.7. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 11.46. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

11.4.3.3.8. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 11.47. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted month

11.4.3.3.9. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 11.48. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

EB GUIDE documentation
Chapter 11. References

Page 190 of 248

11.4.3.3.10. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 11.49. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

11.4.3.3.11. localtime_year

The function extracts the year from the local time of a system time value.

Table 11.50. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

11.4.3.3.12. log10f

The function returns the base 10 logarithm of x.

Table 11.51. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

11.4.3.3.13. logf

The function returns the natural logarithm of x.

Table 11.52. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

EB GUIDE documentation
Chapter 11. References

Page 191 of 248

11.4.3.3.14. nearbyint

The function rounds to nearest integer.

Table 11.53. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

11.4.3.3.15. popDynamicStateMachine

The function removes the dynamic state machine on the top of the priority queue.

Table 11.54. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

11.4.3.3.16. powf

The function returns the value of x raised to the power of y.

Table 11.55. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

11.4.3.3.17. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 11.56. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE documentation
Chapter 11. References

Page 192 of 248

11.4.3.3.18. rad2deg

The function converts an angle form radians to degree.

Table 11.57. Parameters of rad2deg

Parameter Type Description

x float The argument

<return> float The return value

11.4.3.3.19. rand

The function gets a random value between -231 and 231-1.

Table 11.58. Parameters of rand

Parameter Type Description

<return> integer A random number between -231 and 231-1

11.4.3.3.20. request_runlevel

The function requests the framework to switch to a different run level. The only supported run level is 0, meaning
to shutdown the program.

Table 11.59. Parameters of request_runlevel

Parameter Type Description

runlevel integer The requested run level

<return> void

11.4.3.3.21. rgba2color

The function converts from RGB color space to GTF color.

Table 11.60. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

EB GUIDE documentation
Chapter 11. References

Page 193 of 248

Parameter Type Description

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to GTF color, with
the alpha value applied

11.4.3.3.22. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 11.61. Parameters of round

Parameter Type Description

value float The value to round

<return> integer The rounded value

11.4.3.4. EB GUIDE Script functions S - W

11.4.3.4.1. seed_rand

The function sets the seed of the random number generator.

Table 11.62. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

11.4.3.4.2. sinf

The function returns the sine of x, where x is given in radians.

Table 11.63. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

EB GUIDE documentation
Chapter 11. References

Page 194 of 248

11.4.3.4.3. sqrtf

The function returns the non-negative square root of x.

Table 11.64. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

11.4.3.4.4. string2float

The function converts the initial part of a string to float.

The expected form of the initial part of the string is as follows:

1. An optional leading white space

2. An optional plus ('+') or minus ('-') sign

3. One of the following:

► A decimal number

► A hexadecimal number

► An infinity

► An NAN (not-a-number)

Table 11.65. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

11.4.3.4.5. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 11.66. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

EB GUIDE documentation
Chapter 11. References

Page 195 of 248

11.4.3.4.6. string2string

The function formats strings.

Table 11.67. Parameters of string2string

Parameter Type Description

str string The string to format

len integer The maximum length of the string

<return> string The language string

11.4.3.4.7. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns "abc".

► substring("abc", 0, -2) returns "ab".

Table 11.68. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

endIndex integer The first character index that is not part of the result

<return> string The language string

11.4.3.4.8. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 11.69. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

11.4.3.4.9. system_time_ms

The function gets the current system time in milliseconds.

EB GUIDE documentation
Chapter 11. References

Page 196 of 248

Table 11.70. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

11.4.3.4.10. tanf

The function returns the tangent of x, where x is given in radians.

Table 11.71. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

11.4.3.4.11. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 11.72. Parameters of >trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

11.4.3.4.12. trace_string

The function writes a string to the trace log and the connection log.

Table 11.73. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

11.4.3.4.13. transformToScreenX

The function takes a widget and a local coordinate and returns x position in the screen-relative world coordinate
system.

EB GUIDE documentation
Chapter 11. References

Page 197 of 248

Table 11.74. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The x position of the screen coordinate

11.4.3.4.14. transformToScreenY

The function takes a widget and a local coordinate and returns Y position of a position in the screen-relative
world coordinate system.

Table 11.75. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The y position of the screen coordinate

11.4.3.4.15. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x position
in the widget-relative local coordinate system.

Table 11.76. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The x position of the local coordinate

11.4.3.4.16. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y position
in the widget-relative local coordinate system.

EB GUIDE documentation
Chapter 11. References

Page 198 of 248

Table 11.77. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The y position of the local coordinate

11.4.3.4.17. trunc

The function rounds to the nearest integer value, always towards zero.

Table 11.78. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

11.4.3.4.18. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 11.79. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

<return> integer The number of child widgets

11.5. Events
Table 11.80. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

EB GUIDE documentation
Chapter 11. References

Page 199 of 248

11.6. Scenes
Table 11.81. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 1: 32 bit

► 2: 16 bit

multisampling Possible values:

► Off (= 0): no multisampling

► 2x (=1): 2x multisamling

► 4x (=2): 4x multisampling

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

EB GUIDE documentation
Chapter 11. References

Page 200 of 248

Property name Description

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► 0: Do not show FPS

► 1: Show FPS on the screen

► 2: Show FPS on the console

► 3: Show FPS on the screen and on the console

Renderer Defines a renderer for the scene.

Possible values:

► DirectX

► OpenVG

► OpenGL

TIP Settings for multisampling
The higher the resolution for multisampling is the better the quality of the rendering result.
However, be aware that multisampling decreases the rendering performance, especially on
a target device. At small displays with high resolution the multisampling has almost no effect.

Start with no multisampling and, if the performance is good, try the settings 2x or 4x multi-
sampling. If there is no big difference with higher multisampling, use a lower setting.

11.7. Touch screen types supported by EB GUIDE
GTF
The supported types depend on the target device.

Table 11.82. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

EB GUIDE documentation
Chapter 11. References

Page 201 of 248

Value Description Platform

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

5 General platform-dependent multitouch
touch-screen interface

Linux

11.8. Widgets

11.8.1. View
Table 11.83. Properties of a view

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget

y The y coordinate of the widget

View templates have additional properties for view transition animations. An entry animation is executed when
the view in entered.

Table 11.84. Properties of an entry animation

Property name Description

Entry animation If true, instances of the view template have an entry animation.

Type The type of the entry animation, for example Move in from left, Fade in from
center or Show view immediately.

Duration The duration of the entry animation in milliseconds

Delay The delay of the entry animation in milliseconds

Play after exit an-

imation

If true, the start time of the entry animation depends on the duration of a previ-
ous exit animation.

An exit animation is executed when the view is exited.

EB GUIDE documentation
Chapter 11. References

Page 202 of 248

Table 11.85. Properties of an exit animation

Property name Description

Exit animation If true, instances of the view template have an exit animation.

Type The type of the exit animation, for example Move out to top, Fade out to cen-
ter or Hide view immediately.

Duration The duration of the exit animation in milliseconds

Delay The delay of the exit animation in milliseconds

11.8.2. Basic widgets
There are five basic widgets.

► Label

► Image

► Rectangle

► Container

► Instantiator

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

11.8.2.1. Label

A label places text into a view.

Table 11.86. Properties of the label

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 11. References

Page 203 of 248

Property name Description

y The y coordinate of the widget relative to its parent widget

text The text the label displays

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

11.8.2.2. Rectangle

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 11.87. Properties of the rectangle

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

11.8.2.3. Image

An image places a picture into a view.

Table 11.88. Properties of the image

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 11. References

Page 204 of 248

Property name Description

image The image the widget displays

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. DirectX 11 and
OpenGL ES 2.0 support PNG files and JPEG files.

In addition to that, the OpenVG renderer supports SVG files.

11.8.2.4. Container

A container holds several widgets as child widgets and thus groups the widgets.

Table 11.89. Properties of the container

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

11.8.2.5. Instantiator

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables.
The child widgets of an instantiator serve as line templates for the list or table which is created during run-time.

Table 11.90. Properties of the instantiator

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 11. References

Page 205 of 248

Property name Description

y The y coordinate of the widget relative to its parent widget

numItems The number of instantiated child elements

lineMapping Defines which child is the template for which line

11.8.3. Animations

The following sections list the properties of the widgets in the Animations category.

11.8.3.1. Animation

An animation influences its parent widget. An animation requires at least one curve as a child widget.

Table 11.91. Properties of the animation

Property name Description

name The name of the animation

alternating Defines if the animation is executed repeatedly

repeat The number of repetitions, 0 for infinite number

enabled Defines if the animation is executed

scale The factor by which the animation time is multiplied

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards)

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

EB GUIDE documentation
Chapter 11. References

Page 206 of 248

11.8.3.2. Constant curves

A constant curve sets a target value after a defined delay. Constant curves are available for integer, boolean,
float, and color types.

Table 11.92. Properties of constant curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

value The resulting constant value

11.8.3.3. Fast start curves

A fast start curve periodically sets a value that increases fast in the beginning but loses speed constantly until
the end. Fast start curves are available for integer, float, and color types.

Table 11.93. Properties of fast start curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

startt The initial value

end The final value

EB GUIDE documentation
Chapter 11. References

Page 207 of 248

11.8.3.4. Slow start curves

A slow start curve periodically sets a value that increases slowly in the beginning but rises constantly until the
end. Slow start curves are available for integer, float, and color types.

Table 11.94. Properties of slow start curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

11.8.3.5. Quadratic curves

A quadratic curve periodically sets a value using a quadratic function curve. Quadratic curves are available
for integer, float, and color types.

Table 11.95. Properties of quadratic curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

acceleration The acceleration of the curve

constant The constant value to calculate the result

EB GUIDE documentation
Chapter 11. References

Page 208 of 248

11.8.3.6. Sinus curves

A sinus curve periodically sets a value using a sinus function curve. Sinus curves are available for integer,
float, and color types.

Table 11.96. Properties of sinus curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

phase The angular phase translation in degrees

frequency The frequency of the curve in hertz

11.8.3.7. Script curves

A script curve sets a value using a curve that is described by EB GUIDE Script. Script curves are available
for integer, boolean, float, and color types.

Table 11.97. Properties of script curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

curve The resulting curve function

EB GUIDE documentation
Chapter 11. References

Page 209 of 248

11.8.3.8. Linear curves

A linear curve periodically sets a value using a linear progression curve. Linear curves are available for integer,
float, and color types.

Table 11.98. Properties of linear curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

11.8.3.9. Linear interpolation curves

A linear interpolation curve periodically sets a value using a linear interpolation curve. Linear interpolation
curves are available for integer, float, and color types.

Table 11.99. Properties of linear interpolation curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

EB GUIDE documentation
Chapter 11. References

Page 210 of 248

11.8.4. 3D widgets

11.8.4.1. 3D graphic

A 3D graphic places a 3D object into a view.

Table 11.100. Properties of the 3D graphic

Property name Description

3D graphic The 3D graphic file to be displayed

NOTE Supported 3D graphic format
Only the OpenGL ES 2.0 and DirectX 11 renderers can display 3D graphics. The supported
3D graphic format is Collada (.dae).

11.9. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

11.9.1. Common

11.9.1.1. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area.

Table 11.101. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, the truncationPolicy property defines the position of
the truncation. Possible values:

► leading (=0): Text is replaced at the beginning of the text

► trailing (=1): Text is replaced at the end of the text

EB GUIDE documentation
Chapter 11. References

Page 211 of 248

Property name Description

For multi-line texts, the truncationPolicy property defines where text is re-
placed. Possible values:

► leading (=0): Lines at the beginning are replaced and text of the first vis-
ible line is truncated at the beginning of the text.

► trailing (=1) Lines at the end are replaced and text of the last visible
line is truncated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

NOTE Labels with bi-directional texts
Text that contains two text directions, right-to-left and left-to-right, is called bi-directional text.
In case of bi-directional text, the truncation symbol is added with respect to the text, but not
to its formatting. This means:

► If you use leading the truncation symbol is added to the left-hand side of the first
visible line.

► If you use trailing the truncation symbol is added to the right-hand side of the last
visible line.

11.9.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 11.102. Properties of the Enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

11.9.1.3. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 11.103. Properties of the Selected widget feature

Property name Description

selected If true, the widget is selected

11.9.1.4. Focused

EB GUIDE documentation
Chapter 11. References

Page 212 of 248

The Focused widget feature enables a widget to have input focus.

Table 11.104. Properties of the Focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► not focusable (=0)

► only by touch (=1)

► only by key (=2)

► focusable (=3)

focused If true, the widget has focus

11.9.1.5. Touched

The Touched widget feature enables a widget to react to touch input.

Table 11.105. Properties of the Touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react (=0)

Press first, then the widget reacts. Notifications of moving and releasing are
only active within the widget area.

► Press and grab (=1)

Press to grab the contact. The contact remains grabbed even if it moves
away from the widget area.

► Press then react on contact (=3)

Even if the contact enters the pressed state outside the widget boundaries,
the subsequent move and release events are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

► Whole area (=0)

To identify the touched widget, the renderer evaluates the widget's clipping
rectangle.

EB GUIDE documentation
Chapter 11. References

Page 213 of 248

Property name Description

► Visible pixels (=1)

To identify the touched widget, the renderer evaluates the widget the
touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation:

If performance is an important issue in your project, set the touchBehavior property to
Whole area. EB GUIDE GTF evaluates Whole area faster than Visible pixels.

11.9.1.6. Pressed

The Pressed widget feature defines that a widget can be pressed.

Table 11.106. Properties of the Pressed widget feature

Property name Description

pressed If true, a key is pressed while the widget is focused

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

11.9.1.7. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. Only the content of one
child widget is visible at a time.

Table 11.107. Properties of the Child visibility selection widget feature

Property name Description

containerIndex The index of the child widgets of the parent widget

containerMapping If a mapping is set, each child of the container is re-addressed by its appropriate
value in containerMapping.

If a mapping is not set, undefined, or if the length does not match the number
of child widgets in the container, the mapping is not used. Instead, the order of
widgets in the widget tree is used as their index. The topmost child has index 0,
next index 1 etc.

EB GUIDE documentation
Chapter 11. References

Page 214 of 248

11.9.1.8. Multiple lines

The Multiple lines widget feature enables line breaks for a label widget.

Table 11.108. Properties of the Multiple lines widget feature

Property name Description

currentLineCount Defines the current number of lines. This value is set by the Multiple lines wid-
get feature at runtime. The value depends for example on the settings for text
and the line gap.

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

maxLineCount The number of visible lines

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

11.9.1.9. Selection group

The Selection group widget feature is used to model an array of radio buttons. In an array, every radio button
has the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an external application that sets
the buttonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding
a condition that sets the button value.

Table 11.109. Properties of the Selection group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is se-
lected.

11.9.1.10. Spinning

EB GUIDE documentation
Chapter 11. References

Page 215 of 248

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 11.110. Properties of the Spinning widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction The reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the current-
Value property

valueWrapAround Possile values:

► true: The currentValue property continues at the inverse border, if min-
Value or maxValue is exceeded.

► false: The currentValue property does not decrease/increase, if min-
Value or maxValue is exceeded.

11.9.2. Focus

11.9.2.1. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Table 11.111. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder The focusOrder property makes it possible to skip child widgets when assign-
ing focus. The ID of a child widget corresponds to its position in the subtree.
Child widgets that are not focusable are skipped by default. Order in which the
child widgets are focused:

EB GUIDE documentation
Chapter 11. References

Page 216 of 248

Property name Description

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, otherwise widgets are
ignored for focus handling. Example: focusOrder=1|0|2 means the second wid-
get receives focus first, then the first widget receives focus, and finally the third
widget.

focusPrevious The trigger that assigns the focus to the previous child

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy level (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

11.9.2.2. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. Focusable
child widgets cannot be skipped. A widget with the Auto focus widget feature manages a local focus hierarchy
for its widget subtree. The Auto focus widget feature checks the widget subtree for child widgets with the
focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Table 11.112. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrevious The condition on which the focus index is decremented

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy (=0)

► wrap within hierachy level (=1)

► step up in hierarchy (=2)

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

EB GUIDE documentation
Chapter 11. References

Page 217 of 248

Property name Description

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

11.9.3. Input handling

11.9.3.1. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Table 11.113. Properties of the Move over widget feature

Property name Description

moveOver The widget's reaction on a movement within its boundaries

11.9.3.2. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Table 11.114. Properties of the Move out widget feature

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

11.9.3.3. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Table 11.115. Properties of the Move in widget feature

Property name Description

moveIn The widget's reaction on a movement into its boundaries

11.9.3.4. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

EB GUIDE documentation
Chapter 11. References

Page 218 of 248

Table 11.116. Properties of the Touch pressed widget feature

Property name Description

touchPressed The widget's reaction on being pressed

11.9.3.5. Touch released

The Touch released widget feature enables a widget to react on being released.

Table 11.117. Properties of the Touch released widget feature

Property name Description

touchShortReleased The widget's reaction on being released

11.9.3.6. Touch grab lost

The Touch grab lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Table 11.118. Properties of the Touch grab lost widget feature

Property name Description

onTouchGrabLost The widget's reaction on a lost touch contact

11.9.3.7. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Table 11.119. Properties of the Touch status changed widget feature

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

11.9.3.8. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Table 11.120. Properties of the Touch move widget feature

Property name Description

touchMoved The widget's reaction on being touched and moved

EB GUIDE documentation
Chapter 11. References

Page 219 of 248

11.9.3.9. Gesture

The Gesture widget feature enables the widget to react on touch gestures.

The Gesture widget feature has no additional properties.

11.9.3.10. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Table 11.121. Properties of the Key pressed widget feature

Property name Description

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

11.9.3.11. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Table 11.122. Properties of the Key unicode widget feature

Property name Description

keyUnicode The widget's reaction on a Unicode key input

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

11.9.3.12. Key released

The Key released widget feature enables a widget to react on a key being released.

Table 11.123. Properties of the Key released widget feature

Property name Description

keyShortReleased The widget's reaction on a key being released

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

EB GUIDE documentation
Chapter 11. References

Page 220 of 248

11.9.3.13. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Table 11.124. Properties of the Key status changed widget feature

Property name Description

keyLongPressed The widget's reaction on a key being pressed or released

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

11.9.3.14. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Table 11.125. Properties of the Rotary widget feature

Property name Description

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts on an incoming
rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming event
is sent

11.9.3.15. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Table 11.126. Properties of the Moveable widget feature

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► horizontal (=0)

► vertical (=1)

► free (=2)

EB GUIDE documentation
Chapter 11. References

Page 221 of 248

11.9.4. Gestures

11.9.4.1. Hold gesture

A hold gesture without movement

NOTE The Hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 11.127. Properties of the Hold gesture widget feature

Property name Description

holdDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a hold gesture

onGestureHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when holdDuration is expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: X coordinate of the contact position

► y: Y coordinate of the contact position

11.9.4.2. Long hold gesture

A long hold gesture without movement

NOTE The Long hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 11.128. Properties of the Long hold gesture widget feature

Property name Description

longHoldDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a long hold gesture

EB GUIDE documentation
Chapter 11. References

Page 222 of 248

Property name Description

onGestureLongHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when longHoldDuration has expired and the
contact still is in a small boundary box around the initial touch position

Reaction arguments:

► x: X coordinate of the contact position

► y: Y coordinate of the contact position

11.9.4.3. Flick gesture

A quick brush of a contact over a surface

Table 11.129. Properties of the Flick gesture widget feature

Property name Description

flickMaxTime The maximal time in milliseconds the contact may stay in place for the gesture to
be recognized as a flick gesture

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: X part of the direction vector of the gesture

► directionY: Y part of the direction vector of the gesture

flickMinLength The minimal distance in pixels a contact has to move on the surface to be recog-
nized as a flick gesture

11.9.4.4. Pinch gesture

Two contacts that move closer together or further apart

Table 11.130. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart The reaction that is triggered once the start of the gesture is recog-
nized. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

EB GUIDE documentation
Chapter 11. References

Page 223 of 248

Property name Description

► centerX: X coordinate of the current center point between the two
contacts

► centerY: Y coordinate of the current center point between the two
contacts

onGesturePinchUpdate The reaction that is triggered when the pinch ratio or center point
change

onGesturePinchEnd The reaction that is triggered once the gesture is finished

pinchThreshold The minimal distance in pixels each contact has to move from its initial
position for the gesture to be recognized. Reaction arguments:

► Angle: Angle between the line specified by the initial position of the
two contacts and the line specified by the current position of the
two contacts. The angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two
contacts

► centerY: Y coordinate of the current center point between the two
contacts

11.9.4.5. Rotate gesture

Two contacts that move along a circle

Table 11.131. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart The reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate The reaction that is triggered when the recognized angle or center point
changes

onGestureRotateEnd The reaction that is triggered once the gesture is finished

rotateThreshold The minimal distance in pixels each contact has to move from its initial
position for the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUpdate:

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two contacts

► centerY: Y coordinate of the current center point between the two contacts

EB GUIDE documentation
Chapter 11. References

Page 224 of 248

11.9.4.6. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

Table 11.132. Properties of the Path gesture widget feature

Property name Description

onPathStart The reaction that is triggered once a contact moves beyond the minimal box
(pathMinXBox, pathMinYBox.) Reaction argument:

► gestureId: ID of the path that was matched

onPathNotRecognized The reaction that triggered when the entered shape does not match. The reac-
tion is only triggered if onPathStart has been triggered already.

onPath The reaction that is triggered when the entered shape matches. The reaction is
only triggered if onPathStart has been triggered already.

pathMinXBox The X coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

pathMinYBox The Y coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

11.9.4.6.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 11.133. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

EB GUIDE documentation
Chapter 11. References

Page 225 of 248

ID Shape Description

3 Horizontal line right to left

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

11.9.5. Effects

11.9.5.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Table 11.134. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

11.9.5.2. Coloration

EB GUIDE documentation
Chapter 11. References

Page 226 of 248

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 11.1.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

Table 11.135. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The coloration used. Possible values:

► Pure

► Opaque

► White

11.9.6. Layout

11.9.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Table 11.136. Properties of the Absolute layout widget feature

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for the child widgets.
Each list element is mapped to a child widget.

itemRightOffset An integer list that stores the offset from the right border for the child widgets.
Each list element is mapped to a child widget.

EB GUIDE documentation
Chapter 11. References

Page 227 of 248

Property name Description

itemTopOffset An integer list that stores the offset from the top border for the child widgets.
Each list element is mapped to a child widget.

itemBottomOffset An integer list that stores the offset from the bottom border for the child widgets.
Each list element is mapped to a child widget.

11.9.6.2. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 11.137. Properties of the Flow layout widget feature

Property name Description

horizontalChildAlign The horizontal alignment of child widgets

verticalChildAlign The vertical alignment of child widgets

► center (=0): The child widget is placed in the center.

► top (=1): The child widget is placed at the top

► bottom (=2): The child widget is placed at the buttom.

layoutDirection The direction in which the list elements i.e. the child widgets are posi-
tioned.

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

11.9.6.3. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 11.138. Properties of the Grid layout widget feature

Property name Description

numColumns Defines the number of columns

numRows Defines the number of rows

EB GUIDE documentation
Chapter 11. References

Page 228 of 248

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

11.9.6.4. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 11.139. Properties of the Box layout widget feature

Property name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the list elements i.e. the child widgets are positioned.

11.9.6.5. List layout

The List layout widget feature defines position and size of each child widget.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, refer to section 11.9.7.1, “List index”.

Table 11.140. Properties of the List layout widget feature

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are positioned.

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

firstListIndex The list index of the first visible list element, defined by the widget feature

listLength The number of list elements

scrollValueMin The minimum scroll value, which is mapped to the beginning of the list

scrollValueMax The maximum scroll value, which is mapped to the end of the list

EB GUIDE documentation
Chapter 11. References

Page 229 of 248

Property name Description

scrollValue The current scroll value

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at
the list elements given in the scrollIndex property.

scrollOffset The amount of pixels to scroll the list

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is
translated to scrollIndex. The remaining offset is written to the scrollOff-
set property.

bounceValue The bounceValue property is zero as long as the scrollOffset property re-
sults in a position inside the valid scroll range. It has a positive value if the scroll
position exceeds the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to scrollOffset,
the scroll position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll
range. scrollOffset is truncated if the user tries to scroll further.

wrapAround Possible values:

► true: The scrollValue property continues at the inverse border, if scrol-
lValueMin or scrollValueMax is exceeded.

► false: The scrollValue property does not decrease/increase, if scroll-
ValueMin or scrollValueMax is exceeded.

11.9.6.6. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout or the
Absolute layout widget feature.

Table 11.141. Properties of the Layout margins widget feature

Property name Description

topMargin The margin of the top border

bottomMargin The margin of the bottom border

leftMargin The margin of the left border

rightMargin The margin of the right border

11.9.6.7. Scale mode

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

EB GUIDE documentation
Chapter 11. References

Page 230 of 248

Table 11.142. Properties of the Scale mode widget feature

Property name Description

scaleMode The scale mode of the image. Possible values:

► 0 = original size

► 1 = fit to size

► 2 = keep aspect ratio

11.9.7. List management

11.9.7.1. List index

The List index widget feature adds a listIndex property to a widget. It is intended to be used in combination
with the List layout widget feature.

Table 11.143. Properties of the List index widget feature

Property name Description

listIndex The index of the current widget in a list

11.9.7.2. Line index

The Line index widget feature adds a line index property to a widget. It is intended to be used in combination
with tables.

Table 11.144. Properties of the Line index widget feature

Property name Description

lineIndex The index of the current line in a table

11.9.7.3. Template index

The Template index widget feature adds a line template index property to a widget. It is intended to be used
in combination with instantiators.

Table 11.145. Properties of the Template index widget feature

Property name Description

lineTemplateIndex The index of the used line template

EB GUIDE documentation
Chapter 11. References

Page 231 of 248

11.9.7.4. View port

The View port widget feature clips oversized elements at the widget borders. It is intended to be used in
combination with containers or lists.

Table 11.146. Properties of the View port widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

11.9.8. Model

11.9.8.1. 3D graphic extension

The 3D graphic extension widget feature adds options to import its key-frame animations.

Requirements:

► The widget feature is available for 3D graphics.

Table 11.147. Properties of the 3D graphic extension widget feature

Property name Description

animationEnabled Defines if the 3D graphic's animation is imported and applied to the 3D graphic

animationTime Defines the current animation state in milliseconds

11.9.9. Transformations
Transformations modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

EB GUIDE documentation
Chapter 11. References

Page 232 of 248

6. Rotation around x-axis

11.9.9.1. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 11.148. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX The translation on the x-axis

translationY The translation on the y-axis

translationZ The translation on the z-axis if widget is a 3D graphic

11.9.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 11.149. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX The rotation angle on the x-axis. This property only affects 3D graphics.

rotationAngleY The rotation angle on the y-axis. This property only affects 3D graphics.

rotationAngleZ The rotation angle on the z-axis

11.9.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 11.150. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX The scaling on the x-axis in percent

scalingY The scaling on the y-axis in percent

scalingZ The scaling on the z-axis in percent if widget is a 3D graphic

EB GUIDE documentation
Chapter 11. References

Page 233 of 248

11.9.9.4. Shearing

The Shearing widget feature is used to distort widgets in the widget subtree.

Table 11.151. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY The shearing amount of x-axis by y-axis

shearingXbyZ The shearing amount of x-axis by z-axis if widget is a 3D graphic

shearingYbyX The shearing amount of y-axis by x-axis

shearingYbyZ The shearing amount of y-axis by z-axis if widget is a 3D graphic

shearingZbyX The shearing amount of z-axis by x-axis if widget is 3D.

shearingZbyY The shearing amount of z-axis by y-axis if widget is a 3D graphic

11.9.9.5. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

Table 11.152. Properties of the Pivot widget feature

Property name Description

pivotX The pivot point on the x-axis relative to parent widget

pivotY The pivot point on the y-axis relative to parent widget

pivotZ The pivot point on the z-axis relative to parent widget if widget is a 3D graphic

11.9.10. Appearance

NOTE OpenVG for Appearance category
For the widget feature properties in the Appearance category, the OpenVG renderer is
required. To change the renderer, go to the project center, and click Configure > Profiles.

11.9.10.1. Rounded

The Rounded widget feature applies rounded corners to a rectangle widget.

EB GUIDE documentation
Chapter 11. References

Page 234 of 248

The widget feature affects images and labels only if the widget feature Border is selected.

Table 11.153. Properties of the Rounded widget feature

Property name Description

arcHeight The height of the arc which defines the rounding of the corner

arcWidth The width of the arc which defines the rounding of the corner

11.9.10.2. Fill pattern

The widget feature Fill pattern allows the usage of an image tile to fill a widget. It replaces the standard fill
color of the widget.

Requirements:

► This feature is available for rectangles and labels.

► This feature cannot be used in combination with the following features:

► Linear Fill Gradient

► Radial Fill Gradient

Table 11.154. Properties of the Fill pattern widget feature

Property name Description

fillPattern The image which is used as a pattern

fillTileMode Defines how the pattern is used

11.9.10.3. Linear fill gradient

The Linear fill gradient widget feature allows the usage of a linear gradient to fill a widget. It replaces the
standard fill color of the widget.

Requirements:

► The widget feature is available for rectangles, images, and labels.

Table 11.155. Properties of the Linear fill gradient widget feature

Property name Description

fillGradientColors The colors used for this gradient

fillGradientEndX The horizontal position of the end point for the line defining the gradient

fillGradientEndY The vertical position of the end point of the line defining the gradient

EB GUIDE documentation
Chapter 11. References

Page 235 of 248

Property name Description

fillGradientRamp The ramp values which define the gradient

fillGradientSpreadMode Defines if the ramp is repeated, reflected, or just ended

fillGradientStartX The horizontal position of the start point for the line which defines the
gradient

fillGradientStartY The vertical position of the end point of the line which defines the gradi-
ent

11.9.10.4. Radial fill gradient

The Radial fill gradient widget feature allows the usage of a radial gradient to fill a widget. It replaces the
standard fill color of the widget.

Requirements:

► The widget feature is available for rectangles, images, and labels.

Table 11.156. Properties of the Radial fill gradient widget feature

Property name Description

fillGradientCenterX The horizontal center position of the radial gradient

fillGradientCenterY The vertical center position of the radial gradient

fillGradientColors The colors used for this gradient

fillGradientFocusX The horizontal focus position of the radial gradient

fillGradientFocusY The vertical focus position of the radial gradient

fillGradientRadius The radius of the radial gradient

fillGradientRamp The ramp values which define the gradient

fillGradientSpreadMode Defines if the ramp is repeated, reflected, or just ended

EB GUIDE documentation
Chapter 12. Installation

Page 236 of 248

12. Installation

12.1. Background information

12.1.1. Restrictions

NOTE Compatibility
EB GUIDE product line 6 is not compatible with any previous major version.

NOTE EB GUIDE Speech Extension
EB GUIDE Speech Extension is licensed as an add-on product that is enabled only when
purchased.

NOTE User rights
To install EB GUIDE on Windows 7 or Windows 8 systems, you require administrator rights.

12.1.2. System requirements

Observe the following settings:

Table 12.1. Recommended settings for EB GUIDE Studio

Hardware PC with quad core CPU with at least 2 GHz CPU
speed and 8 GB RAM

Operating system Windows 7, Windows 8

Screen resolution Usage of 2 separate monitors with 1600 x 1200 pix-
els

Software Microsoft .NET Framework 4.5.1.

EB GUIDE documentation
Chapter 12. Installation

Page 237 of 248

DirectX 11

Table 12.2. Recommended settings for EB GUIDE SDK

Development environment (IDE) Microsoft Visual Studio 2013 or newer

File integration CMake

12.2. Downloading from EB Command
EB Command is the server from which you are going to download the EB GUIDE product line software.

NOTE Activate your account
After ordering a product, you receive a mail from sales department. Click the link in the
email. Follow the steps to create an account as directed in the email and in the browser,
then proceed to log in.

Downloading from EB Command

Prerequisite:

■ Your user account is activated.

Step 1
Open a browser and go to https://command.elektrobit.com/command/mod_perl/login.pl.

The EB Command front page opens.

Step 2
To change the language, toggle the language in the lower left corner of the screen.

Step 3
Type in your alias, which is your user name.

Step 4
Type in your password and click the Login button.

The main page opens.

Step 5
Select a project, for example EB GUIDE Studio. The project overview opens.

Step 6
Select the distribution container in the version you want to download, for example EB GUIDE Studio Core
6.x. An overview of all downloadable items open.

Step 7
Select the Actions check box beside the file you want to download.

https://command.elektrobit.com/command/mod_perl/login.pl

EB GUIDE documentation
Chapter 12. Installation

Page 238 of 248

Step 8
Click Download Selection.

TIP Downloading multiple files
If you select multiple files for download, a download package is generated. You are
prompted to save the file CommandDownload<date>.zip to your local system.

The download starts. To log out from EB Command, click the Logout button.

12.3. Installing EB GUIDE

Installing EB GUIDE

Prerequisite:

■ You downloaded the setup file studio_setup.exe.

■ You have administrator rights on the operating system.

Step 1
Double-click the setup file studio_setup.exe.

A dialog opens.

Step 2
Click Yes.

The Setup - EB GUIDE Studio dialog opens.

Step 3
Accept the license agreement and click Next

Step 4
Select a directory for installation.

The default installation directory is C:\Program Files (x86)\Elektrobit\EB GUIDE <version>.

Step 5
Click Next.

A summary dialog displays all selected installation settings.

Step 6
To confirm the installation with the settings displayed, click Install.

The installation starts.

EB GUIDE documentation
Chapter 12. Installation

Page 239 of 248

Step 7
To exit the setup click Finish.

You have installed EB GUIDE.

TIP Multiple installations
It is possible to install more than one EB GUIDE versions.

12.4. Uninstalling EB GUIDE

Uninstalling EB GUIDE

NOTE Removing EB GUIDE permanently
If you follow the instruction, you remove EB GUIDE permanently from your PC.

Prerequisite:

■ EB GUIDE is installed.

■ You have administrator rights on the operating system.

Step 1
On the Windows Start menu, click All Programs.

Step 2
On Elektrobit menu, click the version you want to uninstall.

Step 3
On the submenu, click Uninstall.

Glossary

Page 240 of 248

Glossary

A
API Application programming interface

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of the EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

Glossary

Page 241 of 248

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE product line. It
consists of EB GUIDE GTF and EB GUIDE STF. It is required to run an EB
GUIDE model.

G
global property See datapool item.

GUI Graphical user interface

H
HMI Human machine interface

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

P
project center All project-related functions are located in the project center, for example pro-

files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

property A property is a name-value pair. The name is used as identifier, the value
contains data.

R

Glossary

Page 242 of 248

resource A resource is a data package that is part of the EB GUIDE project. Examples
for resources are fonts, images, 3D-objects. Resources are stored outside of
the EB GUIDE model, for example in files, depending on the operating system.

S
state A state defines the status of the state machine. States and state transitions

are modeled in state diagrams.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

view transition animation A view transition animation defines a blending or fading animation for entering
or exiting a view.

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

Index

Page 243 of 248

Index
Symbols
3D graphic, 45, 82

add, 118
data type, 170
reference, 210
supported formats, 210

3D graphic extension
reference, 231

3D graphic list
data type, 170

3D widget, 82
3D widgets

reference, 210

A
absolute layout

reference, 226
action

entry action, 87
exit action, 88
transition, 98

animation, 31, 82, 130, 132, 143
entry animation, 31, 132
exit animation, 31, 132
reference, 205

API, 240 (see application programming interface)
application programming interface, 32
auto focus

reference, 216

B
basic widget, 82
basic widgets

reference, 202
boolean

data type, 170
boolean list

data type, 170
border

reference, 225
box layout

reference, 228
button

user interface, 60

C
child visibility selection

reference, 213
choice state, 90
color

data type, 170
coloration

reference, 225
command area

project editor, 36
communication context, 32, 152, 240
compound state, 89
condition

transition, 97
conditional script

data type, 171
configure

display, 167
constant curve

reference, 206
container

add, 118
reference, 204

content area
project center, 34
project editor, 36

D
data type

3D graphic, 170
3D graphic list, 170
boolean, 170
boolean list, 170
color, 170
conditional script, 171
float, 171

Index

Page 244 of 248

font, 172
image, 172
integer, 172
list, 173
string, 174

datapool, 38, 240
datapool item, 38, 149, 151, 240

language support, 156
link, 154
list, 150
reference, 169
windowed list, 39

display
configure, 167

dynamic state machine
add, 86, 101

E
EB GUIDE extension, 41
EB GUIDE GTF, 240
EB GUIDE GTF SDK, 240
EB GUIDE model, 39, 240

model element, 40
EB GUIDE product line, 240
EB GUIDE project, 39
EB GUIDE Script, 45, 151, 240

comment, 46
datapool access, 53
event, 56
expression, 47
foreign function call, 52
identifier, 46
if-then-else, 51
l-value, 49
list, 55
local variable, 50
namespace, 46
r-value, 49
scripted value, 58
standard library, 58
string formatting, 57
tutorial, 110

types, 47
while loop, 51
widget property, 54

EB GUIDE SDK, 240
EB GUIDE Studio, 240
EB GUIDE Studio SDK;, 240
EB GUIDE TF, 240
effects

widget feature, 225
enabled

reference, 211
entry action, 92

state machine, 87
entry animation, 132

reference, 201
event, 40, 56

reference, 198
event system, 40
exit action, 93

state machine, 88
exit animation, 132

reference, 201

F
fast start curve

reference, 206
fill pattern

reference, 234
finger ID, 80
flick gesture

reference, 222
float

data type, 171
flow layout

reference, 227
focused

reference, 211
font, 42

data type, 172

G
gesture, 79

Index

Page 245 of 248

non-path gesture, 79
path gesture, 79
reference, 219

gesture ID
reference, 224

global property, 241 (see datapool item)
grid layout

reference, 227
gtfStartup.cfg

profile, 163
GUI, 241

H
HMI, 241
hold gesture

reference, 221

I
image

9-patch, 44
add, 117
data type, 172
reference, 203
supported formats, 43
SVG, 43

instantiator, 138
add, 119
reference, 204

integer
data type, 172

internal transition, 100

K
key pressed

reference, 219
key released

reference, 219
key status changed

reference, 220
key unicode

reference, 219

L
label

font, 118
reference, 202

language dependent text, 156
layout margins

reference, 229
library

add, 164
line index

reference, 230
linear curve, 209
linear fill gradient

reference, 234
linear interpolation curve, 209
linear interpolation integer, 143
link

datapool item, 154
widget property, 122, 123

list, 150
create, 137
data type, 173

list index
reference, 230

list layout
reference, 228

long hold gesture
reference, 221

M
message

add, 165
model element, 40, 241

delete, 93
move in

reference, 217
move out

reference, 217
move over

reference, 217
moveable

reference, 220

Index

Page 246 of 248

multi-touch input, 80
multiple lines

reference, 214
multisampling, 200

N
navigation area

project center, 33
project editor, 35

P
path gesture, 135

reference, 224, 224
pinch gesture

reference, 222
pivot

reference, 233
pressed

references, 213
problems area, 160

project editor, 38
profile

clone, 163
gtfStartup.cfg, 163

project center, 33, 241
content area, 34
navigation area, 33

project editor, 34, 241
command area, 36, 38
content area, 36
navigation area, 35
problems area, 38
toolbox, 36

properties panel
command area, 37
project editor, 37

property, 241

Q
quadratic curve

reference, 207

R
radial fill gradient

reference, 235
reader communication context, 32, 153
rectangle

reference, 203
renderer

configure, 167
resource, 241

3D graphic, 45
font, 43
image, 43

resource management, 42
rotary

reference, 220
rotate gesture

reference, 223
rotation

reference, 232
rounded

reference, 233

S
scale mode

reference, 229
scaling

reference, 232
scene configuration

reference, 199
script curve, 208
scripted value, 58, 151
selected

reference, 211
Selection group

reference, 214
shearing

reference, 233
shortcut

user interface, 60
simulation, 161
sinus curve

reference, 208

Index

Page 247 of 248

slow start curve
reference, 207

Spinning
reference, 214

state, 62, 89, 89, 105, 242
choice state, 66
compound state, 63
entry action, 92
exit action, 93
final state, 65
history state, 67
initial state, 64
transition, 94
view state, 64

state machine, 61, 242
add, 86
comparison to UML, 77
delete, 88
dynamic state machine, 62
execution of state machine, 73
haptic state machine, 62
include state machine, 62, 78
logic state machine, 62
state, 62
transition, 69
UML 2.5 notation, 77

status bar
project editor, 38

string
data type, 174

system message, 165

T
template

create, 133
use, 134

template index
reference, 230

template interface, 134
add property, 134
remove property, 134

text truncation

reference, 210
todo

EB GUIDE Script, 46
toolbox

project editor, 36
touch gesture (see gesture)
touch grab lost

reference, 218
touch input (see gesture)
touch move

reference, 218
touch pressed

reference, 217
touch released

reference, 218
touch status changed

reference, 218
touched

reference, 212
transition, 70, 94, 242

action, 98
add, 94
condition, 97
internal, 100
move, 95
trigger, 96

translation
reference, 232

trigger
transition, 96

U
UI, 242
user-defined focus

reference, 215
user-defined property, 125

V
view, 81, 242

add, 116
reference, 201

view port

Index

Page 248 of 248

reference, 231
view template

reference, 201, 201

W
widget, 81, 242

3D widget, 82
add, 116
animation, 82
basic, 82
delete, 117
group, 118
position, 120
resize, 121

widget feature
add, 125
path gesture, 135
remove, 127

widget property, 83
add, 125
default property, 83
EB GUIDE Script, 54
link to datapool item, 123
link to widget property, 122
user-defined property, 83, 125
widget feature property, 83
widget template, 84

widget template, 84, 133
widget template interface, 84
windowed list

datapool item, 39
writer communication context, 32, 153

	EB GUIDE documentation
	Table of Contents
	1.About this documentation
	1.1. Target audience: Modelers
	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Tutorial: Getting started
	5.1. Starting EB GUIDE
	5.2. Creating a project
	5.3. Modeling HMI behavior
	5.4. Modeling HMI appearance
	5.5. Starting the simulation

	6.Background information
	6.1. Animations
	6.1.1. Animations for widgets
	6.1.2. Animations for view transitions

	6.2. Application programming interface between application and model
	6.3. Communication context
	6.4. Components of the graphical user interface
	6.4.1. Project center
	6.4.1.1. Navigation area
	6.4.1.2. Content area

	6.4.2. Project editor
	6.4.2.1. Navigation area
	6.4.2.2. Content area
	6.4.2.3. Command area
	6.4.2.4. Toolbox
	6.4.2.5. Properties panel
	6.4.2.6. Status bar
	6.4.2.7. Problems area

	6.5. Datapool
	6.5.1. Concept
	6.5.2. Datapool items
	6.5.3. Windowed lists

	6.6. EB GUIDE model and EB GUIDE project
	6.7. Event handling
	6.7.1. Event system
	6.7.2. Events

	6.8. Extensions
	6.8.1. EB GUIDE Studio extension
	6.8.2. EB GUIDE GTF extension

	6.9. Languages
	6.9.1. Display languages in EB GUIDE Studio
	6.9.2. Languages in the EB GUIDE model

	6.10. Resource management
	6.10.1. Fonts
	6.10.2. Images
	6.10.2.1. SVG images
	6.10.2.2. 9-patch images

	6.10.3. 3D graphics

	6.11. Scripting language EB GUIDE Script
	6.11.1. Capabilities and areas of application
	6.11.2. Namespaces and identifiers
	6.11.3. Comments
	6.11.4. Types
	6.11.5. Expressions
	6.11.6. Constants and references
	6.11.7. Arithmetic and logic expressions
	6.11.8. L-values and r-values
	6.11.9. Local variables
	6.11.10. While loops
	6.11.11. If-then-else
	6.11.12. Foreign function calls
	6.11.13. Datapool access
	6.11.14. Widget properties
	6.11.15. Lists
	6.11.16. Events
	6.11.17. String formatting
	6.11.18. The standard library

	6.12. Scripted values
	6.13. Shortcuts, buttons and icons
	6.13.1. Shortcuts
	6.13.2. Buttons
	6.13.3. Icons

	6.14. State machines and states
	6.14.1. State machines
	6.14.1.1. Haptic state machine
	6.14.1.2. Logic state machine
	6.14.1.3. Dynamic state machine

	6.14.2. States
	6.14.2.1. Compound state
	6.14.2.2. View state
	6.14.2.3. Initial state
	6.14.2.4. Final state
	6.14.2.5. Choice state
	6.14.2.6. History states

	6.14.3. Transitions
	6.14.4. Execution of a state machine
	6.14.5. EB GUIDE notation in comparison to UML notation
	6.14.5.1. Supported elements
	6.14.5.2. Not supported elements
	6.14.5.3. Deviations

	6.15. Touch input
	6.15.1. Non-path gestures
	6.15.2. Path gestures
	6.15.3. Input processing and gestures
	6.15.4. Multi-touch input

	6.16. Widgets
	6.16.1. View
	6.16.2. Widget categories
	6.16.3. Widget properties
	6.16.4. Widget templates

	7.Modeling HMI behavior
	7.1. Modeling a state machine
	7.1.1. Adding a state machine
	7.1.2. Adding a dynamic state machine
	7.1.3. Defining an entry action for a state machine
	7.1.4. Defining an exit action for a state machine
	7.1.5. Deleting a state machine

	7.2. Modeling states
	7.2.1. Adding a state
	7.2.2. Adding a state to a compound state
	7.2.3. Adding a choice state
	7.2.4. Defining an entry action for a state
	7.2.5. Defining an exit action for a state
	7.2.6. Deleting a model element from a state machine

	7.3. Connecting states through transitions
	7.3.1. Adding a transition between two states
	7.3.2. Moving a transition
	7.3.3. Defining a trigger for a transition
	7.3.4. Adding a condition to a transition
	7.3.5. Adding an action to a transition
	7.3.6. Adding an internal transition to a state

	7.4. Tutorial: Adding a dynamic state machine
	7.5. Tutorial: Modeling button behavior with EB GUIDE Script

	8.Modeling HMI appearance
	8.1. Working with widgets
	8.1.1. Adding a view
	8.1.2. Adding a widget to a view
	8.1.3. Deleting a widget from a view
	8.1.4. Adding an image to a view
	8.1.5. Adding a 3D graphic to a view
	8.1.6. Changing the font of a label
	8.1.7. Grouping widgets using a container
	8.1.8. Adding an instantiator to a view

	8.2. Working with widget properties
	8.2.1. Positioning a widget
	8.2.2. Resizing a widget
	8.2.3. Linking between widget properties
	8.2.4. Linking a widget property to a datapool item
	8.2.5. Adding a user-defined property to a widget

	8.3. Extending a widget by widget features
	8.3.1. Adding a widget feature
	8.3.2. Removing a widget feature

	8.4. Adding a language to the EB GUIDE model
	8.4.1. Adding a language
	8.4.2. Deleting a language

	8.5. Adding animations
	8.5.1. Animating a widget
	8.5.2. Animating a view transition

	8.6. Re-using a widget
	8.6.1. Adding a template
	8.6.2. Defining the template interface
	8.6.3. Using a template

	8.7. Tutorial: Modeling a path gesture
	8.8. Tutorial: Creating a list
	8.9. Tutorial: Making a rectangle move across the screen

	9.Handling data
	9.1. Adding an event
	9.2. Adding a parameter to an event
	9.3. Addressing an event
	9.4. Deleting an event
	9.5. Adding a datapool item
	9.6. Editing datapool items of a list type
	9.7. Converting a property to a scripted value
	9.8. Establishing external communication
	9.9. Linking between datapool items
	9.10. Deleting a datapool item
	9.11. Tutorial: Adding a language dependent text to a datapool item

	10.Handling a project
	10.1. Creating a project
	10.2. Opening a project
	10.2.1. Opening a project from the file explorer
	10.2.2. Opening a project within EB GUIDE Studio

	10.3. Testing and improving an EB GUIDE model
	10.3.1. Validating an EB GUIDE model
	10.3.2. Starting the simulation

	10.4. Exporting an EB GUIDE model
	10.5. Changing the display language of EB GUIDE Studio
	10.6. Configuring profiles
	10.6.1. Cloning a profile
	10.6.2. Adding a library
	10.6.3. Adding messages
	10.6.4. Configuring a scene

	11.References
	11.1. Android events
	11.2. Datapool items
	11.3. Data types
	11.3.1. 3D graphic
	11.3.2. Boolean
	11.3.3. Color
	11.3.4. Conditional script
	11.3.5. Float
	11.3.6. Font
	11.3.7. Image
	11.3.8. Integer
	11.3.9. List
	11.3.10. String

	11.4. EB GUIDE Script
	11.4.1. EB GUIDE Script keywords
	11.4.2. EB GUIDE Script operator precedence
	11.4.3. EB GUIDE Script standard library
	11.4.3.1. EB GUIDE Script functions A
	11.4.3.1.1. abs
	11.4.3.1.2. absf
	11.4.3.1.3. acosf
	11.4.3.1.4. animation_before
	11.4.3.1.5. animation_beyond
	11.4.3.1.6. animation_cancel
	11.4.3.1.7. animation_cancel_end
	11.4.3.1.8. animation_cancel_reset
	11.4.3.1.9. animation_pause
	11.4.3.1.10. animation_play
	11.4.3.1.11. animation_reverse
	11.4.3.1.12. animation_running
	11.4.3.1.13. animation_set_time
	11.4.3.1.14. asinf
	11.4.3.1.15. atan2f
	11.4.3.1.16. atan2i
	11.4.3.1.17. atanf

	11.4.3.2. EB GUIDE Script functions C - H
	11.4.3.2.1. ceil
	11.4.3.2.2. changeDynamicStateMachinePriority
	11.4.3.2.3. character2unicode
	11.4.3.2.4. clearAllDynamicStateMachines
	11.4.3.2.5. color2string
	11.4.3.2.6. cosf
	11.4.3.2.7. deg2rad
	11.4.3.2.8. expf
	11.4.3.2.9. float2string
	11.4.3.2.10. floor
	11.4.3.2.11. focusNext
	11.4.3.2.12. focusPrevious
	11.4.3.2.13. formatFloat
	11.4.3.2.14. formatInteger
	11.4.3.2.15. getTextHeight
	11.4.3.2.16. getTextLength
	11.4.3.2.17. getTextWidth
	11.4.3.2.18. has_list_window
	11.4.3.2.19. hsba2color

	11.4.3.3. EB GUIDE Script functions I - R
	11.4.3.3.1. int2float
	11.4.3.3.2. int2string
	11.4.3.3.3. isDynamicStateMachineActive
	11.4.3.3.4. language
	11.4.3.3.5. localtime_day
	11.4.3.3.6. localtime_hour
	11.4.3.3.7. localtime_minute
	11.4.3.3.8. localtime_month
	11.4.3.3.9. localtime_second
	11.4.3.3.10. localtime_weekday
	11.4.3.3.11. localtime_year
	11.4.3.3.12. log10f
	11.4.3.3.13. logf
	11.4.3.3.14. nearbyint
	11.4.3.3.15. popDynamicStateMachine
	11.4.3.3.16. powf
	11.4.3.3.17. pushDynamicStateMachine
	11.4.3.3.18. rad2deg
	11.4.3.3.19. rand
	11.4.3.3.20. request_runlevel
	11.4.3.3.21. rgba2color
	11.4.3.3.22. round

	11.4.3.4. EB GUIDE Script functions S - W
	11.4.3.4.1. seed_rand
	11.4.3.4.2. sinf
	11.4.3.4.3. sqrtf
	11.4.3.4.4. string2float
	11.4.3.4.5. string2int
	11.4.3.4.6. string2string
	11.4.3.4.7. substring
	11.4.3.4.8. system_time
	11.4.3.4.9. system_time_ms
	11.4.3.4.10. tanf
	11.4.3.4.11. trace_dp
	11.4.3.4.12. trace_string
	11.4.3.4.13. transformToScreenX
	11.4.3.4.14. transformToScreenY
	11.4.3.4.15. transformToWidgetX
	11.4.3.4.16. transformToWidgetY
	11.4.3.4.17. trunc
	11.4.3.4.18. widgetGetChildCount

	11.5. Events
	11.6. Scenes
	11.7. Touch screen types supported by EB GUIDE GTF
	11.8. Widgets
	11.8.1. View
	11.8.2. Basic widgets
	11.8.2.1. Label
	11.8.2.2. Rectangle
	11.8.2.3. Image
	11.8.2.4. Container
	11.8.2.5. Instantiator

	11.8.3. Animations
	11.8.3.1. Animation
	11.8.3.2. Constant curves
	11.8.3.3. Fast start curves
	11.8.3.4. Slow start curves
	11.8.3.5. Quadratic curves
	11.8.3.6. Sinus curves
	11.8.3.7. Script curves
	11.8.3.8. Linear curves
	11.8.3.9. Linear interpolation curves

	11.8.4. 3D widgets
	11.8.4.1. 3D graphic

	11.9. Widget features
	11.9.1. Common
	11.9.1.1. Text truncation
	11.9.1.2. Enabled
	11.9.1.3. Selected
	11.9.1.4. Focused
	11.9.1.5. Touched
	11.9.1.6. Pressed
	11.9.1.7. Child visibility selection
	11.9.1.8. Multiple lines
	11.9.1.9. Selection group
	11.9.1.10. Spinning

	11.9.2. Focus
	11.9.2.1. User-defined focus
	11.9.2.2. Auto focus

	11.9.3. Input handling
	11.9.3.1. Move over
	11.9.3.2. Move out
	11.9.3.3. Move in
	11.9.3.4. Touch pressed
	11.9.3.5. Touch released
	11.9.3.6. Touch grab lost
	11.9.3.7. Touch status changed
	11.9.3.8. Touch move
	11.9.3.9. Gesture
	11.9.3.10. Key pressed
	11.9.3.11. Key unicode
	11.9.3.12. Key released
	11.9.3.13. Key status changed
	11.9.3.14. Rotary
	11.9.3.15. Moveable

	11.9.4. Gestures
	11.9.4.1. Hold gesture
	11.9.4.2. Long hold gesture
	11.9.4.3. Flick gesture
	11.9.4.4. Pinch gesture
	11.9.4.5. Rotate gesture
	11.9.4.6. Path gestures
	11.9.4.6.1. Gesture IDs

	11.9.5. Effects
	11.9.5.1. Border
	11.9.5.2. Coloration

	11.9.6. Layout
	11.9.6.1. Absolute layout
	11.9.6.2. Flow layout
	11.9.6.3. Grid layout
	11.9.6.4. Box layout
	11.9.6.5. List layout
	11.9.6.6. Layout margins
	11.9.6.7. Scale mode

	11.9.7. List management
	11.9.7.1. List index
	11.9.7.2. Line index
	11.9.7.3. Template index
	11.9.7.4. View port

	11.9.8. Model
	11.9.8.1. 3D graphic extension

	11.9.9. Transformations
	11.9.9.1. Translation
	11.9.9.2. Rotation
	11.9.9.3. Scaling
	11.9.9.4. Shearing
	11.9.9.5. Pivot

	11.9.10. Appearance
	11.9.10.1. Rounded
	11.9.10.2. Fill pattern
	11.9.10.3. Linear fill gradient
	11.9.10.4. Radial fill gradient

	12.Installation
	12.1. Background information
	12.1.1. Restrictions
	12.1.2. System requirements

	12.2. Downloading from EB Command
	12.3. Installing EB GUIDE
	12.4. Uninstalling EB GUIDE

	Glossary
	Index

