
EB GUIDE documentation
EB GUIDE TF

Version 6.2.0.109176

EB GUIDE documentation

Page 2 of 173

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

ProOSEK®, tresos®, and street director® are registered trademarks of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2016, Elektrobit Automotive GmbH.

EB GUIDE documentation

Page 3 of 173

Table of Contents
1. About this documentation .. 11

1.1. Target audiences of the user documentation ... 11
1.1.1. System integrators .. 11
1.1.2. Application developers ... 11
1.1.3. Extension developers .. 12

1.2. Structure of user documentation ... 13
1.3. Typography and style conventions .. 13
1.4. Naming conventions ... 16

2. Safe and correct use .. 17
2.1. Intended use ... 17
2.2. Possible misuse ... 17

3. Support .. 18
4. Introduction to EB GUIDE ... 19

4.1. The EB GUIDE product line ... 19
4.2. EB GUIDE Studio .. 19

4.2.1. Modeling HMI behavior ... 19
4.2.2. Modeling HMI appearance ... 20
4.2.3. Handling data ... 20
4.2.4. Exporting the EB GUIDE model ... 20

4.3. EB GUIDE TF ... 20
5. Background information .. 22

5.1. Software module structure of EB GUIDE TF .. 22
5.1.1. The GtfStartup.exe executable file ... 23

5.1.1.1. Command line parameters .. 23
5.1.1.2. Single instance detection on Windows platforms ... 24

5.1.2. The gtfStartup.cfg configuration file .. 25
5.1.2.1. Mapping rule structure .. 25
5.1.2.2. Signals .. 25
5.1.2.3. Actions .. 26
5.1.2.4. Execution order of mapping rules .. 28
5.1.2.5. Example of a gtfStartup.cfg file ... 28

5.2. Dimensions of communication .. 29
5.2.1. Communication with plugins .. 29

5.2.1.1. Message handling .. 29
5.2.1.2. Run level and interface management ... 29

5.2.2. Interaction between HMI and applications ... 33
5.2.2.1. EB GUIDE model ... 33
5.2.2.2. External event system .. 34

5.2.2.2.1. Event receipt ... 34

EB GUIDE documentation

Page 4 of 173

5.2.2.2.2. Event publication ... 34
5.2.2.3. Datapool .. 35

5.2.2.3.1. Internal and external IDs for datapool items ... 35
5.2.2.3.2. Commitment of datapool items ... 36
5.2.2.3.3. Update of datapool items ... 36
5.2.2.3.4. Notifications on value updates for datapool items 36
5.2.2.3.5. Windowed lists .. 37

5.2.3. The main workloop .. 37
5.2.4. Inter-process communication ... 38

5.3. Extensions to the EB GUIDE TF .. 38
5.3.1. Project specific EB GUIDE Script functions ... 38

5.3.1.1. The EB GUIDE Script run-time stack ... 39
5.3.1.2. The foreign function interface .. 39

5.3.2. Customized drawing routine ... 40
5.3.2.1. Renderer .. 40

5.3.2.1.1. Renderers supported in EB GUIDE ... 40
5.3.2.2. Shaders ... 41

5.3.2.2.1. Shading languages .. 41
5.3.2.2.2. Input and output parameters .. 41
5.3.2.2.3. 2D and 3D default shaders .. 41
5.3.2.2.4. Touch shaders ... 42

5.3.2.3. Configuration of touch screen devices ... 42
5.3.2.4. Model element descriptors .. 43

5.3.2.4.1. Property descriptor .. 43
5.3.2.4.2. Property constant descriptor ... 43

5.3.3. Widget set .. 44
5.4. Simulation with EB GUIDE Monitor ... 45

5.4.1. Application script objects ... 45
5.4.1.1. Communication with the EB GUIDE TF .. 47
5.4.1.2. Command line mode .. 48

5.5. Android APK .. 49
5.5.1. System requirements ... 49
5.5.2. Features of the EB GUIDE TF APK ... 49
5.5.3. Description of the EB GUIDE TF APK files ... 49

5.5.3.1. Released APK and custom APK ... 51
5.5.3.2. Restrictions .. 52

5.5.4. Android lifecycle management ... 52
5.5.5. Directory for EB GUIDE models ... 53
5.5.6. Android layout handling ... 53

5.6. Integration ... 53
5.6.1. EB GUIDE TF and C++ exceptions .. 53
5.6.2. EB GUIDE TF and POSIX signals ... 54

EB GUIDE documentation

Page 5 of 173

5.6.3. Linking EB GUIDE TF statically ... 54
5.6.4. Read-only file system support .. 55

5.7. Programming concept .. 55
5.7.1. Observer patterns and callbacks .. 55
5.7.2. Functors ... 56

5.7.2.1. Initialization of functor templates .. 56
5.7.2.2. GtfFunctorX value behavior ... 57
5.7.2.3. Argument binding with functor objects ... 57

6. Configuring profiles ... 58
7. Configuring the system start ... 59

7.1. Configuring the system start for operating systems that support shared object files 59
7.2. Configuring the gtfStartup.cfg file .. 59

8. Starting and connecting EB GUIDE Monitor ... 65
9. Communicating through an EB GUIDE GTF extension ... 67

9.1. Exporting an EB GUIDE model ... 67
9.2. Adjusting the gtfStartup.cfg to load the EB GUIDE GTF extension 68
9.3. Copying the header files of the exported EB GUIDE model .. 68
9.4. Writing an EB GUIDE GTF extension ... 69
9.5. Copying the resulting DLL file .. 70
9.6. Starting the simulation directly with gtfStartup.exe .. 71

10. Extending EB GUIDE Script with foreign functions .. 72
10.1. Tutorial: Writing a basic sum function .. 72

11. Adding widgets and widget features ... 78
11.1. Tutorial: Writing an extended container widget ... 78
11.2. Tutorial: Writing a widget feature for focus behavior of rectangles .. 83
11.3. Adding an EB GUIDE GTF extension to an EB GUIDE model ... 89

12. Using and creating an Android APK for EB GUIDE TF .. 91
12.1. Executing an exported EB GUIDE model on Android ... 91
12.2. Creating your own Android APK using the template ... 92
12.3. Creating your own Android APK from scratch .. 93

13. Evaluating memory usage ... 96
14. Creating a read-only file system (RomFS) container ... 97
15. References ... 99

15.1. Android events ... 99
15.2. Datapool items ... 100
15.3. Data types ... 101

15.3.1. 3D graphic .. 101
15.3.2. Boolean .. 101
15.3.3. Color .. 101
15.3.4. Conditional script ... 102
15.3.5. Float ... 102
15.3.6. Font .. 103

EB GUIDE documentation

Page 6 of 173

15.3.7. Image ... 103
15.3.8. Integer .. 103
15.3.9. List ... 104
15.3.10. String .. 105

15.4. EB GUIDE Script ... 105
15.4.1. EB GUIDE Script keywords .. 105
15.4.2. EB GUIDE Script operator precedence ... 106
15.4.3. EB GUIDE Script standard library ... 107

15.4.3.1. EB GUIDE Script functions A .. 107
15.4.3.1.1. abs ... 107
15.4.3.1.2. absf ... 108
15.4.3.1.3. acosf ... 108
15.4.3.1.4. animation_before ... 108
15.4.3.1.5. animation_beyond ... 108
15.4.3.1.6. animation_cancel ... 109
15.4.3.1.7. animation_cancel_end ... 109
15.4.3.1.8. animation_cancel_reset ... 109
15.4.3.1.9. animation_pause ... 109
15.4.3.1.10. animation_play ... 110
15.4.3.1.11. animation_reverse .. 110
15.4.3.1.12. animation_running ... 110
15.4.3.1.13. animation_set_time ... 110
15.4.3.1.14. asinf ... 111
15.4.3.1.15. atan2f ... 111
15.4.3.1.16. atan2i ... 111
15.4.3.1.17. atanf ... 112

15.4.3.2. EB GUIDE Script functions C - H ... 112
15.4.3.2.1. ceil ... 112
15.4.3.2.2. changeDynamicStateMachinePriority 112
15.4.3.2.3. character2unicode ... 113
15.4.3.2.4. clearAllDynamicStateMachines .. 113
15.4.3.2.5. color2string ... 113
15.4.3.2.6. cosf ... 113
15.4.3.2.7. deg2rad ... 114
15.4.3.2.8. expf ... 114
15.4.3.2.9. float2string ... 114
15.4.3.2.10. floor ... 114
15.4.3.2.11. focusNext .. 115
15.4.3.2.12. focusPrevious ... 115
15.4.3.2.13. formatFloat ... 115
15.4.3.2.14. formatInteger ... 116
15.4.3.2.15. getTextHeight ... 117

EB GUIDE documentation

Page 7 of 173

15.4.3.2.16. getTextLength ... 117
15.4.3.2.17. getTextWidth ... 117
15.4.3.2.18. has_list_window ... 118
15.4.3.2.19. hsba2color ... 118

15.4.3.3. EB GUIDE Script functions I - R .. 118
15.4.3.3.1. int2float ... 118
15.4.3.3.2. int2string ... 119
15.4.3.3.3. isDynamicStateMachineActive .. 119
15.4.3.3.4. language ... 119
15.4.3.3.5. localtime_day ... 119
15.4.3.3.6. localtime_hour ... 120
15.4.3.3.7. localtime_minute ... 120
15.4.3.3.8. localtime_month ... 120
15.4.3.3.9. localtime_second ... 120
15.4.3.3.10. localtime_weekday ... 121
15.4.3.3.11. localtime_year .. 121
15.4.3.3.12. log10f ... 121
15.4.3.3.13. logf ... 121
15.4.3.3.14. nearbyint ... 122
15.4.3.3.15. popDynamicStateMachine .. 122
15.4.3.3.16. powf ... 122
15.4.3.3.17. pushDynamicStateMachine .. 122
15.4.3.3.18. rad2deg ... 123
15.4.3.3.19. rand ... 123
15.4.3.3.20. request_runlevel ... 123
15.4.3.3.21. rgba2color ... 123
15.4.3.3.22. round ... 124

15.4.3.4. EB GUIDE Script functions S - W .. 124
15.4.3.4.1. seed_rand ... 124
15.4.3.4.2. sinf ... 124
15.4.3.4.3. sqrtf ... 125
15.4.3.4.4. string2float ... 125
15.4.3.4.5. string2int ... 125
15.4.3.4.6. string2string ... 126
15.4.3.4.7. substring ... 126
15.4.3.4.8. system_time ... 126
15.4.3.4.9. system_time_ms ... 126
15.4.3.4.10. tanf ... 127
15.4.3.4.11. trace_dp ... 127
15.4.3.4.12. trace_string ... 127
15.4.3.4.13. transformToScreenX ... 127
15.4.3.4.14. transformToScreenY ... 128

EB GUIDE documentation

Page 8 of 173

15.4.3.4.15. transformToWidgetX ... 128
15.4.3.4.16. transformToWidgetY ... 128
15.4.3.4.17. trunc ... 129
15.4.3.4.18. widgetGetChildCount ... 129

15.5. Events ... 129
15.6. Scenes .. 130
15.7. Touch screen types supported by EB GUIDE GTF ... 131
15.8. Widgets ... 132

15.8.1. View ... 132
15.8.2. Basic widgets .. 133

15.8.2.1. Label .. 133
15.8.2.2. Rectangle ... 134
15.8.2.3. Image .. 134
15.8.2.4. Container ... 135
15.8.2.5. Instantiator ... 135

15.8.3. Animations .. 136
15.8.3.1. Animation ... 136
15.8.3.2. Constant curves ... 137
15.8.3.3. Fast start curves ... 137
15.8.3.4. Slow start curves .. 138
15.8.3.5. Quadratic curves .. 138
15.8.3.6. Sinus curves .. 139
15.8.3.7. Script curves .. 139
15.8.3.8. Linear curves .. 140
15.8.3.9. Linear interpolation curves .. 140

15.8.4. 3D widgets .. 141
15.8.4.1. 3D graphic ... 141

15.9. Widget features .. 141
15.9.1. Common ... 141

15.9.1.1. Text truncation .. 141
15.9.1.2. Enabled .. 142
15.9.1.3. Selected ... 142
15.9.1.4. Focused ... 142
15.9.1.5. Touched ... 143
15.9.1.6. Pressed .. 144
15.9.1.7. Child visibility selection ... 144
15.9.1.8. Multiple lines .. 145
15.9.1.9. Selection group .. 145
15.9.1.10. Spinning ... 145

15.9.2. Focus ... 146
15.9.2.1. User-defined focus .. 146
15.9.2.2. Auto focus .. 147

EB GUIDE documentation

Page 9 of 173

15.9.3. Input handling ... 148
15.9.3.1. Move over .. 148
15.9.3.2. Move out .. 148
15.9.3.3. Move in .. 148
15.9.3.4. Touch pressed .. 148
15.9.3.5. Touch released ... 149
15.9.3.6. Touch grab lost ... 149
15.9.3.7. Touch status changed ... 149
15.9.3.8. Touch move .. 149
15.9.3.9. Gesture .. 150
15.9.3.10. Key pressed ... 150
15.9.3.11. Key unicode .. 150
15.9.3.12. Key released .. 150
15.9.3.13. Key status changed .. 151
15.9.3.14. Rotary .. 151
15.9.3.15. Moveable ... 151

15.9.4. Gestures ... 152
15.9.4.1. Hold gesture ... 152
15.9.4.2. Long hold gesture ... 152
15.9.4.3. Flick gesture ... 153
15.9.4.4. Pinch gesture ... 153
15.9.4.5. Rotate gesture .. 154
15.9.4.6. Path gestures ... 155

15.9.4.6.1. Gesture IDs ... 155
15.9.5. Effects .. 156

15.9.5.1. Border .. 156
15.9.5.2. Coloration ... 156

15.9.6. Layout .. 157
15.9.6.1. Absolute layout ... 157
15.9.6.2. Flow layout ... 158
15.9.6.3. Grid layout ... 158
15.9.6.4. Box layout .. 159
15.9.6.5. List layout .. 159
15.9.6.6. Layout margins ... 160
15.9.6.7. Scale mode .. 160

15.9.7. List management ... 161
15.9.7.1. List index ... 161
15.9.7.2. Line index .. 161
15.9.7.3. Template index ... 161
15.9.7.4. View port .. 162

15.9.8. Model ... 162
15.9.8.1. 3D graphic extension .. 162

EB GUIDE documentation

Page 10 of 173

15.9.9. Transformations ... 162
15.9.9.1. Translation ... 163
15.9.9.2. Rotation ... 163
15.9.9.3. Scaling ... 163
15.9.9.4. Shearing .. 164
15.9.9.5. Pivot .. 164

15.9.10. Appearance ... 164
15.9.10.1. Rounded .. 164
15.9.10.2. Fill pattern .. 165
15.9.10.3. Linear fill gradient ... 165
15.9.10.4. Radial fill gradient ... 166

Glossary ... 167
Index .. 170

EB GUIDE documentation
Chapter 1. About this documentation

Page 11 of 173

1. About this documentation

1.1. Target audiences of the user documentation
This chapter informs you about target audiences involved in an EB GUIDE project and the tasks they usually
perform.

You can categorize your tasks and find the documentation relevant to you.

The following roles exist:

► section 1.1.1, “System integrators”

► section 1.1.2, “Application developers”

► section 1.1.3, “Extension developers”

1.1.1. System integrators
System integrators make sure that all the different system parts are integrated into one complete and working
system.

System integrators perform the following tasks:

► Ensure that the different project parts are executed together

► Configure required modules and file system structures

► Integrate customer specific EB GUIDE GTF extensions and HMI applications

► Carry out settings to ensure system integrity within EB GUIDE Studio and on the target device

► Carry responsibility for the project setup in EB GUIDE Studio, for example, create a shared workspace in
projects involving different people working together on one EB GUIDE model

System integrators have the profound knowledge of the following:

► The system, including the target framework used and its restrictions

► The generating mechanism that ensures compatibility of an EB GUIDE model and the target system

1.1.2. Application developers
Application developers write source code for HMI applications, such as a CD player or a radio. Such applications
add distinct functionality to the system, for example control of hardware components.

EB GUIDE documentation
Chapter 1. About this documentation

Page 12 of 173

Application developers perform the following tasks:

► Program additional functionality that is required by the system

► Write code to interface with the EB GUIDE TF, provide application data to the HMI, and provide commu-
nication with the HMI

► Consider the required communication data between the HMI model and its application

► Define datapool items and events

► Determine the flow of data between HMI model and application

► Communicate with modelers to know what data can be provided by hardware devices and how to use the
different EB GUIDE GTF communication mechanisms

Application developers have the profound knowledge of the following:

► C++, to know how to compile for the existing EB GUIDE TF C++ interfaces

► All programming languages used, as applications can be written in any programming language

► The specifications and requirements of the domain

1.1.3. Extension developers

There may be missing features that cannot be provided through simply modeling an EB GUIDE Studio model
or adding customer-specific applications. This is when new widgets or a specific renderer may be required.

Extension developers perform the following tasks:

► Communicate with members of the EB GUIDE development team through chapter 3, “Support“ to find out
if there are already solutions to problems

► Work on the framework and develop new features, EB GUIDE Studio extensions or EB GUIDE GTF ex-
tensions

► Write code for additional modules for the following items:

► Existing EB GUIDE TF modules such as widgets or the shaders

► Existing EB GUIDE Studio extensions such as additional toolbar buttons

Extension developers have the profound knowledge of the following:

► EB GUIDE interfaces

► Interaction between the central modules

► Structure of the framework's data

EB GUIDE documentation
Chapter 1. About this documentation

Page 13 of 173

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables as well as the EB GUIDE Monitor API
documentation.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
Throughout the documentation you will see that words and phrases are displayed in bold or italic font, or in
monospaced font. To find out what these conventions mean, please consult the following table. All default text
is written in Arial Regular font without any markup.

Convention Item is used Example

Arial italics to emphasize If your project’s release version is mixed, all content
types are available. It is thus called mixed version.

Arial boldface for menus and submenus Select the Options menu.

Arial boldface for buttons Select OK.

Arial boldface for keyboard keys Press F2.

Arial boldface for keyboard combination of keys Press Ctrl + Alt + Delete.

EB GUIDE documentation
Chapter 1. About this documentation

Page 14 of 173

Convention Item is used Example

Arial boldface for commands Convert the XDM file to the newer version by using
the legacy convert command.

Monospaced
font (Courier)

for file names, directory names and
chapter names

Put your script in the function_name\abcdirec-
tory.

Monospaced
font (Courier)

for code CC_FILES_TO_BUILD =(PROJECT_-

PATH)\source\network\can_node.-

c CC_FILES_TO_BUILD += $(PROJECT_-

PATH)\source\network\can_config.c

Monospaced
font (Courier)

for function names, methods, or
routines

The cos function finds the cosine of each array ele-
ment. Syntax line example is MLGetVar ML_var_-
name.

Monospaced
font (Courier)

for user input or variable text Enter a three-digit prefix in the menu line.

Square brackets
[]

for optional parameters or for com-
mand syntax with optional parame-
ters

insertBefore [<opt>]

Curly brackets {} for mandatory parameters or for
command syntax with mandatory
parameters

insertBefore {<file>}

Three dots … for further parameters or for com-
mand syntax

insertBefore [<opt>…]

EB GUIDE documentation
Chapter 1. About this documentation

Page 15 of 173

Convention Item is used Example

Warning to warn about danger of death or
severe personal injury

WARNING This is an example for a
warning
This is what a warning looks like.

Caution to warn about danger of slight per-
sonal injury or material damage

CAUTION This is an example for a cau-
tion
This is what a caution looks like.

Notice to give additional but not vital infor-
mation on a subject

NOTE This is an example for a no-
tice
This is what a notice looks like.

Tip to provide helpful hints and tips TIP This is an example for a tip
This is what a tip looks like.

Example to demonstrate or illustrate infor-
mation

Example 1.1.
This is an example

This is what an example looks like.

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

EB GUIDE documentation
Chapter 1. About this documentation

Page 16 of 173

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.2

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH\platform\<platform name>.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.2\platform\win32

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

C:\Users\[user name]\Documents\EB GUIDE 6.2\projects\

EB GUIDE documentation
Chapter 2. Safe and correct use

Page 17 of 173

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by EB to implement human machine interfaces in safety
relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact EB for clarification at chapter 3, “Support“.

EB GUIDE documentation
Chapter 3. Support

Page 18 of 173

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click Help. The version number is located in the lower right corner of
the dialog.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 19 of 173

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE prod-
uct line provides tooling and platform for graphical or speech user interfaces. The EB GUIDE product line is
intended to be used in projects for infotainment head units, cluster instruments and selected industry applica-
tions. Main use cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

The EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. The EB GUIDE TF is available
for development PCs and for different embedded platforms.

The EB GUIDE model that is created with EB GUIDE Studio and the exported EB GUIDE model that is executed
on the EB GUIDE TF are completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior
The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

► State machines

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

► States

States are linked by transitions. Transitions are the connection between states and trigger state changes.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 20 of 173

4.2.2. Modeling HMI appearance
► Widgets

To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that
define the look. They are mainly used to display information, for example text labels or images. Widgets
also allow users to control system behavior, for example buttons or sliders. Multiple widgets are assembled
to a structure, which is called view.

► Spidgets

To create a speech user interface EB GUIDE Studio offers spidgets. Spidgets are used to specify the
fundamental parts of a speech dialog. Speech recognition as user input and speech synthesis as system
output. A prompt spidget allows the modeling of text that is played through a text-to-speech synthesizer
(TTS). A command spidget allows the modeling of grammars that describe what a speech recognizer
understands. Related spidgets are grouped together through model elements. This group is called talk.

4.2.3. Handling data
The communication between the HMI and the application is implemented with the datapool and the event
system.

► Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

► The datapool is an embedded database that holds all data that needs to be displayed and all other internal
information. Datapool items store and exchange data.

Application software can access events and the datapool through the API.

4.2.4. Exporting the EB GUIDE model
To use the EB GUIDE model on the target device, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target device understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
The EB GUIDE TF is a set of libraries, executables, and software tools, which are required to execute an EB
GUIDE model.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 21 of 173

Depending on the project type selected in EB GUIDE Studio you execute:

► EB GUIDE GTF

EB GUIDE Graphics Trarget Framework is the run-time environment executing a graphical HMI.

► EB GUIDE STF

EB GUIDE Speech Target Framework is the run-time environment executing speech functionality in the
HMI.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile the EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE
Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstraction
to the real graphic system on your hardware. The EB GUIDE TF supports various renderers for different
platforms.

► Audio abstraction

The speech user interface requires access to audio hardware. The audio abstraction provides access to
microphones and speakers. EB GUIDE STF implements speech recognition and text-to-speech synthesis.
For this purpose EB GUIDE STF incorporates third-party speech engines.

EB GUIDE documentation
Chapter 5. Background information

Page 22 of 173

5. Background information

5.1. Software module structure of EB GUIDE TF
EB GUIDE TF consists of several software modules. Depending on the customer project some of them are
essential and others are optional. You as a system integrator can add additional EB GUIDE GTF extensions,
for example widget sets which are not part of EB GUIDE TF.

The default delivery of EB GUIDE TF runs on operating systems that support shared object files, for example
Windows 8, Linux or QNX. EB GUIDE TF is divided into the following executable files and libraries to fit most
customer projects out of the box:

► GtfStartup.exe

The executable file which contains platform-specific start-up code and interprets the gtfStartup.cfg config-
uration file. GtfStartup.exe is configurable with parameters.

► GtfCommon

Shared object library which contains

► base classes and an abstraction of the operating system

► memory management

► a trace logging system

► GtfPluginLoader

► GtfCore

Shared object library which contains all mandatory modules for each GUI project based on EB GUIDE
Studio and EB GUIDE TF. Example modules are state machine interpreter, action interpreter, and datapool.

► GtfWidgetSet

Shared object library which uses the Basic Widget Set and is required for EB GUIDE GTF based GUI
projects which are modeled with the Basic Widget Set.

► GtfWidgetSet3D

Shared object library which uses the 3D Widget Set and is required for EB GUIDE GTF based GUI projects
which are modeled with the 3D Widget Set.

► GtfWidgetSetOpenVG

Shared object library which uses the OpenVG Widget Set and is required for EB GUIDE GTF based GUI
projects which are modeled with the OpenVG Widget Set.

EB GUIDE documentation
Chapter 5. Background information

Page 23 of 173

► GtfDisplayManager

Shared object library that is responsible for the connection between a GtfCoreRuntime and a specific
renderer.

► GtfOpenGLRenderer

Shared object library which allows dragging views and widgets using the OpenGL ES 2.0 API.

► GtfDirectXRenderer

Shared object library which allows dragging views and widgets using the DirectX 11 API.

► GtfOpenVGRenderer

Shared object library which allows dragging views and widgets using the OpenVG 1.1 API.

► GtfService

Shared object library which is required to establish TCP connections between EB GUIDE TF and EB
GUIDE Studio or EB GUIDE Monitor.

► GtfIPC

Shared object library which extends GtfService and provides inter-process communication (IPC). Imple-
ments a service running in the HMI process. Counterpart to GtfIPCClient.

► GtfIPCClient

Shared object library which can be used by separate application processes to access the external event
system and the datapool. Counterpart to GtfIPC.

5.1.1. The GtfStartup.exe executable file
The GtfStartup.exe executable file provides platform-specific start-up code and interprets the gtfStartup.cfg
configuration file. Additional functionality is available for specific platforms, for example command line parame-
ter handling or detection of other EB GUIDE TF instances.

5.1.1.1. Command line parameters

If you specify one single command line parameter, it is interpreted as file path of the configuration file. If you
do not provide any command line parameter, the start-up code looks for the file gtfStartup.cfg in the directory
in which the GtfStartup.exe executable file is located.

► <gtfStartupConfigurationFile> or

--startup-cfg <gtfStartupConfigurationFile>:

EB GUIDE documentation
Chapter 5. Background information

Page 24 of 173

Optional parameter. If specified, the file gtfStartupConfigurationFile is loaded and parsed as start-
up configuration. Otherwise, gtfStartup.cfg is used by default.

► --debug: Optional parameter. If specified, the contents of error logs and traces are optimized for debug-
ging without EB GUIDE Studio. Otherwise, everything is optimized for display in EB GUIDE Studio.

► --monitor: Optional parameter. If specified, EB GUIDE TF synchronizes start-up with EB GUIDE Monitor.
The --monitor parameter is intended for internal EB GUIDE use-cases, for example simulation mode
in EB GUIDE Studio.

► --report: Optional parameter. If specified, EB GUIDE TF uses a buffer to avoid missing debug mes-
sages, error logs, and traces at start-up. Losing the connection to the GtfReport service triggers a shut-
down of EB GUIDE TF. The --report parameter is intended for internal EB GUIDE use-cases, for ex-
ample simulation mode in EB GUIDE Studio.

► --romfs <romFileSystemFile>: Optional parameter. If specified, the given ROM file system (RomFS)
is loaded. It is possible to specify multiple RomFS. Configuration files inside RomFS containers are sup-
ported. For example, the path to the gtfStartupConfigurationFile can refer to a file in the RomFS
romFileSystemFile.

► --remotefb: Optional parameter. If specified, EB GUIDE TF waits during start-up until a remote frame-
buffer client connects. The --remotefb parameter is intended for internal EB GUIDE use-cases, for ex-
ample simulation mode in EB GUIDE Studio.

► --version: Optional parameter. If specified, EB GUIDE TF displays the version of the run-time on shut
down. The displayed version matches the version that is shown in EB GUIDE Studio

5.1.1.2. Single instance detection on Windows platforms

The Microsoft Windows concept of named events is used for optional detection of other EB GUIDE TF in-
stances. Single instance detection works as follows.

1. Configure the message GTF_MID_SYSTEM_SINGLE_INSTANCE_CONFIG in the gtfStartup.cfg file to en-
able a named event. See GtfMessageId.h file. for details.

2. The first EB GUIDE TF instance is started using the gtfStartup.cfg file. The configured message enables
the named event. The event checks that no instance is running yet. The instance observes the event.

3. As soon as a second EB GUIDE TF instance is started using the gtfStartup.cfg file, it triggers
the named event. The first EB GUIDE TF instance detects that and sends the message GTF_-
MID_SYSTEM_SECOND_INSTANCE_TRIGGER through the GtfMessenger. GTF_MID_SYSTEM_SE-
COND_INSTANCE_TRIGGER can be observed by an application and used to react to the start of the second
instance, for example by setting the focus to its own window.

4. If the second EB GUIDE TF instance detects that the named event already exists in another instance, it
triggers the event and immediately shuts down the framework.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 25 of 173

5.1.2. The gtfStartup.cfg configuration file

The gtfStartup.cfg configuration file contains rules that describe how to map signals to actions. Signals can be
run level changes, actions can be module loading or sending pre-defined messages file. After evaluating the
command line parameters, the GtfStartup.exe file reads the configuration file.

The configuration file is a line-oriented text file encoded with UTF8. It can be edited with any text editor that
supports UTF8 character encoding. Both DOS line endings and Unix line endings are allowed. One line de-
scribes one mapping rule. Multi-line rules or multiple rules in one line are not supported. It is possible to trigger
multiple actions for one signal by multiple mapping rules for the signal.

TIP Text editors without UTF8 character encoding support
The first 128 ASCII characters (0-127) are compliant with the UTF8 standard. Thus, if the
gtfStartup.cfg file does not contain any characters with Unicode code points above 127, it
is possible to edit the file with text editors without UTF8 character encoding.

5.1.2.1. Mapping rule structure

A mapping rule in EB GUIDE TF consists of one signal and one action. Both signals and actions are made
up of tokens.

Tokens are separated by spaces or tabulators. Everything between a double slash (//) and the end of line
is ignored. Empty lines are ignored. Text within double quotes ("") is parsed as one token even if it includes
spaces, tabulators, or comments. Decimal and hexadecimal number format is supported.

Table 5.1. Escape sequences used to enter special characters

Escape sequence Special character

\n line feed

\r carriage return

\\ \

\" "

\t TAB

5.1.2.2. Signals

The first token of a signal is a keyword which defines the signal type. The token after that is a type specific
parameter.

EB GUIDE documentation
Chapter 5. Background information

Page 26 of 173

Table 5.2. Signals

Keyword Parameter Description

INIT none Loading gtfStartup.cfg is finished.

STARTUP <run level> <run level> (0...0xFFFF) is
reached during start-up.

5.1.2.3. Actions

The first token of an action is a keyword which defines the action type. The tokens after that are type specific
parameters.

Table 5.3. Actions

Keyword First parameter Following parameters Description

MESSAGE <MsgID> message parameters Sends a message with
the <MsgID> (0...-
0xFFFFFFFF) and mes-
sage parameters speci-
fied.

LOAD

(supported by INIT signal
only)

FW_PATH or

MODEL_PATH

<file path> Loads an EB GUIDE GTF
extension file and initial-
izes the included mod-
ules. FW_PATH means a
path relative to the GtfS-
tartup.exe executable file.
MODEL_PATH means a
path relative to the gt-
fStartup.cfg file. For
absolute paths the key
words FW_PATH and
MODEL_PATH lead to the
same result.

LOAD_ALL

(supported by INIT signal
only)

FW_PATH or

MODEL_PATH

<directory path> Loads all EB GUIDE GTF
extension files in the di-
rectory and initializes
the included modules.
FW_PATH means a path
relative to the GtfStart-
up.exe executable file.
MODEL_PATH means

EB GUIDE documentation
Chapter 5. Background information

Page 27 of 173

Keyword First parameter Following parameters Description

a path relative to the
gtfStartup.cfg file. For
absolute paths the key
words FW_PATH and
MODEL_PATH lead to the
same result.

Message parameters consist of a keyword token followed by a value token.

Table 5.4. Message parameters

Keyword Value Description

UINT8 number 8-bit unsigned integer

UINT16 number 16-bit unsigned integer

UINT32 number 32-bit unsigned integer

INT8 number 8-bit signed integer

INT16 number 16-bit signed integer

INT32 number 32-bit signed integer

STRBUF string Pointer to a buffer storing the
string, available until shutdown is
completed

STRING string String

FW_PATH string Same as STRBUF, but the string is
interpreted as a path relative to the
GtfStartup.exe executable file.

MODEL_PATH string Same as STRBUF, but the given
string is interpreted as a path rela-
tive to the gtfStartup.cfg file.

The EB GUIDE TF message system is used for run level and interface management as well as for configuration
of framework modules, for example EB GUIDE TF modules or applications provided by the customer. Message
IDs and parameters of pre-defined messages are documented in the GtfMessageId.h file.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 28 of 173

TIP Working with message IDs
Message IDs are organized in message groups. That means, searching message ID 401
in the GtfMessageId.h file will not lead to any result. Instead, search the following line:

#define GTF_MID_RANGE_GTF_DISPLAY 400

All display-related messages are relative to ID 400. Searching the string GTF_MID_-
RANGE_GTF_DISPLAY will lead to the following entry for message ID 401:

#define GTF_MID_GTF_DISPLAY_CONNECT

 (uint32_t)(GTF_MID_RANGE_GTF_DISPLAY + 1)

NOTE Predefined messages in EB GUIDE TF
Message ID range 0...0xFFFF is reserved for EB GUIDE TF and the EB GUIDE product line.

Message ID range 0x10000...0xFFFFFFFF can be managed by you.

5.1.2.4. Execution order of mapping rules

Mapping rules in EB GUIDE TF are executed in the following order:

1. If the gtfStartup.cfg file has been parsed successfully, the INIT signal is triggered.

2. If EB GUIDE TF has entered the run level during system start-up, the STARTUP signal is triggered.

3. If a signal contains several mapping rules, the rules are executed in the order in which they are defined
in the gtfStartup.cfg file.

4. If EB GUIDE TF has entered the run level during system shutdown, the SHUTDOWN signal is triggered.

5.1.2.5. Example of a gtfStartup.cfg file

The following example is intended to show the syntax of a typical gtfStartup.cfg file. It is not intended to be
copied into your project because, taken out of its context, it will not work.

Example 5.1.
gtfStartup.cfg file

//init - load all modules in the framework path

INIT LOAD_ALL FW_PATH ""

//init - load specific modules relatively to the model directory

INIT LOAD MODEL_PATH "MyExampleA"

INIT LOAD MODEL_PATH "MyExampleB"

// startup - runlevel 499 - configure the example module

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 29 of 173

STARTUP 499 MESSAGE 65536 STRBUF "MyExample/fileA.bin"

// shutdown - runlevel 1 - configure the example module

SHUTDOWN 1 MESSAGE 0x10002 INT32 4711 FW_PATH "MyExample/fileB.bin" STRING "Hi"

5.2. Dimensions of communication

5.2.1. Communication with plugins

5.2.1.1. Message handling

Messages are an asynchronous mechanism for communication between software modules in EB GUIDE TF.
Messages transport up to 255 items of scalar data types, for example integers. List data types are not supported.

The EB GUIDE TF message system never drops any message but delivers all messages in exactly the order
in which they were sent. However, there is no pre-defined order for delivering one message to different sub-
scribers.

A message has a numeric message ID that addresses the subscribers. The message IDs from 0 to 65535
are reserved for internal use within EB GUIDE TF and the EB GUIDE product line. Customer-specific software
modules can use and manage the remaining message ID range.

GtfMessenger is the process-internal message system provided by the GtfPluginLoader. GtfMessenger is
thread-safe and available for all software modules running in EB GUIDE TF. It is mainly used for integration
and management of modules, for example run level and interface management or run-time environment con-
figuration.

5.2.1.2. Run level and interface management

You can influence the start-up and shutdown order of software modules by managing run levels and interfaces.
To manage run levels and interfaces, you use system messages.

For example, a system message does one of the following:

► It publishes the current run level and the direction of the boot process which can be start-up, final, or
shutdown.

► It is used by software modules for the publication of interface objects that the software modules provide
to other software modules.

EB GUIDE documentation
Chapter 5. Background information

Page 30 of 173

A receiver of a run level message can perform specific activities for that run level and returns the next required
run level. Return values that request a run level which is already passed are ignored.

NOTE Available run levels
Only the following run levels are guaranteed to be processed:

► Initial run levels

► Final run levels

► Requested run levels

Processing of additional run level information depends on your implementation.

An interface consists of the following:

► a data set that contains a unique identifier

► a version number

► a pointer to an object that provides the interface

A software module can typecast the object pointer after evaluating the unique identifier and the version number.
In addition, module interfaces provide the information about the lowest valid run level for the interface object.

Basic framework interfaces which are provided by GtfPluginLoader are available at least until gtf_destroy-
Module() is called.

Modules must not publish their interfaces before receiving the first run level message. If the run level falls
below the lowest valid level, multiple or incomplete start-up and shutdown cycles force the software modules
to publish their interfaces again.

NOTE Recommendation
It is recommended for every module to process the lowest valid run level of all used inter-
faces during shutdown.

The following tables show examples for run level and interface management during start-up and shutdown.

Table 5.5. Run level and interface management during start-up

Software module Activity

GtfPluginLoader Loads and initializes modules

Module A Subscribes to system messages

Module B Subscribes to system messages

GtfPluginLoader Sends message GTF_MID_RUN_STARTUP

EB GUIDE documentation
Chapter 5. Background information

Page 31 of 173

Software module Activity

GtfRunlevelManager Publishes start-up at run level 0 to all subscribers

Module A Returns 100, the next required run level

Module B Returns 50, the next required run level

... ...

GtfRunlevelManager Publishes start-up at run level 50

Module A ► Publishes the interface with 100, the lowest valid run level

► Returns the current run level 50 to indicate that it is not interested
in additional start-up steps

Module B Returns 100, the next required run level

Module B Receives the interface of module A

... ...

GtfRunlevelManager Publishes start-up at run level 100

Module A Returns the current run level 100 to indicate that it is not interested in
additional start-up steps

Module B ► Starts using the interface of module A

► Returns 200, the next required run level

... ...

GtfRunlevelManager Publishes start-up at run level 200

Module A Returns the current run level 200 to indicate that it is not interested in
additional start-up steps

Module B Returns the current run level 200 to indicate that it is not interested in
additional start-up steps

... ...

GtfRunlevelManager Publishes final run level 65535 to all subscribers

Module A Returns the current run level 65535

Module B Returns the current run level 65535

... ...

Table 5.6. Run level and interface management during shutdown

Module Activity

Module B Sends message GTF_MID_RUN_SHUTDOWN

GtfRunlevelManager Publishes shutdown at run level 65535 to all subscribers

Module A Returns 99, the next required run level

EB GUIDE documentation
Chapter 5. Background information

Page 32 of 173

Module Activity

Module B Returns 100, the next required run level

... ...

GtfRunlevelManager Publishes shutdown at run level 100

Module A Returns 99, the next required run level

Module B ► Stops using the interface of module A

► Returns the current run level 100 to indicate that it is not interested
in additional shutdown steps

... ...

GtfRunlevelManager Publishes shutdown at run level 99

Module A Returns the current run level 99 to indicate that it is not interested in ad-
ditional shutdown steps

Module B Returns the current run level 99 to indicate that it is not interested in ad-
ditional shutdown steps

... ...

GtfRunlevelManager Publishes final run level 0 to all subscribers

Module A ► Unsubscribes to system messages

► Returns the current run level 0

Module B ► Unsubscribes to system messages

► Returns the current run level 0

... ...

GtfRunlevelManager Triggers the complete system shutdown by sending GTF_MID_-
SYSTEM_EXIT to GtfPluginLoader

GtfPluginLoader Unloads the modules and returns to the caller

Besides the return value during run level handling, a module can use the following messages to control Gt-
fRunlevelManager:

► Trigger a system shutdown by sending a GTF_MID_RUN_SHUTDOWN message.

► Lock the current run level by sending a GTF_MID_RUN_RUNLEVEL_LOCK message. Locking the run level
is useful for pending asynchronous activities during start-up or shutdown.

► Release a locked run level by sending an GTF_MID_RUN_RUNLEVEL_UNLOCK message. Releasing a
locked run level is useful as soon as possible after the pending asynchronous activity finishes.

The current run level is locked while the number of LOCK messages received by GtfRunlevelManager is higher
than the number of UNLOCK messages.

EB GUIDE documentation
Chapter 5. Background information

Page 33 of 173

5.2.2. Interaction between HMI and applications

In most cases, the HMI interacts with at least one project specific application, for example a media player.
Asynchronous communication allows better separation of software modules and helps to reduce mutual timing
impacts.

To establish an asynchronous communication between the generated EB GUIDE model and the dedicated
application you have the following options:

► External event system

► Datapool

TIP Direction of communication
Events are the advised mechanism if the HMI needs to trigger asynchronous application
activities, for example play next track.

Datapool items are the advised mechanism if the application needs to provide information
asynchronously to the HMI, for example title list of a media player.

The external event system and the datapool provide three types of property access methods:

► The first group of methods expects parameters which are container objects, for example string objects.
Such methods are only for internal usage by EB GUIDE TF.

► The second group of methods expects functor callback parameters. These callbacks must provide access
to a stream of plain old data for example strings which are stored as null-terminated byte streams. These
methods are also intended for internal usage by EB GUIDE TF, but you can use them, too.

► The third group of methods expects parameters which are stored as plain old data structures in a buffer,
for example strings which are stored as null-terminated byte arrays. The third group is recommended for
application developers.

5.2.2.1. EB GUIDE model

GtfCoreModel class represents a specific EB GUIDE model at run-time. It is an interface class which provides
access to other associated interfaces for example datapool and external event system.

For more information on how software module interfaces, for example GtfCoreModel, are published at system
start-up, see section 5.1, “Software module structure of EB GUIDE TF”. For more details of class descriptions,
see the .h files in the $GTF_INSTALL_PATH/include/ directory.

EB GUIDE documentation
Chapter 5. Background information

Page 34 of 173

5.2.2.2. External event system

With events it is possible to transport a limited number of scalar values, for example integers. Events are not
intended to transport large data types such as lists. The external event system delivers every event, even if
newer events are available and the receiver has not yet fetched the out-of-date events. The receiver gets the
events in exactly the order in which they were sent.

The interface methods of class GtfExternalEventSystem are described in the GtfExternalEventSystem.h
file.

Class GtfEvent provides methods for event parameter encoding and decoding. The interface methods of
class GtfEvent are described in the GtfEvent.h file.

5.2.2.2.1. Event receipt

The external event system creates a separate event queue for each communication context. Whenever new
events arrive in a previously empty event queue, the external event system invokes the corresponding com-
munication context by calling a registered callback method.

NOTE Ensure asynchronous event processing
It is not allowed to fetch or process events directly in the registered callback method. Event
fetching and processing has to be done asynchronously, even if the whole system runs in
one and the same thread. The callback method must only invoke an asynchronous worker
task.

The following steps show the general procedure of event receipt:

1. To register an invoking callback method at system start-up, use method SetInvoker().

2. To subscribe the communication context to specific events, use method Subscribe() .

3. After a new event has arrived, GtfExternalEventSystem executes the callback method to invoke the
worker task. To fetch and process all events which are currently in the event queue of the communication
context, use method Fetch() within the task.

5.2.2.2.2. Event publication

The following steps show the general procedure of event publication. The interface methods of class GtfEvent
are described in the GtfEvent.h file.

1. Create a local instance of class GtfEvent and provide the external event system, event group ID and
event ID to the constructor method.

../gtf_api/_gtf_external_event_system_8h.html
../gtf_api/_gtf_event_8h.html
../gtf_api/_gtf_event_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 35 of 173

2. To publish the event, use method Publish().

5.2.2.3. Datapool

The datapool provides an asynchronous communication mechanism based on datapool items. Datapool items
can be of scalar, list, or project specific resource types, for example string lists, image lists.

Each datapool item is a communication channel between exactly one writing communication context and one
reading communication context. Each communication context has a private sight on the datapool.

The writing communication context always has an up-to-date view on the datapool item. Updates of multiple
associated datapool items become visible simultaneously in one step. The update prevents the GUI from flick-
ering. The order of datapool item updates and the order of the resulting update notifications can differ.

Datapool items can change in two ways:

► The communication context manipulates the datapool item.

► The communication context updates its sight on the datapool to new datapool item values provided by
other communication contexts.

Committing as well as updating affects all changed datapool items at once.

NOTE Avoid competing datapool access of the same communication context
All datapool API methods that require a communication context ID as parameter are thread
safe. Due to performance issues, avoid competing datapool access of one and the same
communication context.

The interface methods of class GtfDataPool are described in GtfDataPool.h .

5.2.2.3.1. Internal and external IDs for datapool items

Numerical IDs are used to address the datapool item properties Writer ID and Reader ID. If the modeler does
not set a value for the properties, an internal addressing is applied. If you use internal IDs, you minimize the
addressing efforts during every API call. The internal property ID may change whenever the EB GUIDE model
is changed.

Setting a value to the properties Writer ID and Reader ID causes external addressing.

Method GetMappedID() maps external datapool item IDs to the corresponding internal datapool item IDs
at run-time.

../gtf_api/_gtf_data_pool_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 36 of 173

As an application developer, you can force the usage of internal property IDs during API calls. You can force
the usage by manipulating the numerical communication context ID. Use a bitwise OR operation to set the flag
eContextIdFlag_NoMapping defined in GtfTypesDP.h.

5.2.2.3.2. Commitment of datapool items

If one communication context changes the value of a datapool item, the new value is not visible to another
communication context. To provide the new values of a datapool item a writing communication context has to
call method Commit().

The method Commit() affects all datapool items that have been changed by the communication context since
the previous call. A communication context can change multiple values one after another, but commits all of
them at once.

An internal datapool item within HMI does not require committing because the reader and writer communication
context are equal.

5.2.2.3.3. Update of datapool items

To retrieve changed values, a reading communication context has to call method Update(). The method Up-
date() affects all datapool item values which have been manipulated and committed by other communication
contexts since the previous call.

Whenever values change, the datapool invokes the corresponding reader communication context by calling
a registered callback method. But this only happens if method Update() was called at least once since last
invoking. Use method SetInvoker() to register an invoking callback method at system start-up.

NOTE Ensure asynchronous update of datapool item value
It is not allowed to process updates or fetch notifications directly in the registered callback
method. Updates must be processed asynchronously and notifications must be fetched
asynchronously, even if the whole system runs in one and the same thread. The callback
method must only invoke an asynchronous worker task.

5.2.2.3.4. Notifications on value updates for datapool items

Only the reader communication context of a datapool item can retrieve update notifications. Use the method
Fetch() to fetch and process the notifications. The modeler can select a notification policy for datapool items
by setting the property value.

../gtf_api/_gtf_types_d_p_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 37 of 173

NOTE An update notification does not guarantee a changed value
An update notification only indicates that the corresponding datapool item has been written
since method Fetch() was called.

5.2.2.3.5. Windowed lists

The windows of one list are identified by numeric IDs 0...255. There is no predefined number of windows for
one list. The application can change the number of windows at run-time.

Method List_SetLength() sets the virtual length of the windowed list.

Method List_SetWindow() defines the position and size of the windows.

Method List_Clear() sets the virtual list length as well as the position and size of all windows to 0.

Access is possible only if list elements are covered by at least one window. If the window position or window
size is changed, the newly covered list elements are uninitialized until the application writes the list element
value for the first time. Read access fails for all uninitialized list elements.

5.2.3. The main workloop

The GtfPluginLoader gives access to the workloop that is driven by the EB GUIDE TF main thread. There-
fore the interface class GtfMainWorkLoop is provided to all software modules.

The interface methods of class GtfMainWorkLoop are described in GtfMainWorkLoop.h .

section 5.1, “Software module structure of EB GUIDE TF” describes how software module interfaces for ex-
ample GtfMainWorkLoop are published at system start-up.

To schedule task objects for execution, application developers can use the methods PerformTask() and
PerformTaskDelayed().

The interface methods of class Task are described in task.h .

../gtf_api/_gtf_main_work_loop_8h.html
../gtf_api/task_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 38 of 173

NOTE Avoid blocking or delaying tasks
The EB GUIDE TF main thread first processes the method Execute() and afterwards
the method Dispose(). A blocking or delaying task will impede the thread and all other
scheduled tasks. If such a task is defined to run in the main thread, it could, for example,
delay or block HMI event processing.

5.2.4. Inter-process communication

The most common way to integrate an application into the HMI is to develop an EB GUIDE GTF extension.
An EB GUIDE GTF extension can receive C++ interface objects that give direct access to the external event
system and the datapool of the HMI.

But in some use cases it may be required to run an application in a separate process. Unlike an EB GUIDE
GTF extension, such an application cannot receive C++ interfaces. In this case, an interaction between HMI
and application processes requires inter-process communication (IPC).

EB GUIDE GTF includes optional libraries that provide a high level C++ interface for inter-process communica-
tion. The library GtfIPC implements a service running in the HMI process. The counterpart is GtfIPCClient,
a library used in separate application processes to communicate with the HMI process.

5.3. Extensions to the EB GUIDE TF

5.3.1. Project specific EB GUIDE Script functions

You can extend EB GUIDE Script by supplying functions written in C++. Such functions are called foreign
functions and can be used in EB GUIDE Script to implement synchronous calls from the HMI to the application.
A modeler can then use foreign functions in EB GUIDE Script programs. The typical use of foreign functions
is to make features of some library written in C/C++ available to EB GUIDE Script programs. For example it
is possible to use foreign functions to make C++ math library functions such as sinus or square root available
to EB GUIDE Script programs.

EB GUIDE documentation
Chapter 5. Background information

Page 39 of 173

TIP EB GUIDE Script functions are not recommended for communication between
HMI and application
The HMI thread is blocked until the called function returns. This may have massive impact
on the timing of HMI activities. Therefore, keep the execution time of these functions as
short as possible.

5.3.1.1. The EB GUIDE Script run-time stack

EB GUIDE Script uses a stack for the parameter and return values of a foreign function.

The stack plays a vital role in the execution of EB GUIDE Script programs. If there are too many or too few
arguments for an instruction on the stack, the execution of the program is in an undefined state.

5.3.1.2. The foreign function interface

In order for the EB GUIDE Script compiler to generate calls to your foreign function, you provide information
about your foreign function:

► The name of your function: what it is called in EB GUIDE Script programs.

► The number and types of the parameters of your function.

► The type of the return value of your function.

Parameters are passed via stack in a defined order. The first parameter of your function is at the very bottom of
the stack, and the last parameter of your function is on top of the stack. The function has to pop its arguments
in reverse order.

The foreign function calls all parameters which are defined in the function signature. The foreign function has
to push the result value which is defined in the function signature, even if there are errors during the execution
of the foreign function.

EB GUIDE documentation
Chapter 5. Background information

Page 40 of 173

NOTE The function has to preserve the integrity of the stack
You tell the compiler which parameters the function expects, and which return value it gen-
erates. The function has to behave according to that information. Take all parameters from
the stack, and push a return value to the stack.

5.3.2. Customized drawing routine

5.3.2.1. Renderer

A renderer is responsible for drawing scenes on the EB GUIDE GTF. Beside drawing, the renderer is respon-
sible for touch input and object picking. The reason why the renderer performs object picking is that only the
renderer knows at which position on the screen widgets appear.

A renderer uses one of the following APIs:

► OpenGL ES 2.0

► DirectX 11

The OpenGL ES 2.0 and DirectX 11 renderers use pairs of fragment and vertex shaders to draw objects. These
shader pairs are little programs on the graphics processing unit that are executed during rendering.

5.3.2.1.1. Renderers supported in EB GUIDE

The following renderers are available with EB GUIDE:

► The OpenGL ES 2.0 renderer is capable of rendering 2D and 3D widgets and achieves best results for 24-
bit images. It needs a graphics processing unit that supports OpenGL ES 2.0. The OpenGL ES 2.0 renderer
utilizes a dedicated hardware unit for rendering. With the OpenGL ES 2.0 renderer, it is recommended to
optimize image resource files, for example using tools like 'Optipng'.

► The DirectX 11 renderer is capable of rendering 2D and 3D widgets. It needs an operating system that
supports DirectX 11. It utilizes a dedicated hardware unit for rendering.

► The OpenVG 1.1 renderer is capable of rendering 2D widgets and vector graphics and achieves best re-
sults for 32-bit images. The OpenVG 1.1 renderer needs a graphics processing unit that supports OpenVG
1.1. It utilizes a dedicated hardware unit for rendering. With the OpenVG 1.1 renderer, it is recommended
to optimize image resource files.

EB GUIDE documentation
Chapter 5. Background information

Page 41 of 173

5.3.2.2. Shaders

Shaders affect the final look of objects. Different shader pairs are needed to render different kinds of objects.
For example, an image widget requires a shader pair that supports textured objects, while a rectangle widget
requires a shader pair that does not use any texture.

5.3.2.2.1. Shading languages

Shading languages are used to program the GPU rendering pipeline.

The following shading languages are supported by the renderers:

► OpenGL ES 2.0 uses OpenGL ES Shading Language (GLSL).

► DirectX 11 uses High Level Shading Language (HLSL)

5.3.2.2.2. Input and output parameters

In GLSL and HLSL, shaders use different kinds of input and output parameters. The following parameters exist:

► Uniforms (constant buffers in HLSL):

Input parameters that are constant for the whole drawing call

► Attributes:

Input parameters that are constant for one vertex

► Varyings:

Output parameters of vertex shaders and input parameters of fragment shaders. Varyings are data that is
computed in vertex shaders and transferred from vertex shader to fragment shader for each vertex.

To make custom shaders capable of drawing widgets, custom shaders have to provide default input parameters.

5.3.2.2.3. 2D and 3D default shaders

An HLSL (*.fx) shader consists of both vertex and fragment shaders. However, the vertex shader has to reside
in a function named VS and the fragment shader has to reside in a function named PS. PS (Pixel Shader) is the
name of the fragment shader in DirectX 11. The parameters of both the 2D and 3D default shaders are listed
in the files located in the $GUIDE_INSTALL_PATH\platform\...\shaders directory.

EB GUIDE documentation
Chapter 5. Background information

Page 42 of 173

5.3.2.2.4. Touch shaders

Touch shaders are responsible for touch evaluation. Correct functionality is assured if the vertex shader trans-
forms the vertices the same way as the non-touch variant does. The fragment shader that is used for touch
input sets the resulting color to a_color for all fragments the user may successfully touch. Set all other frag-
ments to complete transparency.

5.3.2.3. Configuration of touch screen devices

Depending on the target device, it is necessary to configure the touch screen device so that EB GUIDE TF
can use it.

For the following platforms no touch screen configuration is necessary, because EB GUIDE TF relies on the
environment to configure the touch screen.

► Windows PC

► Linux X11

For other platforms, you configure touch screens in the gtfStartup.cfg file. The corresponding entry has
the following form:

STARTUP 0 MESSAGE 550

UINT32 touchScreenType

UINT32 sceneId

STRBUF devicePath

UINT32 touchDeviceId

UINT32 outputWidth

UINT32 outputHeight

UINT32 Xright

UINT32 Xleft

UINT32 Ybottom

UINT32 Ytop

The touchScreenType value specifies the type of the touch screen device and is an indication of whether
multitouch input is supported. For a list of supported values see section 15.7, “Touch screen types supported
by EB GUIDE GTF”.

The sceneId value links the touch screen to a given scene: input events of the device are dispatched into the
scene with the given identifier.

The devicePath value specifies which physical device is accessed. The format of this name depends on the
platform.

The remaining parameters are used to transform the raw device coordinates into the coordinates used by EB
GUIDE TF. Their values must be determined during touch screen calibration.

EB GUIDE documentation
Chapter 5. Background information

Page 43 of 173

5.3.2.4. Model element descriptors

In EB GUIDE Studio it is possible to add model elements. Each model element needs a descriptor that is
added to the EB GUIDE TF. The EB GUIDE TF cares about registering the additional model elements within
EB GUIDE Studio. The descriptor is also known as meta information of a model element.

A component that provides such descriptors to the EB GUIDE TF is called descriptor provider. The interface
methods of class DescriptorProvider are described in the DescriptorProvider.h file.

The following descriptors can be added:

► Widget descriptor

A widget descriptor stores all information for a single widget definition. The descriptor is used to instantiate
a default widget template within EB GUIDE Studio.

The interface methods of class WidgetDescriptor are described in the WidgetDescriptor.h file.

► Widget feature descriptor

A widget feature descriptor stores all information for a single widget feature definition. The descriptor is
used to instantiate a widget feature within EB GUIDE Studio.

The interface methods of class WidgetFeatureDescriptor are described in the WidgetFeature-
Descriptor.h file.

► Action descriptor for functions in EB GUIDE Script

An action descriptor is used to define functions in EB GUIDE Script.

The interface methods of class ActionDescriptor are described in the ActionDescriptor.h file.

To add the descriptors above, you use a property descriptor. The components catch the published property
descriptor and use its information. For example, view factories use widget and widget feature information for
the creation of every widget tree which is displayed.

5.3.2.4.1. Property descriptor

A property descriptor stores all information for a widget property. It is also used to describe the parameters
within EB GUIDE Script functions.

The interface methods of class PropertyDescriptor are described in the PropertyDescriptor.h file.

5.3.2.4.2. Property constant descriptor

A property constant descriptor defines a name for a concrete property value. The constants are used as enu-
merations within EB GUIDE Studio.

../gtf_api/_descriptor_provider_8h.html
../gtf_api/_widget_descriptor_8h.html
../gtf_api/_widget_feature_descriptor_8h.html
../gtf_api/_widget_feature_descriptor_8h.html
../gtf_api/_action_descriptor_8h.html
../gtf_api/_property_descriptor_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 44 of 173

For example, the integer property alignment can have the constants left, center, or right, where. And left
stands for the value 1, center stands for the value 0 and right stands for the value 2.

The interface methods of class PropertyConstantDescriptor are described in the PropertyDescriptor.h
file.

5.3.3. Widget set
The widget tree is composed of a generic class called GtfWidgetModel, which is implemented with Gtf-
PropertyContainer. GtfPropertyContainer wraps an array of properties and a type ID.

Figure 5.1. Classes that form the generic widget tree

Type IDs are assigned during the export of the EB GUIDE model. The type ID numbering scheme allows the
framework components to perform type checks in the widget tree in constant time – with a simple range check.

The renderer scans the type ID information of widgets and properties.

The GtfWidgetModel adds the following:

► An array of child widgets

► A parent pointer

► Optional: A pointer to the widget instance

► An array of widget features

► A pointer to cached renderer data to the GtfPropertyContainer

../gtf_api/_property_descriptor_8h.html

EB GUIDE documentation
Chapter 5. Background information

Page 45 of 173

5.4. Simulation with EB GUIDE Monitor
When simulating the EB GUIDE model, the tool EB GUIDE Monitor observes and controls a running EB GUIDE
model. EB GUIDE Monitor includes mechanisms for communication with the datapool, the event system, and
the state machines of a running and connected EB GUIDE model.

5.4.1. Application script objects
EB GUIDE Monitor uses the Mozilla JavaScript engine Rhino which is included in the Oracle JDKs. For more
information on using JavaScript and Rhino see http://www.mozilla.org/rhino/.

To simplify scripting, all methods related to EB GUIDE TF are available through the following objects that are
globally accessible to every JavaScript.

► Datapool

► Reads and writes datapool items

► Looks up IDs by name and names by ID

► Executes functions such as commit() or switchLanguage()

► Events

► Fires events

► Looks up IDs by name and names by ID

► Registers events and reacts or runs on command

► StateMachine

► Jumps to a state

► Looks up IDs by name and names by ID

► Listens to state changes and executes reactions

► Test

► Tests expressions

► Compares values

► Modifies the exit code when EB GUIDE Monitor is executed in bash shell mode

Example 5.2.
Datapool interaction with JavaScript

importPackage(java.lang);

importPackage(com.elektrobit.gtf.monitor.types.values);

http://www.mozilla.org/rhino/

EB GUIDE documentation
Chapter 5. Background information

Page 46 of 173

var ctx_hmi = Datapool.getContextID("hmi");

var ctx = Datapool.getContextID("pdal1");

var artist = Datapool.getID("artist");

var album = Datapool.getID("album");

var tracklist = Datapool.getID("tracklist");

var currentTrack = Datapool.getID("currentTrack");

var statusLine = Datapool.getID("statusLine");

var userList = Datapool.getID("userList");

var currentTime = Datapool.getID("currentTime");

var tracks =

[

 "Damage, Inc",

 "The Thing That Should Not Be",

 "Welcome Home (Sanitarium)",

 "Battery",

 "Master Of Puppets",

 "Disposeable Heroes",

 "Lepper Messiah",

 "Orion"

];

// write values to properties that have the context "pdal1" as a writer context

Datapool.writeValue(ctx, artist, "Metallica");

Datapool.writeValue(ctx, album, "Master of Puppets");

Datapool.clearList(ctx, tracklist);

for(var i = 0; i < tracks.length; ++i)

{

 Datapool.appendListItem(ctx, tracklist, tracks[i]);

}

var ref = new DPListReferenceConst(new DPReference(tracklist), new Uint32(0));

Datapool.writeValue(ctx, currentTrack, ref);

// read values from properties that have "pdal1" as a reader context

var currentTime = Datapool.readValue("pdal1", "currentTime");

var currentUserId = Datapool.readValue("pdal1", "currentUserId");

var currentUserName = Datapool.readListItem("pdal1", "userList", currentUserId);

Datapool.writeValue(ctx, statusLine, currentUserName + " " + currentTime);

Datapool.commit(ctx);

EB GUIDE documentation
Chapter 5. Background information

Page 47 of 173

Example 5.3.
Sending and receiving events with JavaScript

importPackage(java.lang);

importPackage(com.elektrobit.gtf.monitor.types.values);

importPackage(com.elektrobit.gtf.monitor.event.remote);

listenerImpl = {

 eventOccurred: function(e) {

 // 'e' is of type com.elektrobit.gtf.monitor.event.remote.GtfEvent.

 // See the Javadoc of this class for more detailed information on

 // how to retrieve information from the event object.

 println("Received event: "

 + e.getGroupId() + " , "

 + e.getMessageId() + ") ");

 var params = e.getParameters();

 for(i = 0; i < params.size(); ++i) {

 param = params.get(i);

 println("Parameter " + param.getName() + ": " + param.getValue());

 }

 },

 // the equals function is important for automatic listener deregistration

 equals: function(other) {

 return true;

 }

}

Events.addListener(new GtfEventListener(listenerImpl));

Events.send("someEvent");

// Fire the event with the name 'someOtherEvent' and one integer parameter

Events.send("someOtherEvent", [new Int32(5)]);

Thread.sleep(1000);

5.4.1.1. Communication with the EB GUIDE TF

EB GUIDE Monitor communicates with a running EB GUIDE TF instance through a TCP/IP connection. The
connection is implemented in the TCP plugin for EB GUIDE Monitor and in the GtfService module for the target
framework. The TCP/IP connection is split into several virtual channels. Each channel is used by a different
interface in the EB GUIDE Monitor application.

EB GUIDE documentation
Chapter 5. Background information

Page 48 of 173

5.4.1.2. Command line mode

It is possible to execute EB GUIDE Monitor in command line mode. When run in command line mode no pop-
up window opens up. In command line mode, EB GUIDE Monitor starts, loads its plugins, executes actions
specified in the command line, and exits the program.

EB GUIDE Monitor supports the following set of command line options to control the behavior of the application
from the command line.

-consoleMode
starts EB GUIDE Monitor in command line mode.

-model <path to monitor.cfg>
loads the EB GUIDE Monitor configuration from the specified file.

-userSettings <file name>
stores EB GUIDE Monitor user settings and allows loading them. The name is specified without file name
extension. If you do not specify it, the default value is monitor and thus creates file monitor.xml.

-plugin <plugin class name>
enables the specified plugin on start-up. Uses the full name of the plugin class.

-connect
requires an enabled TCP plugin. If a connection configuration is available, it automatically connects to the
EB GUIDE TF process on start-up.

-tcp <host>:<post>
requires an enabled TCP plugin. Creates a TCP connection configuration based on the specified host and
port.

-script <file name>
requires an enabled scripting plugin. Executes the script file with the file name specified.

Example 5.4.
Command line

The following command line loads a configuration file, enables the TCP and scripting plugins, connects
to the target, and executes a script.

monitor.bat -consoleMode

 -model C:\MyModel\monitor.cfg

 -plugin com.elektrobit.gtf.monitor.tcp.TCPPlugin

 -plugin com.elektrobit.gtf.monitor.scripting.ScriptingPlugin

 -connect -tcp localhost:5456

 -script C:\MyModel\testcase.js

EB GUIDE documentation
Chapter 5. Background information

Page 49 of 173

5.5. Android APK
The Android application package (APK) file format is used to distribute and install applications and other mid-
dleware on Android devices.

5.5.1. System requirements

The Android APK version that is currently released for EB GUIDE TF is designed to run on a wide range of
Android devices.

Table 5.7. Minimal requirements

Architecture ARMv7

Platform EB GUIDE TF: Android 4.3 (API Level 18)

5.5.2. Features of the EB GUIDE TF APK
Table 5.8. Features of the EB GUIDE TF APK

Feature Description

Lifecycle management EB GUIDE TF supports Android lifecycle management.

Multi-touch support EB GUIDE TF supports up to ten fingers for multi-touch. The number of
supported fingers may be limited by the Android device.

Key handling EB GUIDE TF processes 16-bit UTF key mapping codes.

Interaction with the Java API EB GUIDE TF can be started and controlled by the Android activity. Ex-
ample code and a template implementation are provided by the appli-
cation. A native activity is not necessary.

Android layout handling The exported EB GUIDE model is informed through events if the layout
of the visible screen area changes. That way you can handle a virtual
keyboard or changes in rotation.

TTS engine EB GUIDE Speech Extension only: Nuance Vocalizer Expressive and
Android TTS (e.g. Google TTS) are supported.

TTS engine is set to Nuance Vocalizer by default.

5.5.3. Description of the EB GUIDE TF APK files

EB GUIDE documentation
Chapter 5. Background information

Page 50 of 173

► EB GUIDE Launcher.apk

The EB GUIDE Launcher starts EB GUIDE TF and displays the exported EB GUIDE model.

If you start the EB GUIDE Launcher it displays the exported EB GUIDE model that was selected last by
EB GUIDE Model Chooser.

► EB GUIDE Model Chooser.apk

The EB GUIDE Model Chooser provides a user interface to select an exported EB GUIDE model that is
executed on the Android device. The EB GUIDE Model Chooser also has the possibility to enable features
for exported EB GUIDE models with a speech user interface, for example to select a TTS engine.

By selecting an exported EB GUIDE model, the EB GUIDE Launcher is started with the corresponding
model.

Clicking the Info button displays the directory where exported EB GUIDE models are stored for the EB
GUIDE Model Chooser, and a list with device-related details. For information about the location of the
exported EB GUIDE models in the file system, see section 5.5.5, “Directory for EB GUIDE models”.

EB GUIDE documentation
Chapter 5. Background information

Page 51 of 173

Figure 5.2. EB GUIDE Model Chooser

► EB GUIDE Speech Extension.apk

The EB GUIDE Speech Extension APK is an optional APK that integrates automatic speech recognition
with Nuance VoCon and speech synthesis with Nuance Vocalizer Expressive. It is not necessary to man-
ually execute the EB GUIDE Speech Extension.apk, installing it is sufficient.

Alternatively, you can use other TTS engines that are installed on the target device. Ensure that all re-
quired languages are installed on your device. TTS engines that implement android.speech.tts.-
TextToSpeech are also available.

5.5.3.1. Released APK and custom APK

EB GUIDE TF is delivered and installed as an APK. Use either a pre-built released APK of a released version
or create a custom version based on the delivered Android binaries and the APK template in the SDK.

The following lists help you to decide whether or not you need a custom APK.

EB GUIDE documentation
Chapter 5. Background information

Page 52 of 173

If the following applies to your project, use the released APK:

► It contains EB GUIDE functionality or feature demonstrations with no further extensions.

► It contains project-specific extensions, for example EB GUIDE GTF extensions, to be added to the exported
EB GUIDE model.

► Standard access rights are sufficient. The standard access rights are read or write to the external storage of
the device, network access android.permission.INTERNET, record audio, and modify audio settings.

If the following applies to your project, use the delivered APK template:

► You need additional access rights that are not granted by the released APK version, for example CALL_-
PHONE.

► You require a customer-specific APK, for example a customer signature for APK verification or icons.

► You use Android framework features that are not accessible in the stable API of the native development
kit (NDK). The NDK contains only a small subset of features and functionality which you can use with the
Java API.

► You need additional Android application functionalities that require modifications to Java-related code
pieces, for example activities, services, skins, intents, or compositing.

5.5.3.2. Restrictions

The Android APK that is currently released for EB GUIDE TF has the following restrictions:

► The exported EB GUIDE model is informed about rotation changes and layout changes, for example an
incoming virtual keyboard on the display. It is the responsibility of the exported EB GUIDE model to handle
these events.

► Speech synthesis has been tested with Nuance Vocalizer Expressive and Google TTS. For other engines,
the mapping of locales that are used to identify languages may be missing. Refer to chapter 3, “Support“
for further information about supported engines.

► If the system uses Android layout handling, the Android flag SOFT_INPUT_ADJUST_NOTHING must not
be set in the configuration of the Android activity.

5.5.4. Android lifecycle management

The Android lifecycle management is an optimization implemented by the Android operating system. If an ap-
plication moves to the background, Android releases all graphics resources and makes the resources avaiable
for the application that moves to the foreground. An application is responsible for recreating the resources
when it moves to the foreground.

EB GUIDE documentation
Chapter 5. Background information

Page 53 of 173

5.5.5. Directory for EB GUIDE models
EB GUIDE models are stored in the com.elektrobit.guide_model_chooser/files directory that is
located on the primary external storage directory. Application-related files are stored there permanently. One
directory is required per EB GUIDE model.

The EB GUIDE Model Chooser searches only in the primary external storage directory. Usually Android devices
have their primary external storage on a portion of the internal storage. Make sure you copy the files to the
correct place.

Examples for primary external storage directory:

► For a Samsung Galaxy S3 device with Android 4.3 that is connected to a PC with Windows 7, the di-
rectory is Computer\GT-I9300\Phone\Android\data\com.elektrobit.guide_model_choos-
er\files.

► For a Nexus 7 device with Android 4.4 that is connected to a PC with Windows 7, the directory is Com-
puter\Nexus 7\Internal storage\Android\data\com.elektrobit.guide_model_choos-

er\files.

On start-up or refresh, EB GUIDE Model Chooser recursively scans the directory for the EB GUIDE TF con-
figuration file gtfStartup.cfg. The parent directory for each start-up configuration is displayed as the EB
GUIDE model name.

5.5.6. Android layout handling
Android is designed for mobile devices. On a mobile device, some characteristics concerning the layout of the
visible screen area need to be considered.

EB GUIDE supports the developer by providing events that indicate layout changes in the visible screen area.

Example 5.5.
Examples for layout handling

► When a mobile device is rotated, the GUI has to adapt according to the rotation.

► When a virtual keyboard is displayed on the screen, the GUI has to adapt to the new element.

5.6. Integration

5.6.1. EB GUIDE TF and C++ exceptions

EB GUIDE documentation
Chapter 5. Background information

Page 54 of 173

EB GUIDE TF is designed and built without support for C++ exceptions.

If your own C++ code uses exceptions it is your responsibility to ensure that your code is combined with EB
GUIDE TF and its libraries in a way that is safe for your system. Not following this rule can lead to crashes
for which the root cause is difficult to find.

If your system includes C++ standard libraries, only libraries containing C++ code without exceptions are al-
lowed to be loaded or linked into the EB GUIDE TF process. Make sure that the full dependency of all libraries
is adhered to.

For example, on QNX systems you are not allowed to load libraries that link against the libcpp.so library into
the EB GUIDE TF process, because the EB GUIDE TF process uses libraries that link against the libcpp-
ne.so library. libcpp.so is a C++ standard library with exceptions, whereas libcpp-ne.so is a C++ stan-
dard library without exception.

5.6.2. EB GUIDE TF and POSIX signals
POSIX signals may interrupt system calls. EB GUIDE TF does not support error handling for interrupted system
calls on POSIX platforms.

EB GUIDE TF does not use POSIX signals, but user applications possibly do. Therefore the following POSIX
signals are blocked in all EB GUIDE TF threads:

► SIGALRM

► SIGCHLD

► SIGUSR1

► SIGUSR2

WARNING POSIX signals
If EB GUIDE TF threads or user applications do not block POSIX signals while calling EB
GUIDE TF API methods, POSIX signals lead to undefined EB GUIDE TF behavior.

5.6.3. Linking EB GUIDE TF statically
By default EB GUIDE TF is provided with the GtfStartup.exe executable file and shared object libraries for
any dedicated platform. For details see section 5.1, “Software module structure of EB GUIDE TF”.

However, some systems do not support shared objects but require linking all software modules statically. EB
GUIDE TF can be configured as a set of static libraries for these kinds of systems.

If you intend to use a static system, contact the EB GUIDE support, see chapter 3, “Support“.

EB GUIDE documentation
Chapter 5. Background information

Page 55 of 173

5.6.4. Read-only file system support
A read-only file system (RomFS) is a block-based file system. Its organization structure has less overhead than
regular file systems because it has read-only access and omits access right management.

A RomFS has the purpose of overlaying the file system that is provided by an operating system (OS), for
example to speed the system up.

A RomFS can also be used to run EB GUIDE TF on embedded systems without OS file system support.

EB GUIDE TF RomFS support is completely implemented in user space and does not depend on any way
of the underlying OS.

EB GUIDE TF RomFS support is used as a layer between the following:

1. Interface provided by GtfFile and GtfPath

2. File system abstractions provided by the underlying OS

With a RomFS container, you are able to overlay a file system with your own container. The access to these
overlay containers is completely transparent, thus you do not have to change any EB GUIDE TF modules that
use the GtfFile and GtfPath interface.

NOTE Use the RomFS container
The RomFS container is the preferred container format although GtfOSAL overlay file sys-
tem support is designed to allow other container implementations, too. You may use other
container implementations for example to evaluate different designs.

To create a RomFS container, refer to chapter 14, “Creating a read-only file system (RomFS) container“.

5.7. Programming concept

5.7.1. Observer patterns and callbacks
To track the value of widget properties or to observe other model elements of the EB GUIDE model, EB GUIDE
TF uses the observer pattern. There are implementations of the observer pattern with an observer interface
class and respective registration methods, for example the GtfStateMachineObserver. Widget properties
are observed using the functor template GtfFunctorX as shown in the following example:

pWidget->subscribe(pContext, propertyIndex, this,

 gtf_bind(&MyComp::propertyChanged, this, pWidget, propertyIndex)

);

EB GUIDE documentation
Chapter 5. Background information

Page 56 of 173

In the example the method propertyChanged is called, whenever the property at index propertyIndex
changes. section 5.7.2, “Functors” explains the usage and behavior of GtfFunctorX.

5.7.2. Functors
A functor is a data type that stores a function or method invocation and provides an interface to call the en-
capsulated function or method like an ordinary function. In EB GUIDE TF a set of functor type templates and
utility routines are provided to assemble function invocations. The GtfFunctorX templates are used to store
callbacks.

The signature of the function call is encoded in the functor template. There is a separate functor template type
for every possible number of parameters. In the documentation the number of parameters is denoted as a suffix
X. The first template parameter of GtfFunctorX describes the type of the return value. All further template
parameters define the expected parameter types of the call.

5.7.2.1. Initialization of functor templates

The functor type templates provides the following basic constructors:

GtfFunctorX<R,Params>();

The default constructor creates an empty functor object. It is safe to call an empty functor object. Empty
functors can be tested using the negation operator.

GtfFunctorX<R,Params>(R (*)(Params))

This constructor expects a pointer to a global function or static class method as parameter. The passed
function is then called by the function call operator.

GtfFunctorX<R,Params>(R (Class::*)(Params), Class*)

If you want to set a non-static method, you require an additional object pointer, for example as in the
following code: GtfFunctor0<void> example(&SomeObject::doIt, pSomeObject);. There is
also a variant of this constructor, which expects a pointer to a constant object and a method pointer of a
constant method.

GtfFunctorX<R,Params>(F const&)

This is the catch-all constructor template, for assigning compatible and callable functor types. In the previ-
ous constructors the signature required an exact match of each element of the signature. This constructor
also works for compatible functor types, for example if an GtfFunctor2<int,float,float> is initial-
ized with a GtfFunctor2<int,double,double>. These two functor types are different but compati-
ble, because a method that expects double parameters can be called with float parameters. The only
requirement for the constructor parameter F is that its function call operator can be called using implicit
conversion of the parameters denoted as Params.

EB GUIDE documentation
Chapter 5. Background information

Page 57 of 173

A functor can also be initialized using the utility routines gtf_bind. The gtf_bind functions assemble a
GtfFunctorX instance of the parameters given. The function is available in the following versions, which
resemble the constructors of GtfFunctorX:

GtfFunctorX<R,Params> gtf_bind(R (*)(Params));

GtfFunctorX<R,Params> gtf_bind(R (Class::*)(Params), Class *);

GtfFunctorX<R,Params> gtf_bind(R (Class::*)(Params)const, Class const *);

The syntax with gtf_bind is usually simpler and less verbose compared to the GtfFunctorX constructors.
This is due to the template type deduction of the C++ compiler that allows omitting the template parameters.

5.7.2.2. GtfFunctorX value behavior

GtfFunctorX objects partially mimic the behavior of primitive values. They are put onto the stack and as-
signed. When assigned, the content of the GtfFunctorX on the right is duplicated.

GtfFunctorX objects cannot be compared. A comparison yields compile errors.

To make sure that a functor is configured during run-time, you can use it inside a boolean expression since it
yields true when initialized. Calling an uninitialized functor is not harmful because an empty fall-back function
is always available and is executed.

5.7.2.3. Argument binding with functor objects

When the signature of a method does not match the expected or required signature of the functor, it is possible
to use the extended syntax of gtf_bind. The syntax allows you to attach values to the method call or reorder
parameters in the method call.

When you attach values, the values are stored within the functor object - similar to the object pointer, which is
stored inside the GtfFunctorX when the constructor is called with a method.

To refer to the arguments of the functor, call the placeholders objects _1, _2, ... _9 which have to be passed
to the call of gtf_bind. The placeholder _1 refers to the first parameter, _2 to the second ...

NOTE Possible dynamic memory usage with gtf_bind and placeholders
A functor object created with gtf_bind requires dynamic memory if the extended version
of gtf_bind with placeholder functionality is used. gtf_bind copies all parameters into
the functor object. The internal storage of GtfFunctorX is limited. The GtfFunctorX
allocates heap memory if the storage is too small.

EB GUIDE documentation
Chapter 6. Configuring profiles

Page 58 of 173

6. Configuring profiles
EB GUIDE Studio offers the possibility to create different profiles for an EB GUIDE model. Profiles write the
EB GUIDE TF start-up configuration file gtfStartup.cfg.

You use profiles to do the following:

► Send messages

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

For details see Configuring profiles in the EB GUIDE Studio documentation.

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 59 of 173

7. Configuring the system start

7.1. Configuring the system start for operating
systems that support shared object files

Configuring the system start for operating systems that support shared object files

Step 1
Adjust the gtfStartup.cfg file for your project. For instructions see section 7.2, “Configuring the gtfStartup.cfg
file”.

Step 2
Export your EB GUIDE model.

Step 3
Copy the following files to the target device:

► The EB GUIDE GTF version for your platform. This includes the executable file and all EB GUIDE GTF
extension files that are required by your gtfStartup.cfg configuration.

► Your adjusted gtfStartup.cfg.

► The exported EB GUIDE model. Make sure the paths in gtfStartup.cfg refer to the EB GUIDE model's
files and its relative paths are correct.

Step 4
Start EB GUIDE GTF on the target device.

Use a command line that enables you to type the commands that are suitable for your operating system.

You have configured the operating system on the target framework.

7.2. Configuring the gtfStartup.cfg file

Configuring the gtfStartup.cfg file

Look up functions names listed in this instruction in the GtfMessageId.h file.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 60 of 173

Step 1
Load required files:

To define the files that contain the required shared objects, add the following example messages to the gtfS-
tartup.cfg file:

INIT LOAD FW_PATH "GtfCore"

INIT LOAD FW_PATH "GtfDisplayManager"

INIT LOAD FW_PATH "GtfService"

INIT LOAD FW_PATH "GtfWidgetSet"

INIT LOAD FW_PATH "GtfOpenGLRenderer"

Files can differ depending on the operating system.

Step 2
Configure the type manager:

To inform EB GUIDE GTF where to find the binary types file, add the following message to the gtfStartup.cfg
file:

STARTUP 0 MESSAGE 317 MODEL_PATH "types.bin"

This message (GTF_MID_GTF_TYPEMANAGER_CONFIG) specifies the file types.bin.

Step 3
Create a GtfCoreModel:

To be able to display and execute an EB GUIDE model, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 300 UINT32 0xDEADBEAF

This message (GTF_MID_GTF_CORE_CREATE_MODEL) makes EB GUIDE GTF create a GtfCoreModel with
the ID 0xDEADBEAF. The ID has to be unique. It is used in the following steps to load the model.

Step 4
Create a GtfCoreRuntime:

To connect a GtfStateMachine to a GtfCoreModel, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 306 UINT32 0xDEADBEAF UINT8 0

This message (GTF_MID_GTF_CORE_CREATE_CORE_HOOK_ATF_WORKLOOP) creates the GtfCoreRun-
time in the thread that is identified by the communication context ID, which is 0 in the example. See GtfMes-
sageId.h for variations with different communication context IDs.

../gtf_api/_gtf_message_id_8h.html
../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 61 of 173

NOTE Context ID
The communication context ID of a state machine can be seen and configured in EB
GUIDE Studio. By default, the communication context ID is 0.

Step 5
Create a GtfViewFactory:

To define how to retrieve view descriptions, add the following message to the gtfStartup.cfg file:

STARTUP 403 MESSAGE 450 UINT32 0xBAADF00D MODEL_PATH "views.bin"

This message (GTF_MID_GTF_VIEWFACTORY_BINARY) creates a GtfViewFactory which loads view
descriptions from the views.bin binary file and defines the unique ID of the GtfViewFactory to be
0xBAADF00D. The keyword MODEL_PATH makes the file path relative to the gtfStartup.cfg file.

Step 6
Configure the .bdf input file:

To make the GtfCoreModel load the binary declaration file of the datapool, add the following message to the
gtfStartup.cfg file:

STARTUP 499 MESSAGE 308 UINT32 0xDEADBEAF MODEL_PATH "datapool.bdf"

This message (GTF_MID_GTF_DATAPOOL_DECLARATIONS) makes the GtfCoreModel with the ID 0xDEAD-
BEAF load the specified .bdf file.

Step 7
Configure the .bvf input file:

To make the GtfCoreModel load the binary value file of the datapool, add the following message to the gtfS-
tartup.cfg file:

STARTUP 499 MESSAGE 309 UINT32 0xDEADBEAF MODEL_PATH "datapool.bvf"

This message (GTF_MID_GTF_DATAPOOL_VALUES) makes the GtfCoreModel with the ID 0xDEADBEAF
load the specified .bvf file.

Step 8
Configure the state machine file:

To load the binary state machine file, add the following message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 311 UINT32 0xDEADBEAF MODEL_PATH "model.bin"

This message (GTF_MID_GTF_STATE_MACHINE_MODEL) makes the GtfCoreModel with the ID 0xDEAD-
BEAF load the specified binary state machine file model.bin.

Step 9
Enable state machines:

To enable a state machine, add the following message to the gtfStartup.cfg file:

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 62 of 173

STARTUP 501 MESSAGE 320 UINT32 0xDEADBEAF STRBUF "Main"

This message (GTF_MID_GTF_ENABLE_STATE_MACHINE) enables the state machine called Main in the
GtfCoreModel with the ID 0xDEADBEAF.

Step 10
Configure displays:

To configure a display option, add the following messages to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 511 STRBUF "Main" STRBUF "windowCaption" STRBUF "My Model"

STARTUP 0 MESSAGE 512 STRBUF "Main" STRBUF "hwLayerId" INT32 0

STARTUP 0 MESSAGE 513 STRBUF "Main" STRBUF "showWindowFrame" UINT8 1

These messages (GTF_MID_GTF_DISPLAY_CONFIG_STRING, GTF_MID_GTF_DISPLAY_CONFIG_INT
and GTF_MID_GTF_DISPLAY_CONFIG_BOOL) apply to the display that belongs to the state machine
called Main. Message 511 is used for string options, message 512 for integer options and message 513 for
boolean options.

Step 11
Configure resource configuration file:

To load the binary resource configuration file, add the following message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 312 UINT32 0xDEADBEAF MODEL_PATH "resources.bin"

This message (GTF_MID_GTF_RESOURCE_MODEL) makes the GtfCoreModel with the ID 0xDEADBEAF load
the binary resource configuration file resources.bin.

Step 12
Configure the debug database (optional):

If you want to run an EB GUIDE model in debug mode to receive error messages in more detail, add the fol-
lowing message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 318 UINT32 0xDEADBEAF MODEL_PATH "debug.bin"

This message (GTF_MID_GTF_DEBUGDATABASE_CONFIG) includes the debug database file debug.bin.

Step 13
Configure the service mapper TCP/IP port:

To be able to use EB GUIDE Monitor or a similar client, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 305 UINT16 5456

This message (GTF_MID_GTF_SERVICE_MAPPER) makes the debugger service of EB GUIDE GTF listen to
TCP/IP port 5456.

Step 14
Load a RomFS container:

To load a RomFS container, add the following message to the gtfStartup.cfg file:

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 63 of 173

STARTUP 0 MESSAGE 701 MODEL_PATH "container.romfs"

This message (GTF_MID_GTF_FILESYSTEM_LOAD_ROMFS) loads the RomFS container specified by con-
tainer.romfs into EB GUIDE GTF.

Step 15
Configure how font files are accessed by EB GUIDE GTF (optional):

To configure how font files are accessed, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 510 UINT8 1

This message (GTF_MID_GTF_FREETYPE_STREAM_TYPE) configures the font access component of EB
GUIDE GTF. If the UINT8 parameter value is 0, it uses a ROM-mapped file. If the UINT8 parameter value is
1, it uses a plain file I/O.

NOTE ROM-mapped file approach vs. plain file I/O approach
The ROM-mapped file approach in general provides higher performance. But on some
systems, for example QNX, it consumes more memory than the plain file I/O approach.
Plain file I/O in general consumes less memory than the ROM-mapped file approach. But
it can lead to lower performance.

Step 16
Disable the output of EB GUIDE Script trace functions:

To suppress the output of f:trace_string() and f:trace_dp() in EB GUIDE Script code, add the fol-
lowing message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 321 UINT32 0xDEADBEAF

Step 17
Debug monitoring information:

To display monitoring information during run-time, some renderers need additional resources independent of
the EB GUIDE model. Such resources are located in the monitoring directory inside the EB GUIDE GTF
run-time directory. If your start-up configuration does not configure monitoring displays such as frames per
second (FPS), you can safely remove these resources. To enable FPS monitoring, set the appropriate bit in
the operating mode value of the renderer. For details see the Doxygen documentation.

Step 18
Configure FreeType Cache (optional):

To configure the FreeType cache, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 321 UINT32 0xDEADBEAF

This message (GTF_MID_GTF_FREETYPE_CACHE_CONFIGURATION) sets the FreeType cache parameters
as described at http://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html. The default val-
ues are as follows:

http://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html

EB GUIDE documentation
Chapter 7. Configuring the system start

Page 64 of 173

► max_faces: 0

► max_sizes:0

► max_bytes: 0 kB

Due to the way EB GUIDE GTF handles font sizes, ft_size objects are not cached separately from ft_-
face objects at the moment. It is recommended to use meaningful values for max_sizes. This behavior
may change in future versions of EB GUIDE GTF.

Step 19
Configure the resource cache:

For each display ID, it is possible to configure a resource cache which caches textures. Add the following
message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 520 UINT32 61441 UINT32 1048576

This message (GTF_MID_GTF_RENDERER_TEXTURE_CACHE) creates a resource cache for the default dis-
play ID (61441) with a size of 1048576 bytes. Add the message several times to configure more display IDs.
Assigning display ID 0 configures all display IDs which are not configured otherwise to use the same re-
source cache.

EB GUIDE documentation
Chapter 8. Starting and connecting EB GUIDE Monitor

Page 65 of 173

8. Starting and connecting EB GUIDE
Monitor
EB GUIDE Monitor communicates with an EB GUIDE GTF instance using a TCP/IP connection. Therefore it
is necessary to configure EB GUIDE Monitor before you can use it to an EB GUIDE model.

Starting EB GUIDE Monitor

Step 1
Go to $GUIDE_INSTALL_PATH/tools/monitor and double-click the monitor.bat file.

EB GUIDE Monitor opens.

Step 2
If this is the first time you start EB GUIDE Monitor, do the following:

Step 2.1
In the Plugins menu, click Plugin list....

A dialog opens.

Step 2.2
In the Plugin list dialog, select the plugins you want to use.

Step 2.3
Close the Plugin list dialog.

Connecting EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is opened.

Step 1
In the File menu, click Open configuration....

A dialog opens.

Step 2
Open the directory that contains an exported EB GUIDE model.

Step 3
Select the monitor.cfg file.

Step 4
Click Open.

EB GUIDE documentation
Chapter 8. Starting and connecting EB GUIDE Monitor

Page 66 of 173

Step 5
Click Configure connection....

A dialog opens.

Step 6
Enter the host address and port of the EB GUIDE GTF process you want to connect to. If EB GUIDE GTF is
running on your PC, the host address is localhost. The port number is the service mapper port specified
in gtfStartup.cfg.

Step 7
Click OK.

Step 8
With EB GUIDE GTF running, click Connect in the toolbar.

EB GUIDE documentation
Chapter 9. Communicating through an EB GUIDE GTF extension

Page 67 of 173

9. Communicating through an EB GUIDE
GTF extension

Communicating through an EB GUIDE GTF extension

The following section explains the general workflow for integrating EB GUIDE TF into your build system. Find
the instructions for each step in the sections below.

Step 1
Export an EB GUIDE model. For details see section 9.1, “Exporting an EB GUIDE model”.

Step 2
Adjust the gtfStartup.cfg to load the EB GUIDE GTF extension. For details see section 9.2, “Adjusting
the gtfStartup.cfg to load the EB GUIDE GTF extension”.

Step 3
Copy the header files of the exported EB GUIDE model. For details see section 9.3, “Copying the header
files of the exported EB GUIDE model”.

Step 4
Write an EB GUIDE GTF extension. For details see section 9.4, “Writing an EB GUIDE GTF extension”.

Step 4.1
Include header files in the EB GUIDE GTF extension.

Step 4.2
Compile the EB GUIDE GTF extension with the included header files.

Step 5
Copy the resulting DLL file. For details see section 9.5, “Copying the resulting DLL file”.

Step 6
Start the simulation directly with gtfStartup.exe. For details see section 9.6, “Starting the simulation di-
rectly with gtfStartup.exe ”.

9.1. Exporting an EB GUIDE model
In the following instructions C:\projects\example_project is used as export directory.

EB GUIDE documentation
Chapter 9. Communicating through an EB GUIDE GTF extension

Page 68 of 173

9.2. Adjusting the gtfStartup.cfg to load the EB
GUIDE GTF extension

Adjusting the gtfStartup.cfg to load the EB GUIDE GTF extension

The following instruction shows you how to adjust the gtfStartup.cfg file so that it loads an EB GUIDE
GTF extension. Alternatively, you can add the EB GUIDE GTF extension as a library to the profile of the EB
GUIDE model in EB GUIDE Studio.

Prerequisite:

■ An EB GUIDE model is exported.

Step 1
Navigate to the exported EB GUIDE model.

Step 2
Open the gtfStartup.cfg file with a text editor.

Step 3
To load your EB GUIDE GTF extension, include the following program code:

INIT LOAD MODEL_PATH "myapp"

myapp is the name of the example EB GUIDE GTF extension.

9.3. Copying the header files of the exported EB
GUIDE model

Copying the header files of the exported EB GUIDE model

EB GUIDE TF creates an events header file for each event group that is defined in the EB GUIDE model. For
example, the header file events_0xabe60.h contains all the events the application can send and receive
to interact with the EB GUIDE model. _0xabe60 represents the event group ID 704096 in hexadecimal nota-
tion.

EB GUIDE TF creates a datapool header file for each communication context defined in the EB GUIDE mod-
el. The header file datapool_F.h specifies the communication context with the ID 16. Your application us-

EB GUIDE documentation
Chapter 9. Communicating through an EB GUIDE GTF extension

Page 69 of 173

es the file to access datapool properties. It contains the communication context ID and the datapool item IDs
you specify.

Prerequisite:

■ An EB GUIDE model is exported.

■ The ID of the communication context of your EB GUIDE GTF extension is known.

■ The gtfStartup.cfg file is adapted.

Step 1
Create an empty directory, for example C:\application\myapp.

Step 2
Navigate to the exported EB GUIDE model.

Step 3
Select the following files in C:\projects\example_project:

► The event header files, for example events_0xabe60.h.

► The datapool header files, for example datapool_F.h.

Step 4
Copy the selected files to the empty directory, for example C:\application\myapp.

9.4. Writing an EB GUIDE GTF extension

Writing an EB GUIDE GTF extension

To enable your EB GUIDE GTF extension to react on datapool and event updates it is necessary to include
the corresponding files.

Prerequisite:

■ An EB GUIDE model is exported.

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

Step 1
Navigate to the directory where you copied the header files, for example C:\application\myapp.

Step 2
Create a file named myapp.cpp.

EB GUIDE documentation
Chapter 9. Communicating through an EB GUIDE GTF extension

Page 70 of 173

Step 3
Open the myapp.cpp file and write an EB GUIDE GTF extension.

Find a description of all relevant classes and methods in the EB GUIDE GTF API.

Step 4
Define the communication context of your EB GUIDE GTF extension.

Step 5
Include the datapool and event header files.

Step 6
Compile myapp.cpp.

The result is a DLL file myapp.dll. Your EB GUIDE GTF extension is capable of communicating with the
EB GUIDE model.

9.5. Copying the resulting DLL file

Copying the resulting DLL file

Prerequisite:

■ An EB GUIDE model is exported.

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

■ A compiled EB GUIDE GTF extension including the header files from the exported EB GUIDE model is
created.

Step 1
Navigate to the directory where you saved the myapp.dll file, for example C:\application\myapp.

Step 2
Copy C:\application\myapp to the directory where you exported the EB GUIDE model, for example C:
\projects\example_project.

../gtf_api/index.html

EB GUIDE documentation
Chapter 9. Communicating through an EB GUIDE GTF extension

Page 71 of 173

9.6. Starting the simulation directly with gtfS-
tartup.exe

Starting the simulation directly with gtfStartup.exe

Prerequisite:

■ An EB GUIDE model is exported.

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

■ A compiled EB GUIDE GTF extension including the header files from the exported EB GUIDE model is
created.

■ The resulting DLL file is available in the directory of the exported EB GUIDE model.

Step 1
Navigate to $GUIDE_INSTALL_PATH\platform\win32\bin.

Step 2
Execute GtfStartup.exe with the complete path to gtfStartup.cfg as the first argument. Enter the fol-
lowing command line:

 GtfStartup.exe

 C:\projects\example_project

The framework opens a window which displays the start view.

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 72 of 173

10. Extending EB GUIDE Script with
foreign functions
This section contains a tutorial that guides you through the process of writing a new EB GUIDE Script function,
in this case a sum function, and integrating the function in EB GUIDE Studio.

10.1. Tutorial: Writing a basic sum function

Tutorial: Writing a basic sum function

Prerequisite:

■ An empty EB GUIDE GTF extension

Step 1
Implement your function.

Step 1.1
Give your function the following signature:

void (*)(void*, GtfParameterStack&)

The first parameter is an arbitrary pointer you specify when you tell the framework about the implementa-
tion of your function. The second parameter is the EB GUIDE Script parameter stack. This is where your
function gets its arguments and where it returns a value (if any).

Step 1.2
Enter the following code to calculate the sum of two parameters.

static void example_sum(void*, GtfParameterStack& stack)

{

 int32_t operand1, operand2, result = 0;

 stack.Scalar_PopValue

 (GtfTypeId::eTypeId_int32, &operand2, sizeof(operand2));

 stack.Scalar_PopValue

 (GtfTypeId::eTypeId_int32, &operand1, sizeof(operand1)); ❶

 result = operand1 + operand2;

 stack.Scalar_PushValue

 (GtfTypeId::eTypeId_int32, &result, sizeof(result)); ❷

}

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 73 of 173

❶ The first thing your function does is to pop all arguments from the stack in reverse order: the last
argument of your function is the one that lies on top of the stack.

❷ Here, your function has to push a value of its advertised return type.

Step 2
Advertise your function to the framework.

In order to advertise your function to the framework, you supply a piece of meta information called Action-
Descriptor. The ActionDescriptor for your function informs the framework about the following:

► The name of your function

► The number of input parameters

► The types of the input parameters

► The type of the return value

NOTE Name of the function
Make sure that you always use the same function name whenever the function is called.

You supply the ActionDescriptor to the framework by implementing the DescriptorProvider inter-
face. This interface has a virtual method which you have to implement. GetActions has to return the num-
ber of actions your EB GUIDE GTF extension supplies and an array of ActionDescriptors.

The following code illustrates the declaration of ExampleAppFunctionDescProvider, the class you use
to implement the DescriptorProvider for your function.

class ExampleAppFunctionsDescProvider : public DescriptorProvider ❶

{

public:

 ActionDescriptor const* GetActions(uint32_t &count) const; ❷

 PopupStackDescriptor const* GetPopupStacks(uint32_t &count) const ❸

 { count = 0; return NULL;}

 MediatorDescriptor const* GetMediators(uint32_t &count) const

 { count = 0; return NULL;}

 WidgetDescriptor const* GetWidgets(uint32_t &count) const

 { count = 0; return NULL; }

 WidgetFeatureDescriptor const* GetWidgetFeatures(uint32_t &count) const

 { count = 0; return NULL; }

 ResourceDescriptor const* GetResourceTypes(uint32_t &count) const

 { count = 0; return NULL; }

 bool ResolveTypes(const GtfTypeManager* typeManager);

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 74 of 173

 char* const getProviderName();

 uint32_t getProviderVersion();

};

❶ Your class has to implement the DescriptorProvider interface.

❷ GetActions is the interesting method in this example. The implementation follows.

❸ The other descriptor getters return zero descriptors.

The following code illustrates part of the implementation of ExampleAppFunctionDescProvider.

static const GtfTypeBase s_typeInt32("int32_t"); ❶

static PropertyDescriptor parameters[] =

{ { &s_typeInt32 // property type

 , "Operand1" // property name

 , "First Operand" // property description

 }

, { &s_typeInt32

 , "Operand2"

 , "Second Operand"

 }

};

static PropertyDescriptor returnValue[] =

{ { &s_typeInt32, "", "" }

};

static const ActionDescriptor actionDesc[] =

{ { 0

 , ARRAY_SIZE(parameters)

 , parameters

 , returnValue

 , "ExampleFunction_SUM"

 , "Returns the sum of two integer values."

 }

};

ActionDescriptor const*

ExampleAppFunctionsDescProvider::GetActions(uint32_t &count) const {

 count = ARRAY_SIZE(actionDesc); ❷

 return actionDesc;

}

bool

ExampleAppFunctionsDescProvider::ResolveTypes ❸

 (const GtfTypeManager* typeManager)

{

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 75 of 173

 bool success = true;

 PropertyDescriptor* curProperty = NULL;

 RESOLVE_PROPERTIES(parameters);

 RESOLVE_PROPERTIES(returnValue);

 return success;

}

❶ The ActionDescriptor your DescriptorProvider interface returns is a static graph that consists
of action descriptors, property descriptors, and GTF types. figure 10.1, “ActionDescriptor static structure”
sketches the relationship. All elements are static objects that refer to each other.

Figure 10.1. ActionDescriptor static structure

❷ The GetActions method returns a pointer to the static structure and the number of ActionDescriptor
elements available.

❸ ResolveTypes is a particularity of the framework's type system. The framework needs every type to exist
exactly once during run-time of the framework. TypeManager hands out unique type objects, so Resol-
veTypes replaces the pointers to the static objects with pointers to the framework's run-time objects.

NOTE Resolve your types
The step of resolving the types of each PropertyDescriptor is important. Since
there is no automated way for the framework to ensure this step, double-check that
you resolve the types of all your PropertyDescriptor arrays.

Step 3
Associate an implementation to your descriptors.

Pass your descriptors to the framework and you associate an implementation to your descriptors.

The following code shows the implementations of HandleInterface and HandleRunlevel.

void ExampleAppFunctionsInit::HandleInterface(const uint32_t c_interfaceId,

 const uint32_t c_version, const uint16_t c_validRunlevel,

 void * const c_pObj)

{

 switch(c_interfaceId) {

 case GtfTypeManager::cm_gtfInterfaceId: {

 if(c_version == GtfTypeManager::cm_gtfInterfaceVersion) {

 m_exampleFunctionProvider.ResolveTypes ❶

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 76 of 173

 (static_cast<GtfTypeManager*>(c_pObj));

 }

 }

 break;

 case GtfCoreRuntime::cm_gtfInterfaceId: {

 if(c_version == GtfCoreRuntime::cm_gtfInterfaceVersion) {

 GtfCoreRuntime* pRuntime = static_cast<GtfCoreRuntime*>(c_pObj);

 GtfCoreModel *pModel = pRuntime->getModel();

 uint32_t actionId = pModel->getActionId("ExampleFunction_SUM");

 if(actionId != GtfLimits::uint32_max) {

 pRuntime->setActionImplementation ❷

 (actionId

 , ActionDescriptor::Implementation(NULL, &example_sum)

);

 }

 }

 }

 break;

 }

}

uint16_t ExampleAppFunctionsInit::HandleRunlevel(const uint16_t c_runlevel,

 const int8_t c_direction)

{

 uint16_t retVal = c_runlevel;

 if(c_direction > 0) {

 if(c_runlevel == 1) {

 GetMessenger()->PublishInterface ❸

 (DescriptorProvider::cm_gtfInterfaceId

 , DescriptorProvider::cm_gtfInterfaceVersion

 , 0

 , &m_exampleFunctionProvider

);

 }

 }

 return retVal;

}

❶ When receiving the TypeManager interface, use the TypeManager to resolve the types that your De-
scriptorProvider uses.

❷ The descriptor you have prepared does not contain the actual implementation of your function. Use
GtfCoreModel::setActionImplementation to tell the framework which C++ function to call if a
script uses your function.

❸ Use the PublishInterface method to introduce your DescriptorProvider interface to the frame-
work.

EB GUIDE documentation
Chapter 10. Extending EB GUIDE Script with foreign functions

Page 77 of 173

Step 4
The function is ready to be used in EB GUIDE Studio. To integrate the EB GUIDE GTF extension into an EB
GUIDE model, follow the instructions in section 11.3, “Adding an EB GUIDE GTF extension to an EB GUIDE
model”.

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 78 of 173

11. Adding widgets and widget features
This section contains tutorials that guide you through the process of writing a EB GUIDE GTF extension such
as a widget and a widget feature. The widget you create with the first tutorial adds new functionality. The widget
you create with the second tutorial adds new appearance. The widget feature you create with the third tutorial
makes a rectangle change its color when focused.

11.1. Tutorial: Writing an extended container wid-
get

Writing an extended container widget

Within this tutorial, you write a container widget which controls the visibility of its child widgets. Its dis-
playStatus property defines which child widgets are displayed: all, none, or only the first.

Step 1
Name your widget GtfExtendedContainerWidget.

Step 2
Derive your widget from the GtfAbstractVisualWidget base class.

Step 3
Add the descriptor for your widget to the descriptor provider class ExampleAppWidgetsFeaturesDe-
scProvider.cpp.

Your code looks as follows.

static const WidgetDescriptor widget_desc [] =

{ FULL_WIDGET

 ("GtfExtendedContainerWidget" // widget name

 , "ExtendedContainer" // widget alias

 , "A container that displays or hides its child widgets." // widget description

 , "My Extended Widget Set" // widget set name

 // base class (If NULL it does not inherit from another widget.)

 , "GtfAbstractVisualWidget"

 , false // isAbstract (Abstract widgets cannot be used in EB GUIDE Studio.)

 , 0x0100 // version (here: 1.0)

 , false // isView (If true, the widget can be used as a view.)

 , true // canHaveChildren (If true, the widget can have child widgets,

 // else not.)

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 79 of 173

 , "GtfRectangle|GtfLabel" // A string that defines the allowed child classes

 , false // isEffect (Determines if the widget is an effect widget)

 , false // isInstantiator (Determines if the widget is an instantiator widget)

 , GtfExtendedContainerProperties // properties (array of widget properties)

 // creation method (used to create a C++ class instance for the widget)

 , createExtendedContainerInstance

 // destruction method (used to destroy the C++ widget class instance)

 , destroyExtendedContainerInstance)

};

Step 4
Add a displayStatus property to your widget. The displayStatus property has three values: all,
first and none.

Your code looks as follows.

static PropertyConstantDescriptor GtfDisplayStatusConstants[] =

{

 { "all", "0"},

 { "first", "1"},

 { "none", "2"}

};

static PropertyDescriptor GtfExtendedContainerProperties[] =

{

 PropertyDescriptor(&s_typeInt32 // property type

 , "displayStatus" // property name

 , "Defines which child widgets to display." // property description

 , "Appearance" // property category (optional)

 , "0" // property default value (optional)

 , ARRAY_SIZE(GtfDisplayStatusConstants) // property constant definition (optional)

 // The names of the contstants are shown instead of the number in EB GUIDE Studio.

 , GtfDisplayStatusConstants),

};

Step 5
Add the property definition array to the list of properties to resolve. Write the following code.

RESOLVE_PROPERTIES(GtfExtendedContainerProperties);

Step 6
Write the header part of your widget. Make the header contain the following method types:

► create methods

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 80 of 173

► destroy methods

► methods to initialize the widget

► methods to react on updates

Your code looks as follows.

extern GtfAbstractWidget* createExtendedContainerInstance(

 GtfWidgetContext const& ctx,

 GtfWidgetModel& model);

extern void destroyExtendedContainerInstance(GtfAbstractWidget* widget);

class GtfExtendedContainerWidget : public GtfAbstractWidget

{

public:

 GtfExtendedContainerWidget(GtfWidgetModel& model,

 GtfWidgetContext const& ctx);

 ~GtfExtendedContainerWidget();

 virtual void init(GtfWidgetContext const&context);

 virtual void prepare(GtfWidgetContext const&context);

 virtual void hide(GtfWidgetContext const&context);

protected:

 void handleUpdate();

private:

 bool m_isInitialized;

 bool m_fRefsOk;

 GtfWidgetModel& m_model;

 GtfWidgetContext const& m_ctx;

 enum

 { ePropDisplayStatus = 0

 , eIsVisible

 , eProp_LAST

 };

 GtfViewFactory::WidgetPropertyReference m_widgetPropRefs[eProp_LAST];

};

Step 7
Write the C++ file. Your implementation includes the following code.

// outline of the cpp file

GtfAbstractWidget*

createExtendedContainerInstance(GtfWidgetContext const& ctx,

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 81 of 173

 GtfWidgetModel& model)

{

 return new GtfExtendedContainerWidget(model, ctx);

}

void

destroyExtendedContainerInstance(GtfAbstractWidget* widget)

{

 delete static_cast<GtfExtendedContainerWidget*>(widget);

}

GtfExtendedContainerWidget::GtfExtendedContainerWidget(

 GtfWidgetModel& model,

 GtfWidgetContext const& ctx)

: m_isInitialized(false)

, m_fRefsOk(false)

, m_model(model)

, m_ctx(ctx)

{

 // Define the property references that are used in the implementation.

 m_widgetPropRefs[ePropDisplayStatus].widgetTypeRef.name =

 "GtfExtendedContainerWidget";

 m_widgetPropRefs[ePropDisplayStatus].widgetPropertyRef.name =

 "displayStatus";

 m_widgetPropRefs[eIsVisible].widgetTypeRef.name =

 "GtfAbstractVisualWidget";

 m_widgetPropRefs[eIsVisible].widgetPropertyRef.name = "visible";

}

GtfExtendedContainerWidget::~GtfExtendedContainerWidget()

{ // nothing to do

}

void

GtfExtendedContainerWidget::init(GtfWidgetContext const&ctx)

{

 // Do not initialize the widget more than once.

 if (false == m_isInitialized)

 {

 m_fRefsOk = ctx.getViewFactory()->resolveProperties(m_widgetPropRefs,

 eProp_LAST);

 if(false == m_fRefsOk)

 { // failed to resolve property references

 }

 else

 { // successfully resolved property references

 // Subscribe for changes of the "displayStatus" property.

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 82 of 173

 m_model.subscribe(m_ctx.getCoreContext()

 , (uint16_t)m_widgetPropRefs[ePropDisplayStatus].widgetPropertyRef.ref

 , this

 , gtf_bind(&GtfExtendedContainerWidget::handleUpdate, this)

);

 // Execute handleUpdate once per initialization.

 handleUpdate();

 }

 m_isInitialized = true;

 }

}

Step 8
Write the callback method that is registered for updates of the displayStatus property.

The following code sample displays the update notification handler for the widget. If the value of the dis-
playStatus property changes, show or hide child widgets.

void GtfExtendedContainerWidget::handleUpdate()

{

 // Read the current value of the "displayStatus" property.

 int32_t displayState = 0;

 bool success = m_model.scalar_readValue(m_ctx.getCoreContext(),

 (uint16_t)m_widgetPropRefs[ePropDisplayStatus].widgetPropertyRef.ref,

 GtfTypeId::eTypeId_int32,

 &displayState,

 sizeof(displayState));

 if(success)

 {

 uint16_t childCount = m_model.getChildCount(m_ctx.getCoreContext());

 for(uint16_t i = 0; i < childCount; ++i)

 {

 GtfWidgetModel* curChild = m_model.getChild(m_ctx.getCoreContext(), i);

 bool widgetVisible = false;

 if(displayState == 0)

 { // ALL: All child widgets are visible.

 widgetVisible = true;

 }

 else if((displayState == 1) && (i == 0))

 { // FIRST: Set first child to visible.

 widgetVisible = true;

 }

 else

 { // NONE: Set no child to visible.

 widgetVisible = false;

 }

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 83 of 173

 // commit visibility change for every child widget

 if(m_ctx.getViewFactory()->isSubtype(curChild->getType(),

 m_widgetPropRefs[eIsVisible].widgetTypeRef.ref))

 {

 curChild->scalar_writeValue(m_ctx.getCoreContext(),

 m_widgetPropRefs[eIsVisible].widgetPropertyRef.ref,

 GtfTypeId::eTypeId_bool,

 &widgetVisible,

 sizeof(widgetVisible));

 }

 }

 }

}

Step 9
The widget code is complete. To integrate the EB GUIDE GTF extension into an EB GUIDE model, follow the
instructions in section 11.3, “Adding an EB GUIDE GTF extension to an EB GUIDE model” .

11.2. Tutorial: Writing a widget feature for focus
behavior of rectangles

Writing a widget feature for focus behavior of rectangles

Within this tutorial you learn how to add a widget feature to an EB GUIDE GTF extension. The example wid-
get feature is called focusRectColor. It comes with a new property focusedColor. The purpose of the
widget feature is to change the background color of a rectangle to the value of the focusedColor proper-
ty when the rectangle is focused. A widget can only be focused when it has the widget feature State fo-
cused, so focusRectColor depends on State focused.

Step 1
Add the descriptor for your widget feature to the descriptor provider, for example ExampleAppWidgets-
FeaturesDescProvider.cpp, in the widget feature definition array. Your code looks as follows.

static const WidgetFeatureDescriptor widget_feature_desc [] =

{ WIDGET_FEATURE_WA("GtfFocusRectColorFeature" // widget feature name

 // widget feature alias (displayed in EB GUIDE Studio):

 , "FocusRectColor"

 // description:

 , "Adds a different background color for a focused rectangle"

 // widget feature category:

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 84 of 173

 , "Appearance"

 // version (here 1.0):

 , 0x0100

 // properties:

 , GtfFocusRectColorProperties

 // applicability: applicable to rectangle widgets

 // which have the "State focused" widget feature

 , "w:GtfRectangle&&wf:StateFocused"

 // creation function (called on creation):

 , createFocusRectColorInstance

 // destruction function (called on destruction)

 , destroyFocusRectColorInstance),

};

Step 2
Define the properties of your widget feature in the descriptor provider as follows.

static PropertyDescriptor GtfFocusRectColorProperties[] =

{

 { &s_typeColor // property type

 , "focusedColor" // property name

 , "Background color for the focused rectangle." // property description

 , "Appearance"} // property category

};

The widget feature has one property, focusedColor of type color.

Step 3
Add the property definition array to the list of properties to resolve in the
ExampleAppWidgetsFeaturesDescProvider::ResolveTypes() method as follows.

RESOLVE_PROPERTIES(GtfFocusRectColorProperties);

Step 4
Write the declaration of the feature class in a separate header file, for example GtfFocusRectColorFea-
ture.h. Obligatory elements are create and destroy methods, methods to initialize the widget feature, and
methods to react on updates. Your code looks as follows.

extern GtfAbstractWidgetFeature* createFocusRectColorInstance(

 GtfWidgetFeatureModel& model,

 GtfWidgetContext const& ctx);

extern void destroyFocusRectColorInstance(GtfAbstractWidgetFeature* widget);

class GtfFocusRectColorFeature : public GtfAbstractWidgetFeature

{

public:

 GtfFocusRectColorFeature(GtfWidgetFeatureModel& model,

 GtfWidgetContext const& ctx);

 ~GtfFocusRectColorFeature();

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 85 of 173

 virtual void init(GtfWidgetContext const&context);

 virtual void prepare(GtfWidgetContext const&context);

 virtual void hide(GtfWidgetContext const&context);

protected:

 void handleUpdate(GtfWidgetFeatureModel* pFocusRect,

 GtfWidgetModel* pWidgetModel);

private:

 bool m_isInitialized;

 bool m_fRefsOk;

 uint32_t m_fillColor;

 GtfWidgetFeatureModel& m_model;

 GtfWidgetContext const& m_ctx;

 enum

 { eFeaturePropFocusedColor = 0

 , eFocused

 , eFeaturePropMAX

 };

 GtfViewFactory::FeaturePropertyReference

 m_featurePropRefs[eFeaturePropMAX];

 enum

 { eFillColor

 , eWidgetPropMAX

 };

 GtfViewFactory::WidgetPropertyReference m_widgetPropRefs[eWidgetPropMAX];

};

Step 5
Write the implementation of the widget feature in a separate source code file, for example GtfFocusRect-
ColorFeature.h.

The following code shows the widget feature code that creates and destroys the widget feature and sub-
scribes to property update notifications by implementing the init(), prepare() and hide() methods of
GtfAbstractWidgetFeature.

#include <GtfWidgetSet/GtfWidgetFeatureModel.h>

#include <GtfWidgetSet/GtfWidgetModel.h>

#include <GtfWidgetSet/GtfWidgetContext.h>

#include "GtfFocusRectColorFeature.h"

#include <GtfFunctor/FunctorBind.h>

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 86 of 173

GtfAbstractWidgetFeature*

createFocusRectColorInstance(GtfWidgetFeatureModel& model,

 GtfWidgetContext const& ctx)

{

 return new GtfFocusRectColorFeature(model, ctx);

}

void

destroyFocusRectColorInstance(GtfAbstractWidgetFeature* widget)

{

 delete static_cast<GtfFocusRectColorFeature*>(widget);

}

GtfFocusRectColorFeature::GtfFocusRectColorFeature

 (GtfWidgetFeatureModel& model, GtfWidgetContext const& ctx)

 : m_isInitialized(false)

 , m_fRefsOk(false)

 , m_fillColor(0)

 , m_model(model)

 , m_ctx(ctx)

{

 // Define the property references that are used in the implementation. The

 // widget feature uses a property from another widget feature:

 // the "focused" property of the "StateFocused" widget feature.

 m_featurePropRefs[eFocused].featureTypeRef.name = "StateFocused";

 m_featurePropRefs[eFocused].featurePropertyRef.name = "focused";

 // The widget feature uses the "fillColor" property of the rectangle widget.

 m_widgetPropRefs[eFillColor].widgetTypeRef.name = "GtfRectangle";

 m_widgetPropRefs[eFillColor].widgetPropertyRef.name = "fillColor";

 m_featurePropRefs[eFeaturePropFocusedColor].featureTypeRef.name =

 "GtfFocusRectColorFeature";

 m_featurePropRefs[eFeaturePropFocusedColor].featurePropertyRef.name =

 "focusedColor";

}

GtfFocusRectColorFeature::~GtfFocusRectColorFeature()

{ // nothing to do

}

void GtfFocusRectColorFeature::init(GtfWidgetContext const& context)

{

 if(!m_isInitialized)

 {

 m_fRefsOk = context.getViewFactory()->resolveProperties

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 87 of 173

 (m_widgetPropRefs, eWidgetPropMAX);

 m_fRefsOk &= context.getViewFactory()->resolveFeatureProperties

 (m_featurePropRefs, eFeaturePropMAX);

 if(false == m_fRefsOk)

 { // failed to resolve property references

 }

 else

 { // successfully resolved property references

 GtfWidgetModel *pWidgetModel = m_model.getWidgetModel();

 // Read the rectangle's "fill color" property.

 pWidgetModel->scalar_readValue(m_ctx.getCoreContext()

 , m_widgetPropRefs[eFillColor].widgetPropertyRef.ref

 , GtfTypeId::eTypeId_color

 , &m_fillColor

 , sizeof(m_fillColor));

 GtfWidgetFeatureModel *pFocused =

 pWidgetModel->hasFeature(m_ctx.getCoreContext(),

 (uint16_t)m_featurePropRefs[eFocused].featureTypeRef.ref);

 if(pFocused)

 { // Subscribe to changes of the "focused" property.

 pFocused->subscribe(m_ctx.getCoreContext()

 , (uint32_t)m_featurePropRefs[eFocused].featurePropertyRef.ref

 , this

 , gtf_bind(&GtfFocusRectColorFeature::handleUpdate, this, &m_model,

 pWidgetModel));

 // Execute handleUpdate once per initialization.

 handleUpdate(&m_model, pWidgetModel);

 }

 }

 m_isInitialized = true;

 }

}

void GtfFocusRectColorFeature::prepare(GtfWidgetContext const& context)

{

 GTF_UNUSED_PARAM(context)

}

void GtfFocusRectColorFeature::hide(GtfWidgetContext const& context)

{

 GTF_UNUSED_PARAM(context)

 if(m_isInitialized)

 {

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 88 of 173

 if(false == m_fRefsOk)

 { // failed to resolve property references

 }

 else

 { // successfully resolved property references

 GtfWidgetModel *pWidgetModel = m_model.getWidgetModel();

 GtfWidgetFeatureModel *pFocused =

 pWidgetModel->hasFeature(m_ctx.getCoreContext(),

 (uint16_t)m_featurePropRefs[eFocused].featureTypeRef.ref);

 if(pFocused)

 { // Unsubscribe from changes of the "focused" property.

 pFocused->unsubscribe(m_ctx.getCoreContext()

 , (uint32_t)m_featurePropRefs[eFocused].featurePropertyRef.ref

 , this);

 }

 }

 m_isInitialized = false;

 }

}

Step 6
Write the callback method that handles updates of the focused property. Your code looks as follows.

void GtfFocusRectColorFeature::handleUpdate(

 GtfWidgetFeatureModel* pFocusRect, GtfWidgetModel* pWidgetModel)

{

 uint32_t fillColor = 0;

 uint32_t focusColor = 0;

 bool isFocused = false;

 // Read the value of the "focusedColor" property.

 bool success = pFocusRect->scalar_readValue(m_ctx.getCoreContext(),

 m_featurePropRefs[eFeaturePropFocusedColor].featurePropertyRef.ref,

 GtfTypeId::eTypeId_color, &focusColor, sizeof(focusColor));

 // Check if a widget uses the widget feature.

 GtfWidgetFeatureModel *pFocusable =

 pWidgetModel->hasFeature(m_ctx.getCoreContext(),

 (uint16_t)m_featurePropRefs[eFocused].featureTypeRef.ref);

 if(pFocusable && m_ctx.getViewFactory()->isSubtype(pWidgetModel->getType(),

 m_widgetPropRefs[eFillColor].widgetTypeRef.ref))

 {

 success = success && pFocusable->scalar_readValue(m_ctx.getCoreContext(),

 (uint16_t)m_featurePropRefs[eFocused].featurePropertyRef.ref,

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 89 of 173

 GtfTypeId::eTypeId_bool, &isFocused, sizeof(isFocused));

 // Update the "fillColor" property value depending on the "focused" property.

 uint32_t newFillColor = m_fillColor;

 if(isFocused)

 {

 newFillColor = focusColor;

 }

 pWidgetModel->scalar_writeValue(m_ctx.getCoreContext(),

 m_widgetPropRefs[eFillColor].widgetPropertyRef.ref,

 GtfTypeId::eTypeId_color, &newFillColor, sizeof(newFillColor));

 }

}

The widget feature code is complete. To integrate the EB GUIDE GTF extension into an EB GUIDE model,
follow the instructions in section 11.3, “Adding an EB GUIDE GTF extension to an EB GUIDE model”.

11.3. Adding an EB GUIDE GTF extension to an EB
GUIDE model

Adding an EB GUIDE GTF extension to an EB GUIDE model

In order to use a newly written EB GUIDE GTF extension such as a widget or a widget feature in an EB
GUIDE model, it is necessary to add the EB GUIDE GTF extension to the EB GUIDE model.

Prerequisite:

■ You wrote an EB GUIDE GTF extension.

Step 1
Compile the EB GUIDE GTF extension.

Step 2
Copy the resulting file to the $GUIDE_PROJECT_PATH/resources directory.

Step 3
Start EB GUIDE Studio and open an EB GUIDE Studio project.

Step 4
Go to the project center and click Configure > Profiles.

Step 5
Select the Simulation profile.

EB GUIDE documentation
Chapter 11. Adding widgets and widget features

Page 90 of 173

Step 6
Under Libraries > Load click Add.

Step 7
In the Location drop-down list box select FW_PATH.

Step 8
In the Name text box enter the name of the written EB GUIDE GTF extension

Step 9
Select the Edit profile and repeat steps 6 - 8.

Step 10
Save the project and close EB GUIDE Studio.

Step 11
Open the project again.

You have added an EB GUIDE GTF extension to an EB GUIDE model.

Step 12
Export the EB GUIDE model.

EB GUIDE documentation
Chapter 12. Using and creating an Android APK for EB GUIDE TF

Page 91 of 173

12. Using and creating an Android APK for
EB GUIDE TF
For background information on Android APK see section 5.5, “Android APK”.

For more information on Android setup, APK creation or the Android toolchain, refer to the official Android
documentation.

As the basic concepts and approaches known for other platforms are also valid for the Android platform, the
following sections focus on the topics that are specific for Android.

12.1. Executing an exported EB GUIDE model on
Android

Executing an exported EB GUIDE model on Android

To execute an exported EB GUIDE model on Android, you install the EB GUIDE Model Chooser and EB
GUIDE Launcher. The EB GUIDE Model Chooser provides a user interface to select exported EB GUIDE
models. Selecting an exported EB GUIDE model starts EB GUIDE Launcher. The EB GUIDE Launcher exe-
cutes an exported EB GUIDE model on the Android device.

Prerequisite:

■ To install the two applications on the Android device, enable your system to install from a different source
than the Android Play Store. On your Android device select the Settings > Security > Unknown sources
option.

Step 1
Copy EB GUIDE Launcher.apk and EB GUIDE Model Chooser.apk from the $GTF_INSTALL_PATH/
platform/android/bin/ directory to your Android device or to the external storage of your Android de-
vice.

Step 2
Open a file manager and navigate to the copied files.

Step 3
Install EB GUIDE Launcher.apk and EB GUIDE Model Chooser.apk.

EB GUIDE documentation
Chapter 12. Using and creating an Android APK for EB GUIDE TF

Page 92 of 173

Step 4
If you want to execute speech state machines with speech synthesis and speech recognition, install EB
GUIDE Speech Extension.apk.

Step 5
Export an EB GUIDE model.

Step 6
Copy the whole directory that was exported by EB GUIDE Studio to your Android device. For information
where to store the EB GUIDE models see section 5.5.5, “Directory for EB GUIDE models”.

Step 7
To execute the EB GUIDE model on your Android device, open EB GUIDE Model Chooser.apk and se-
lect an EB GUIDE model from the list.

The EB GUIDE Launcher.apk is started automatically with the selected EB GUIDE model. The EB GUIDE
model is executed on your Android device.

TIP Changing a TTS engines
The EB GUIDE Speech Extension uses Nuance Vocalizer TTS by default. To use another
TTS engine, do the following:

1. On your target device open Settings > Language & Input > Text-to-speech output.

2. Select a TTS engine.

3. Open the EB GUIDE Model Chooser.

4. Open Settings and clear the option Use Nuance Vocalizer TTS .

12.2. Creating your own Android APK using the
template

Creating your own Android APK using the template

Step 1
Import the project $GTF_INSTALL_PATH/platform/android/apk/GtfAndroidAppTemplate into
Eclipse or IntelliJ.

Step 2
Add the library $GTF_INSTALL_PATH/platform/android/bin/GtfBridge.jar to the Eclipse or Intel-
liJ workspace.

EB GUIDE documentation
Chapter 12. Using and creating an Android APK for EB GUIDE TF

Page 93 of 173

Step 3
Optional: To change the location of the EB GUIDE model and the libraries edit the implementation of the tem-
plate TemplateActivity.java.

The template activity is the main activity of your custom application.

Step 4
To add speech functionality, do the following:

Step 4.1
Install EB GUIDE Speech Extension.apk.

Step 4.2
In TemplateActivity.java, change the return value of the method getSpeechEnabled to true.

Step 4.3
Add the following permissions in AndroidManifest.xml:

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Step 5
In $GUIDE_INSTALL_PATH/projects/code/apk/AndroidAppTemplate create the folder structure
libs/armeabi.

Step 6
Copy the Android SDK binaries delivered with EB GUIDE GTF to the directory $GTF_INSTALL_PATH/
platform/android/apk/libs/armeabi.

Step 7
Copy an EB GUIDE model to the default external file directory of the application. The default directory imple-
mented in the template activity is /data/android/com.elektrobit.gtf_android_template.pack-
age.

Step 8
Deploy and launch the application in Eclipse or IntellJ on the target device or use an Android virtual device
(AVD).

The EB GUIDE model is executed on your Android device. Customize the application according to your re-
quirements.

12.3. Creating your own Android APK from scratch
The APK files installed with the Android SDK of EB GUIDE TF are suitable for most use cases. If they are not
sufficient, use the APK template, see section 12.2, “Creating your own Android APK using the template”). You
can integrate additional EB GUIDE GTF extensions that are useful for a project. Save the additional EB GUIDE
GTF extensions in the directory of the exported EB GUIDE model and include them in the start-up configuration
file. All run-time dependencies are resolved by EB GUIDE TF.

EB GUIDE documentation
Chapter 12. Using and creating an Android APK for EB GUIDE TF

Page 94 of 173

For background information on the custom APK, see section 5.5.3.1, “Released APK and custom APK”.

Creating your own Android APK from scratch

Step 1
Create an Android project. Use either the Eclipse ADT plugin, IntelliJ or create it with the provided Ant tool-
ing.

Step 2
Add the library $GTF_INSTALL_PATH/platform/android/bin/GtfBridge.jar to your Eclipse or In-
telliJ workspace.

Step 3
Create a directory libs/armeabi in the project workspace and copy the .so files from $GTF_INS-
TALL_PATH into the directory.

Step 4
Create an activity that extends the Activity class in the Android API.

Step 5
Add an instance of the GtfBridge class to the activity.

Step 6
Call the following methods of GtfBridge in the exact order in onCreate:

Step 6.1
To load all dependencies, call the method loadGtfLibs(String modelPath, String[] addi-
tionalLibs).

The modelPath parameter is mandatory and the absolute path to the EB GUIDE model files.

The additionalLibs parameter is optional and an array with all EB GUIDE GTF extensions specified
in the start-up configuration.

Step 6.2
To initializes EB GUIDE GTF and configure the start-up call the method
initNativeGtf(ApplicationInfo info, String startupCfg, OnNativeShutdownlis-

tener listener).

The ApplicationInfo is accessed from Android using getApplicationInfo().

The startupCfg parameter is the absolute path to the gtfStartup.cfg file.

The listener parameter is an instance of the OnNativeShutdownListener interface.

The relocationLibraryPath parameter is set to null.

Step 6.3
To set the surface that is used by EB GUIDE GTF to render the model call the method
setGtfSurfaceView(SurfaceView surfaceView).

EB GUIDE documentation
Chapter 12. Using and creating an Android APK for EB GUIDE TF

Page 95 of 173

The surfaceView parameter is a SurfaceView from Android used by EB GUIDE GTF. Without a Sur-
faceView EB GUIDE GTF will not be able to render and therefore show nothing at all.

Step 7
Make the following modifications:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

The following modifications are required for EB GUIDE STF:

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-sdk android:minSdkVersion="18"/>

If you have an EB GUIDE Speech Extension installed, you should additionally set the minimum SDK version:

<uses-sdk android:minSdkVersion="15"/>

Step 8
Create a keystore file for a release build.

Step 9
Create the release build with Ant tooling on the command line.

TIP Debug builds
Test and create debug builds within Eclipse. The Eclipse plugin takes care of the whole APK
build process, for example debug keystore.

TIP Sub-projects for a separation of functionality
Place the GtfActivity in a master project and divide individual functionality into sub-
projects. The master project references the other components as sub-project dependencies
and the Android build performs the necessary integration steps.

EB GUIDE documentation
Chapter 13. Evaluating memory usage

Page 96 of 173

13. Evaluating memory usage
Evaluating memory usage helps you to debug the system and the EB GUIDE model. During run-time, EB
GUIDE GTF can continuously print information about memory that the framework manages dynamically.

Configuring a memory report

You configure a memory report by adding a configuration message to the gtfStartup.cfg configuration file.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, click CONFIGURE > Profiles.

Step 2
Select the Simulation profile.

Step 3
Click to expand the libraries.

Step 4
Next to Messages click Add.

Step 5
For the new message, enter the following in the Parameters text box:

STARTUP 0 MESSAGE 12 UINT32 5000

The message GTF_MID_SYSTEM_REPORT_MEMORY activates memory reporting with a delay of 5000 ms be-
tween each report.

EB GUIDE documentation
Chapter 14. Creating a read-only file system (RomFS) container

Page 97 of 173

14. Creating a read-only file system
(RomFS) container

Creating a read-only file system (RomFS) container

The directory you create serves as root directory in the RomFS. It is referred to as "/" on POSIX platforms
and as "C:\" on Microsoft Windows platforms.

Step 1
Create a directory structure and files in a local working directory.

Step 2
Locate the command line tool GtfRomFsCreate in the tools\GtfRomFsTools sub-directory of your EB
GUIDE GTF SDK directory.

Step 3
Run GtfRomFsCreate without any parameters.

The following usage directions are displayed:

Usage: GtfRomFsCreate.exe [OPTIONS] DIRECTORY [IMAGE_NAME]

Create a read only filesystem container from a directory

Options are:

--create-c-file BASE_NAME Create a C file that contains your data,

 and a coresponding header defining it.

 The files created are BASE_NAME.c and BASE_NAME.h

 IMAGE_NAME is used as the identifier of the RomFS

 binary blob

--output-dir OUTPUT_DIR Specify the output directory for the generated files.

 This directory must exist.

--max-size N Specify a maximum size for your container

-h or --help Display this help

For usage options see the list below.

You have the following options:

Create a RomFS container
GtfRomFsCreate.exe romfs_root_directory creates the file romfs_root_directory.romfs.
This file contains romfs_root_directory.

EB GUIDE documentation
Chapter 14. Creating a read-only file system (RomFS) container

Page 98 of 173

Create a RomFS container and specify the name of the resulting file
GtfRomFsCreate.exe romfs_root_directory image creates the file image.romfs. This file con-
tains romfs_root_directory.

Limit the size of the resulting container
Specify --max-size N on the command line. If the size limit you specify is exceeded, GtfRomFsCreate
emits an error message and stops putting files into the container. The maximum size max-size is defined
in bytes.

Create a RomFS container and put it, ready to use, in a C-array
GtfRomFsCreate.exe romfs_root_directory --create-c-file c_array creates the file
romfs_root_directory.romfs. This file contains romfs_root_directory .

Content is put in the file c_array.c as const unsigned char romfs_root_directory[] =
"...";. "..." is the content of the container encoded in C hexadecimal literals.

Additionally a c_array.h header file is created. The header file has an extern const unsigned char
romfs_root_directory[N]; forward declaration which you can include and use in your code.

The --max-size N parameter is respected.

Create a RomFS container, specify the name of the resulting file and put it, ready to use, in a C-array
GtfRomFsCreate.exe romfs_root_directory image --create-c-file c_array creates the
file image.romfs. This file contains romfs_root_directory. Content is put in file c_array.c as
const unsigned char romfs_root_directory[] = "...";.

"..." is the content of the container encoded in C heximal literals.

Additionally a c_array.h header file is created. This header file has an extern const unsigned
char romfs_root_directory[N]; forward declaration, which you can include and use in your code.

The --max-size N parameter is respected.

EB GUIDE documentation
Chapter 15. References

Page 99 of 173

15. References
The following chapter provides you with lists and tables for example parameters, properties, and identifiers.

15.1. Android events
Android events belong to the SystemNotifications event group and have event group ID 13.

Table 15.1. Android events

Event ID Name Description

1 RendererEnabled Is sent by the application when Android
lifecycle management stops or starts the
renderer

Parameters:

► enabled: If true, the renderer is en-
abled. If false, the renderer is set to
sleep mode.

2 setKeyboardVisibility Is sent by the EB GUIDE model if a virtual
keyboard is intended to be shown

Parameters:

► visibility: If true, a virtual key-
board is made visible. If false, it is in-
visible.

3 onKeyboardVisibilityChanged Is sent by the application if a virtual key-
board is shown

Parameters:

► visibility: If true, a virtual key-
board is visible. If false, it is invisible.

4 onLayoutChanged Is sent by the application when the visible
area of the screen changes

Parameters (in pixels):

► x: The x-coordinate of the top left cor-
ner of the visible screen area

EB GUIDE documentation
Chapter 15. References

Page 100 of 173

Event ID Name Description

► y: The y-coordinate of the top left cor-
ner of the visible screen area

► width: The width of the visible
screen area

► height: The height of the visible
screen area

15.2. Datapool items
Table 15.2. Properties of a datapool item

Property name Description

Value The initial value of the datapool item

If the value is provided by EB GUIDE Studio, the exporter provides the property
value to EB GUIDE GTF. Otherwise EB GUIDE GTF initializes the property val-
ue at system start-up.

Read-only If true, only internal communication is available. Value is static during run-time
and only changes if you reinitialize it at language switching.

If false, external communication is available. Value can change during run-time.

Reader ID The address that the reader’s communication context uses to access the dat-
apool item. If Reader ID is not defined, it is calculated automatically. If you
modify an EB GUIDE model, it is possible that the Reader ID for the datapool
item changes.

Reader context The communication context which is notified about changed values and reacts
on value changes.

Writer ID The address that the writer’s communication context uses to access the dat-
apool item. If Writer ID is not defined, it is calculated automatically. If you
modify an EB GUIDE model, it is possible that the Writer ID for the datapool
item changes.

Writer context The communication context which writes new values

Windowed Available in lists only

If true, EB GUIDE TF handles the datapool item in windowed list operating
mode. No default value is used for initialization.

If false, EB GUIDE TF handles the datapool item in standard list operating
mode.

EB GUIDE documentation
Chapter 15. References

Page 101 of 173

15.3. Data types
The following section describes data types in EB GUIDE. You can add user-defined properties and datapool
items from the types listed below.

15.3.1. 3D graphic

3D graphics use a three-dimensional representation of geometric data to perform calculations and render 2D
images.

For supported file types, see section 15.8.4, “3D widgets”.

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store 3D graphics in a list. For details about lists, see section 15.3.9, “List”.

15.3.2. Boolean

Boolean properties can have the values true and false.

Available operations are as follows:

► equal (==)

► not equal (!=)

► negation (!)

► and (&&)

► or (||)

► assign (writable properties) (=)

It is possible to store boolean properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.3. Color

Colors are stored in the RGBA8888 format.

EB GUIDE documentation
Chapter 15. References

Page 102 of 173

Example: Red without transparency is (255, 0, 0, 255).

Available operations are as follows:

► equal (==)

► not equal (!=)

► assign (writable properties) (=)

It is possible to store color properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.4. Conditional script

Conditional scripts are used to react on initialization and on trigger. When you edit conditional scripts, the
content area is divided into the following sections.

► The Trigger drop-down list box contains a list of events and datapool items that trigger the execution of
the On trigger script.

► The On trigger script is called on initialization, after an event trigger, or after a value update of a datapool
item..

The parameter of the On trigger script indicates the cause for the execution of the script.

The return value of the On trigger script controls change notifications for the property.

If true, it triggers a change notification.

If false, it does not trigger a change notification.

15.3.5. Float

Float-point number data type represents a single-precision 32-bit IEEE 754 value.

Available operations are as follows:

► equal (==)

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

EB GUIDE documentation
Chapter 15. References

Page 103 of 173

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► assign (writable properties) (=)

It is possible to store float properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.6. Font

To add a font to an EB GUIDE project, copy the font file in the following directory: $GUIDE_PROJECT_PATH/
<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store font properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.7. Image

To add an image to an EB GUIDE project, copy the image file in the following directory: $GUIDE_PROJECT_-
PATH/<project name>/resources

Available operations are as follows:

► assign (writable properties) (=)

It is possible to store image properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.8. Integer

EB GUIDE supports signed 32-bit integers.

Available operations are as follows:

► equal (==)

EB GUIDE documentation
Chapter 15. References

Page 104 of 173

► not equal (!=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► addition (+)

► subtraction (-)

► multiplication (*)

► division (/)

► modulo (%)

► assign (writable properties) (=)

It is possible to store integer properties in a list. For details about lists, see section 15.3.9, “List”.

15.3.9. List

EB GUIDE supports a list of values with the same data type.

The following list types are available:

► 3D graphic list

► Boolean list

► Color list

► Float list

► Font list

► Image list

► Integer list

► String list

The following types cannot be used in lists:

► List

► Property reference

► List element reference

Available operations are as follows:

EB GUIDE documentation
Chapter 15. References

Page 105 of 173

► length: (length)

► element accessor: ([])

15.3.10. String
EB GUIDE supports character strings, for example Hello world.

Available operations are as follows:

► equal (case sensitive) (==)

► not equal (case sensitive) (!=)

► equal (case insensitive, only in the ASCII range) (=aA=)

► greater (>)

► greater or equal (>=)

► less (<)

► less or equal (<=)

► concatenation (+)

► assign (writable properties) (=)

It is possible to store string properties in a list. For details about lists, see section 15.3.9, “List”.

15.4. EB GUIDE Script

15.4.1. EB GUIDE Script keywords
The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

Keyword Description

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

l: A language follows.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

EB GUIDE documentation
Chapter 15. References

Page 106 of 173

Keyword Description

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

font: A font resource follows, for example {PT Sans,12}.

if A statement which tests a boolean expression follows. If the expression is true,
the statement is executed.

image: An image resource follows.

in Is a separator between a local variable declaration and the variable's scope of
usage

Is used with match_event and let.

function Declares a function

length The length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows.

view: A view follows.

while Repeats a statement as long as the condition is true

15.4.2. EB GUIDE Script operator precedence
The following is a list of the operators in EB GUIDE Script together with their precedence and associativity.
Operators are listed top to bottom, in descending precedence.

Table 15.3. EB GUIDE Script operator precedence

Operator Associativity

(()), ({}) none

EB GUIDE documentation
Chapter 15. References

Page 107 of 173

Operator Associativity

([]) none

(->) left

(.) none

(::) left

length none

(&) right

(!), (-) unary minus right

(*), (/), (%) left

(+), (-) left

(<), (>), (<=), (>=) left

(!=), (==), (=Aa=) left

(&&) left

(||) left

(=), (+=), (-=), (=>) right

(,) right

(;) left

15.4.3. EB GUIDE Script standard library

The following chapter provides a description of all EB GUIDE Script functions.

15.4.3.1. EB GUIDE Script functions A

15.4.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 15.4. Parameters of abs

Parameter Type Description

x integer The number to return the absolute value from

<return> integer The return value

EB GUIDE documentation
Chapter 15. References

Page 108 of 173

15.4.3.1.2. absf

The function returns the absolute value of the float number x.

Table 15.5. Parameters of absf

Parameter Type Description

x float The number to return the absolute value from

<return> float The return value

15.4.3.1.3. acosf

The function returns the principal value of the arc cosine of x.

Table 15.6. Parameters of acosf

Parameter Type Description

x float The number to return the arc cosine from

<return> float The return value

15.4.3.1.4. animation_before

The function checks if an animation running backwards has already passed a given point in time.

Table 15.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

15.4.3.1.5. animation_beyond

The function checks if an animation running forward has already passed a given point in time.

Table 15.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

EB GUIDE documentation
Chapter 15. References

Page 109 of 173

Parameter Type Description

time integer The point in time

<return> boolean If true, the animation has passed the point in time.

15.4.3.1.6. animation_cancel

The function cancels an animation and leaves edited properties in the current state.

Table 15.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.7. animation_cancel_end

The function cancels an animation and sets edited properties to the end state where possible.

Table 15.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.8. animation_cancel_reset

The function cancels an animation and resets edited properties to the initial state where possible.

Table 15.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.9. animation_pause

The function pauses an animation.

EB GUIDE documentation
Chapter 15. References

Page 110 of 173

Table 15.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the function succeeded.

15.4.3.1.10. animation_play

The function starts or continues an animation.

Table 15.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

15.4.3.1.11. animation_reverse

The function plays an animation backwards.

Table 15.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is not running yet.

15.4.3.1.12. animation_running

The function checks if an animation is currently running.

Table 15.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean If true, the animation is running.

15.4.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

EB GUIDE documentation
Chapter 15. References

Page 111 of 173

Table 15.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean If true, the function succeeded.

15.4.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

Table 15.17. Parameters of asinf

Parameter Type Description

x float The number to return the arc sine from

<return> float The return value

15.4.3.1.15. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 15.18. Parameters of atan2f

Parameter Type Description

y float Argument y

x float Argument x

<return> float The return value

15.4.3.1.16. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 15.19. Parameters of atan2i

Parameter Type Description

y integer Argument y

EB GUIDE documentation
Chapter 15. References

Page 112 of 173

Parameter Type Description

x integer Argument x

<return> float The return value

15.4.3.1.17. atanf

The function calculates the principal value of the arc tangent of x.

Table 15.20. Parameters of atanf

Parameter Type Description

x float The number to return the arc tangent from

<return> float The return value

15.4.3.2. EB GUIDE Script functions C - H

15.4.3.2.1. ceil

The function returns the smallest integral value that is not less than the argument.

Table 15.21. Parameters of ceil

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

Table 15.22. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE documentation
Chapter 15. References

Page 113 of 173

15.4.3.2.3. character2unicode

The function returns the Unicode value of the first character in a string.

Table 15.23. Parameters of character2unicode

Parameter Type Description

str string The input string

<return> integer The character as Unicode

0 in case of errors

15.4.3.2.4. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 15.24. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

15.4.3.2.5. color2string

The function converts a color to eight hexadecimal values.

Table 15.25. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as a string of hexadecimal digits with # as
prefix

NOTE Formatting examples
The format of the returned string is #RRGGBBAA with two digits for each of the color chan-
nels red, green, blue and alpha.

For example, opaque pure red is converted to "#ff0000ff", semi-transparent pure green is
converted to "#00ff007f".

15.4.3.2.6. cosf

The function returns the cosine of x, where x is given in radians.

EB GUIDE documentation
Chapter 15. References

Page 114 of 173

Table 15.26. Parameters of cosf

Parameter Type Description

x float The number to return the cosine from

<return> float The return value

15.4.3.2.7. deg2rad

The function converts an angle from degrees to radians.

Table 15.27. Parameters of deg2rad

Parameter Type Description

x float The angle to convert from degrees to radians

<return> float The return value

15.4.3.2.8. expf

The function returns the value of e (the base of natural logarithms) raised to the power of x.

Table 15.28. Parameters of expf

Parameter Type Description

x float The exponent

<return> float The return value

15.4.3.2.9. float2string

The function converts simple float to string.

Table 15.29. Parameters of float2string

Parameter Type Description

value float The value to convert to string

<return> string The float value, formatted as string

15.4.3.2.10. floor

The function returns the largest integral value not greater than the parameter value.

EB GUIDE documentation
Chapter 15. References

Page 115 of 173

Table 15.30. Parameters of floor

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.2.11. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 15.31. Parameters of focusNext

Parameter Type Description

<return> void

15.4.3.2.12. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 15.32. Parameters of focusPrevious

Parameter Type Description

<return> void

15.4.3.2.13. formatFloat

The function converts advanced float to string.

Table 15.33. Parameters of formatFloat

Parameter Type Description

minStrLen integer The minimum length of the result string

maxStrLen integer The maximum length of the result string

minPrecision integer The minimum number of decimal places

maxPrecision integer The maximum number of decimal places

showAbsolute-

Value

boolean If true, a negative value is negated and thus turned positive.

alwaysShowSign boolean If true, the sign of value is shown.

EB GUIDE documentation
Chapter 15. References

Page 116 of 173

Parameter Type Description

roundingMode integer The rounding mode for limiting the result string to the maximum
length.

Possible values:

► 0: trunc

► 1: round

fillStyle integer The character for filling up the result string to the minimum
length.

Possible values:

► 0: fills with blanks

► 1: fills with zeros

value float The number to format

<return> string The formatted result string

15.4.3.2.14. formatInteger

The function converts advanced integer to string.

Table 15.34. Parameters of formatInteger

Parameter Type Description

minStrLen integer The minimum length of the result string

maxStrLen integer The maximum length of the result string

showAbsolute-

Value

boolean If true, a negative value is negated and thus turned positive.

alwaysShowSign boolean If true, the sign of value is shown.

fillStyle integer The character for filling up the result string to the minimum
length.

Possible values:

► 0: fills with blanks

► 1: fills with zeros

base integer Possible values:

► 2: binary

EB GUIDE documentation
Chapter 15. References

Page 117 of 173

Parameter Type Description

► 10: decimal

► 16: hexadecimal

value integer The number to format

<return> string The formatted result string

15.4.3.2.15. getTextHeight

The function returns the height of a text with regard to its font resource.

Table 15.35. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The height of the text

15.4.3.2.16. getTextLength

The function returns the number of characters in a text.

Table 15.36. Parameters of getTextLength

Parameter Type Description

text string The text to evaluate

<return> integer The number of characters in the text

15.4.3.2.17. getTextWidth

The function returns the width of a text with regard its font resource.

Table 15.37. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate

<return> integer The width of the text

EB GUIDE documentation
Chapter 15. References

Page 118 of 173

15.4.3.2.18. has_list_window

The function checks if the index is valid for a datapool item of type list. For windowed lists it also checks if the
index is located inside at least one window.

Table 15.38. Parameters of has_list_window

Parameter Type Description

itemId dp_id The ID of the datapool item of type list

index integer The index within the datapool item

<return> boolean If true, the index within a datapool item is valid and located in-
side at least one window.

15.4.3.2.19. hsba2color

The function converts an HSB/HSV color to a GTF color.

Table 15.39. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

brightness integer The brightness in percent

alpha integer The alpha value between 0 (totally transparent) and 255
(opaque)

<return> color The resulting GTF color with the alpha value applied

15.4.3.3. EB GUIDE Script functions I - R

15.4.3.3.1. int2float

The function returns the integer value converted to a float point value.

Table 15.40. Parameters of int2float

Parameter Type Description

value integer The value to convert to float

<return> float The integer value, converted to float

EB GUIDE documentation
Chapter 15. References

Page 119 of 173

15.4.3.3.2. int2string

The function converts a simple integer to string.

Table 15.41. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

15.4.3.3.3. isDynamicStateMachineActive

The function checks if the state with the dynamic state machine list is active.

Table 15.42. Parameters of isDynamicStateMachineActive

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

15.4.3.3.4. language

The function switches the language of all datapool items.

Table 15.43. Parameters of language

Parameter Type Description

language languageType The language to switch to, for example
l:MyUserDefinedLanguageName

<return> void

15.4.3.3.5. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 15.44. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted day

EB GUIDE documentation
Chapter 15. References

Page 120 of 173

15.4.3.3.6. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 15.45. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted hour

15.4.3.3.7. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 15.46. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted minute

15.4.3.3.8. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 15.47. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted month

15.4.3.3.9. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 15.48. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted second

EB GUIDE documentation
Chapter 15. References

Page 121 of 173

15.4.3.3.10. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 15.49. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted weekday

15.4.3.3.11. localtime_year

The function extracts the year from the local time of a system time value.

Table 15.50. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system time

<return> integer The extracted year

15.4.3.3.12. log10f

The function returns the base 10 logarithm of x.

Table 15.51. Parameters of log10f

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.3.13. logf

The function returns the natural logarithm of x.

Table 15.52. Parameters of logf

Parameter Type Description

x float The argument

<return> float The return value

EB GUIDE documentation
Chapter 15. References

Page 122 of 173

15.4.3.3.14. nearbyint

The function rounds to nearest integer.

Table 15.53. Parameters of nearbyint

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.3.15. popDynamicStateMachine

The function removes the dynamic state machine on the top of the priority queue.

Table 15.54. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

15.4.3.3.16. powf

The function returns the value of x raised to the power of y.

Table 15.55. Parameters of powf

Parameter Type Description

x float The argument x

y float The argument y

<return> float The return value

15.4.3.3.17. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 15.56. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE documentation
Chapter 15. References

Page 123 of 173

15.4.3.3.18. rad2deg

The function converts an angle form radians to degree.

Table 15.57. Parameters of rad2deg

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.3.19. rand

The function gets a random value between -231 and 231-1.

Table 15.58. Parameters of rand

Parameter Type Description

<return> integer A random number between -231 and 231-1

15.4.3.3.20. request_runlevel

The function requests the framework to switch to a different run level. The only supported run level is 0, meaning
to shutdown the program.

Table 15.59. Parameters of request_runlevel

Parameter Type Description

runlevel integer The requested run level

<return> void

15.4.3.3.21. rgba2color

The function converts from RGB color space to GTF color.

Table 15.60. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

EB GUIDE documentation
Chapter 15. References

Page 124 of 173

Parameter Type Description

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to GTF color, with
the alpha value applied

15.4.3.3.22. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 15.61. Parameters of round

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.4. EB GUIDE Script functions S - W

15.4.3.4.1. seed_rand

The function sets the seed of the random number generator.

Table 15.62. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

15.4.3.4.2. sinf

The function returns the sine of x, where x is given in radians.

Table 15.63. Parameters of sinf

Parameter Type Description

x float The argument

<return> float The return value

EB GUIDE documentation
Chapter 15. References

Page 125 of 173

15.4.3.4.3. sqrtf

The function returns the non-negative square root of x.

Table 15.64. Parameters of sqrtf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.4.4. string2float

The function converts the initial part of a string to float.

The expected form of the initial part of the string is as follows:

1. An optional leading white space

2. An optional plus ('+') or minus ('-') sign

3. One of the following:

► A decimal number

► A hexadecimal number

► An infinity

► An NAN (not-a-number)

Table 15.65. Parameters of string2float

Parameter Type Description

str string The string value

<return> float The return value

15.4.3.4.5. string2int

The function converts the initial part of a string to integer. The result is clipped to the range from 2147483647 to
-2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 15.66. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer The return value

EB GUIDE documentation
Chapter 15. References

Page 126 of 173

15.4.3.4.6. string2string

The function formats strings.

Table 15.67. Parameters of string2string

Parameter Type Description

str string The string to format

len integer The maximum length of the string

<return> string The language string

15.4.3.4.7. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns "abc".

► substring("abc", 0, -2) returns "ab".

Table 15.68. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

endIndex integer The first character index that is not part of the result

<return> string The language string

15.4.3.4.8. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 15.69. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

15.4.3.4.9. system_time_ms

The function gets the current system time in milliseconds.

EB GUIDE documentation
Chapter 15. References

Page 127 of 173

Table 15.70. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

15.4.3.4.10. tanf

The function returns the tangent of x, where x is given in radians.

Table 15.71. Parameters of tanf

Parameter Type Description

x float The argument

<return> float The return value

15.4.3.4.11. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 15.72. Parameters of >trace_dp

Parameter Type Description

itemId dp_id The datapool ID of the item to trace debug information about

<return> void

15.4.3.4.12. trace_string

The function writes a string to the trace log and the connection log.

Table 15.73. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

15.4.3.4.13. transformToScreenX

The function takes a widget and a local coordinate and returns x position in the screen-relative world coordinate
system.

EB GUIDE documentation
Chapter 15. References

Page 128 of 173

Table 15.74. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The x position of the screen coordinate

15.4.3.4.14. transformToScreenY

The function takes a widget and a local coordinate and returns Y position of a position in the screen-relative
world coordinate system.

Table 15.75. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The y position of the screen coordinate

15.4.3.4.15. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x position
in the widget-relative local coordinate system.

Table 15.76. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The x position of the local coordinate

15.4.3.4.16. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y position
in the widget-relative local coordinate system.

EB GUIDE documentation
Chapter 15. References

Page 129 of 173

Table 15.77. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The y position of the local coordinate

15.4.3.4.17. trunc

The function rounds to the nearest integer value, always towards zero.

Table 15.78. Parameters of trunc

Parameter Type Description

value float The value to round

<return> integer The rounded value

15.4.3.4.18. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 15.79. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of child widgets

<return> integer The number of child widgets

15.5. Events
Table 15.80. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group The name of the event group

An event group has an ID that EB GUIDE TF uses to send and receive the
event.

EB GUIDE documentation
Chapter 15. References

Page 130 of 173

15.6. Scenes
Table 15.81. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are
rendered on a target device

width The width of the area in which the views of a haptic state machine are
rendered on a target device

x The x offset of the area in which the views of a haptic state machine
are rendered on a target device

y The y offset of the area in which the views of a haptic state machine
are rendered on a target device

visible If true, the state machine and its child widgets are visible.

projectName The name of the EB GUIDE project

windowCaption The text that is shown on the window frame

sceneID The unique scene identifier which can be used, for example, for input
handling

maxFPS The redraw rate (FPS = Frames per second)

Set to 0 for an unlimited redraw rate.

hwLayerID The ID of the hardware layer on the target device's display that is
mapped to the current state machine

colorMode Possible values:

► 1: 32 bit

► 2: 16 bit

multisampling Possible values:

► Off (= 0): no multisampling

► 2x (=1): 2x multisamling

► 4x (=2): 4x multisampling

enableRemoteFramebuffer If true, transfer of the off-screen buffer to the simulation window is en-
abled

showWindowFrame If true, a frame is displayed on the simulation window. The frame allows
the window to be grabbed and moved.

showWindow If true, an additional window for simulation is opened on Windows
based systems.

EB GUIDE documentation
Chapter 15. References

Page 131 of 173

Property name Description

disableVSync If true, vertical synchronization for the renderer is disabled.

showFPS Possible values:

► 0: Do not show FPS

► 1: Show FPS on the screen

► 2: Show FPS on the console

► 3: Show FPS on the screen and on the console

Renderer Defines a renderer for the scene.

Possible values:

► DirectX

► OpenVG

► OpenGL

TIP Settings for multisampling
The higher the resolution for multisampling is the better the quality of the rendering result.
However, be aware that multisampling decreases the rendering performance, especially on
a target device. At small displays with high resolution the multisampling has almost no effect.

Start with no multisampling and, if the performance is good, try the settings 2x or 4x multi-
sampling. If there is no big difference with higher multisampling, use a lower setting.

15.7. Touch screen types supported by EB GUIDE
GTF
The supported types depend on the target device.

Table 15.82. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

EB GUIDE documentation
Chapter 15. References

Page 132 of 173

Value Description Platform

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

5 General platform-dependent multitouch
touch-screen interface

Linux

15.8. Widgets

15.8.1. View
Table 15.83. Properties of a view

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget

y The y coordinate of the widget

View templates have additional properties for view transition animations. An entry animation is executed when
the view in entered.

Table 15.84. Properties of an entry animation

Property name Description

Entry animation If true, instances of the view template have an entry animation.

Type The type of the entry animation, for example Move in from left, Fade in from
center or Show view immediately.

Duration The duration of the entry animation in milliseconds

Delay The delay of the entry animation in milliseconds

Play after exit an-

imation

If true, the start time of the entry animation depends on the duration of a previ-
ous exit animation.

An exit animation is executed when the view is exited.

EB GUIDE documentation
Chapter 15. References

Page 133 of 173

Table 15.85. Properties of an exit animation

Property name Description

Exit animation If true, instances of the view template have an exit animation.

Type The type of the exit animation, for example Move out to top, Fade out to cen-
ter or Hide view immediately.

Duration The duration of the exit animation in milliseconds

Delay The delay of the exit animation in milliseconds

15.8.2. Basic widgets
There are five basic widgets.

► Label

► Image

► Rectangle

► Container

► Instantiator

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

15.8.2.1. Label

A label places text into a view.

Table 15.86. Properties of the label

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 15. References

Page 134 of 173

Property name Description

y The y coordinate of the widget relative to its parent widget

text The text the label displays

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label

verticalAlign The vertical alignment of the text within the boundaries of the label

15.8.2.2. Rectangle

A rectangle draws a colored rectangle with the dimensions and coordinates of the widget into a view.

Table 15.87. Properties of the rectangle

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

15.8.2.3. Image

An image places a picture into a view.

Table 15.88. Properties of the image

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 15. References

Page 135 of 173

Property name Description

image The image the widget displays

horizontalAlign The horizontal alignment of the image file within the boundaries of the widget

verticalAlign The vertical alignment of the image file within the boundaries of the widget

NOTE Supported image file types
The available image formats depend on the implementation of the renderer. DirectX 11 and
OpenGL ES 2.0 support PNG files and JPEG files.

In addition to that, the OpenVG renderer supports SVG files.

15.8.2.4. Container

A container holds several widgets as child widgets and thus groups the widgets.

Table 15.89. Properties of the container

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true, the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

15.8.2.5. Instantiator

An instantiator creates widget instances during run-time. You can use the instantiator to model lists or tables.
The child widgets of an instantiator serve as line templates for the list or table which is created during run-time.

Table 15.90. Properties of the instantiator

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible If true the widget and its child widgets are visible

x The x coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 15. References

Page 136 of 173

Property name Description

y The y coordinate of the widget relative to its parent widget

numItems The number of instantiated child elements

lineMapping Defines which child is the template for which line

15.8.3. Animations

The following sections list the properties of the widgets in the Animations category.

15.8.3.1. Animation

An animation influences its parent widget. An animation requires at least one curve as a child widget.

Table 15.91. Properties of the animation

Property name Description

name The name of the animation

alternating Defines if the animation is executed repeatedly

repeat The number of repetitions, 0 for infinite number

enabled Defines if the animation is executed

scale The factor by which the animation time is multiplied

onPause The reaction that is executed when the animation is paused. Parameter: Current
animation time.

onPlay The reaction that is executed when the animation is started or continued. Para-
meters: Start time and play direction (true for forwards, false for backwards)

onTerminate The reaction that is executed when the animation completes. First parameter:
Animation time. Second parameter: Reason for the termination, encoded as fol-
lows:

► 0: Animation is completed

► 1: Animation is cancelled, triggered by f:animation_cancel

► 2: Widget is destroyed due to view transition

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset

EB GUIDE documentation
Chapter 15. References

Page 137 of 173

15.8.3.2. Constant curves

A constant curve sets a target value after a defined delay. Constant curves are available for integer, boolean,
float, and color types.

Table 15.92. Properties of constant curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

value The resulting constant value

15.8.3.3. Fast start curves

A fast start curve periodically sets a value that increases fast in the beginning but loses speed constantly until
the end. Fast start curves are available for integer, float, and color types.

Table 15.93. Properties of fast start curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

startt The initial value

end The final value

EB GUIDE documentation
Chapter 15. References

Page 138 of 173

15.8.3.4. Slow start curves

A slow start curve periodically sets a value that increases slowly in the beginning but rises constantly until the
end. Slow start curves are available for integer, float, and color types.

Table 15.94. Properties of slow start curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

15.8.3.5. Quadratic curves

A quadratic curve periodically sets a value using a quadratic function curve. Quadratic curves are available
for integer, float, and color types.

Table 15.95. Properties of quadratic curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

acceleration The acceleration of the curve

constant The constant value to calculate the result

EB GUIDE documentation
Chapter 15. References

Page 139 of 173

15.8.3.6. Sinus curves

A sinus curve periodically sets a value using a sinus function curve. Sinus curves are available for integer,
float, and color types.

Table 15.96. Properties of sinus curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

phase The angular phase translation in degrees

frequency The frequency of the curve in hertz

15.8.3.7. Script curves

A script curve sets a value using a curve that is described by EB GUIDE Script. Script curves are available
for integer, boolean, float, and color types.

Table 15.97. Properties of script curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

curve The resulting curve function

EB GUIDE documentation
Chapter 15. References

Page 140 of 173

15.8.3.8. Linear curves

A linear curve periodically sets a value using a linear progression curve. Linear curves are available for integer,
float, and color types.

Table 15.98. Properties of linear curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

15.8.3.9. Linear interpolation curves

A linear interpolation curve periodically sets a value using a linear interpolation curve. Linear interpolation
curves are available for integer, float, and color types.

Table 15.99. Properties of linear interpolation curves

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration The duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

EB GUIDE documentation
Chapter 15. References

Page 141 of 173

15.8.4. 3D widgets

15.8.4.1. 3D graphic

A 3D graphic places a 3D object into a view.

Table 15.100. Properties of the 3D graphic

Property name Description

3D graphic The 3D graphic file to be displayed

NOTE Supported 3D graphic format
Only the OpenGL ES 2.0 and DirectX 11 renderers can display 3D graphics. The supported
3D graphic format is Collada (.dae).

15.9. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

15.9.1. Common

15.9.1.1. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area.

Table 15.101. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, the truncationPolicy property defines the position of
the truncation. Possible values:

► leading (=0): Text is replaced at the beginning of the text

► trailing (=1): Text is replaced at the end of the text

EB GUIDE documentation
Chapter 15. References

Page 142 of 173

Property name Description

For multi-line texts, the truncationPolicy property defines where text is re-
placed. Possible values:

► leading (=0): Lines at the beginning are replaced and text of the first vis-
ible line is truncated at the beginning of the text.

► trailing (=1) Lines at the end are replaced and text of the last visible
line is truncated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

NOTE Labels with bi-directional texts
Text that contains two text directions, right-to-left and left-to-right, is called bi-directional text.
In case of bi-directional text, the truncation symbol is added with respect to the text, but not
to its formatting. This means:

► If you use leading the truncation symbol is added to the left-hand side of the first
visible line.

► If you use trailing the truncation symbol is added to the right-hand side of the last
visible line.

15.9.1.2. Enabled

The Enabled widget feature adds an enabled property to a widget.

Table 15.102. Properties of the Enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

15.9.1.3. Selected

The Selected widget feature adds a selected property to a widget. It is typically set by the application or the
HMI modeler. It is not changed by any other component of the framework.

Table 15.103. Properties of the Selected widget feature

Property name Description

selected If true, the widget is selected

15.9.1.4. Focused

EB GUIDE documentation
Chapter 15. References

Page 143 of 173

The Focused widget feature enables a widget to have input focus.

Table 15.104. Properties of the Focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► not focusable (=0)

► only by touch (=1)

► only by key (=2)

► focusable (=3)

focused If true, the widget has focus

15.9.1.5. Touched

The Touched widget feature enables a widget to react to touch input.

Table 15.105. Properties of the Touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react (=0)

Press first, then the widget reacts. Notifications of moving and releasing are
only active within the widget area.

► Press and grab (=1)

Press to grab the contact. The contact remains grabbed even if it moves
away from the widget area.

► Press then react on contact (=3)

Even if the contact enters the pressed state outside the widget boundaries,
the subsequent move and release events are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

► Whole area (=0)

To identify the touched widget, the renderer evaluates the widget's clipping
rectangle.

EB GUIDE documentation
Chapter 15. References

Page 144 of 173

Property name Description

► Visible pixels (=1)

To identify the touched widget, the renderer evaluates the widget the
touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Combining the Touched widget feature with the Pressed widget feature allows modeling a push button.

TIP Performance recommendation:

If performance is an important issue in your project, set the touchBehavior property to
Whole area. EB GUIDE GTF evaluates Whole area faster than Visible pixels.

15.9.1.6. Pressed

The Pressed widget feature defines that a widget can be pressed.

Table 15.106. Properties of the Pressed widget feature

Property name Description

pressed If true, a key is pressed while the widget is focused

Combining the Touched widget feature with the Touch pressed widget feature allows modeling a push button.

15.9.1.7. Child visibility selection

The Child visibility selection widget feature handles the visibility of child widgets. Only the content of one
child widget is visible at a time.

Table 15.107. Properties of the Child visibility selection widget feature

Property name Description

containerIndex The index of the child widgets of the parent widget

containerMapping If a mapping is set, each child of the container is re-addressed by its appropriate
value in containerMapping.

If a mapping is not set, undefined, or if the length does not match the number
of child widgets in the container, the mapping is not used. Instead, the order of
widgets in the widget tree is used as their index. The topmost child has index 0,
next index 1 etc.

EB GUIDE documentation
Chapter 15. References

Page 145 of 173

15.9.1.8. Multiple lines

The Multiple lines widget feature enables line breaks for a label widget.

Table 15.108. Properties of the Multiple lines widget feature

Property name Description

currentLineCount Defines the current number of lines. This value is set by the Multiple lines wid-
get feature at runtime. The value depends for example on the settings for text
and the line gap.

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

maxLineCount The number of visible lines

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

15.9.1.9. Selection group

The Selection group widget feature is used to model an array of radio buttons. In an array, every radio button
has the Selection group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an external application that sets
the buttonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding
a condition that sets the button value.

Table 15.109. Properties of the Selection group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is se-
lected.

15.9.1.10. Spinning

EB GUIDE documentation
Chapter 15. References

Page 146 of 173

The Spinning widget feature turns a widget into a rotary button. A widget with the Spinning widget feature
reacts to increment and decrement events by changing an internal value. The Spinning widget feature can be
used to create a scale, a progress bar, or a widget with a preview value.

Table 15.110. Properties of the Spinning widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction The reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the current-
Value property

valueWrapAround Possile values:

► true: The currentValue property continues at the inverse border, if min-
Value or maxValue is exceeded.

► false: The currentValue property does not decrease/increase, if min-
Value or maxValue is exceeded.

15.9.2. Focus

15.9.2.1. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

Table 15.111. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder The focusOrder property makes it possible to skip child widgets when assign-
ing focus. The ID of a child widget corresponds to its position in the subtree.
Child widgets that are not focusable are skipped by default. Order in which the
child widgets are focused:

EB GUIDE documentation
Chapter 15. References

Page 147 of 173

Property name Description

► defined: User-defined widget order is used

► not defined: Default widget order is used instead

Each child widget requires the Focused widget feature, otherwise widgets are
ignored for focus handling. Example: focusOrder=1|0|2 means the second wid-
get receives focus first, then the first widget receives focus, and finally the third
widget.

focusPrevious The trigger that assigns the focus to the previous child

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy level (=0)

► wrap within hierarchy level (=1)

► step up in hierarchy (=2)

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

15.9.2.2. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. Focusable
child widgets cannot be skipped. A widget with the Auto focus widget feature manages a local focus hierarchy
for its widget subtree. The Auto focus widget feature checks the widget subtree for child widgets with the
focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Table 15.112. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrevious The condition on which the focus index is decremented

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► stop at hierarchy (=0)

► wrap within hierachy level (=1)

► step up in hierarchy (=2)

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

EB GUIDE documentation
Chapter 15. References

Page 148 of 173

Property name Description

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

15.9.3. Input handling

15.9.3.1. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Table 15.113. Properties of the Move over widget feature

Property name Description

moveOver The widget's reaction on a movement within its boundaries

15.9.3.2. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Table 15.114. Properties of the Move out widget feature

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

15.9.3.3. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Table 15.115. Properties of the Move in widget feature

Property name Description

moveIn The widget's reaction on a movement into its boundaries

15.9.3.4. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

EB GUIDE documentation
Chapter 15. References

Page 149 of 173

Table 15.116. Properties of the Touch pressed widget feature

Property name Description

touchPressed The widget's reaction on being pressed

15.9.3.5. Touch released

The Touch released widget feature enables a widget to react on being released.

Table 15.117. Properties of the Touch released widget feature

Property name Description

touchShortReleased The widget's reaction on being released

15.9.3.6. Touch grab lost

The Touch grab lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Table 15.118. Properties of the Touch grab lost widget feature

Property name Description

onTouchGrabLost The widget's reaction on a lost touch contact

15.9.3.7. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Table 15.119. Properties of the Touch status changed widget feature

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

15.9.3.8. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Table 15.120. Properties of the Touch move widget feature

Property name Description

touchMoved The widget's reaction on being touched and moved

EB GUIDE documentation
Chapter 15. References

Page 150 of 173

15.9.3.9. Gesture

The Gesture widget feature enables the widget to react on touch gestures.

The Gesture widget feature has no additional properties.

15.9.3.10. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Table 15.121. Properties of the Key pressed widget feature

Property name Description

keyPressed The widget's reaction on a key being pressed

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

15.9.3.11. Key unicode

The Key unicode widget feature enables a widget to react on Unicode key input.

Table 15.122. Properties of the Key unicode widget feature

Property name Description

keyUnicode The widget's reaction on a Unicode key input

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

15.9.3.12. Key released

The Key released widget feature enables a widget to react on a key being released.

Table 15.123. Properties of the Key released widget feature

Property name Description

keyShortReleased The widget's reaction on a key being released

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

EB GUIDE documentation
Chapter 15. References

Page 151 of 173

15.9.3.13. Key status changed

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Table 15.124. Properties of the Key status changed widget feature

Property name Description

keyLongPressed The widget's reaction on a key being pressed or released

Reaction argument:

► keyId: If true, the widget reacts on the incoming key event

15.9.3.14. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Table 15.125. Properties of the Rotary widget feature

Property name Description

rotaryReaction The widget's reaction on being rotated. If true, the widget reacts on an incoming
rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming event
is sent

15.9.3.15. Moveable

The Moveable widget feature enables a widget to be moved by touch.

Table 15.126. Properties of the Moveable widget feature

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► horizontal (=0)

► vertical (=1)

► free (=2)

EB GUIDE documentation
Chapter 15. References

Page 152 of 173

15.9.4. Gestures

15.9.4.1. Hold gesture

A hold gesture without movement

NOTE The Hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 15.127. Properties of the Hold gesture widget feature

Property name Description

holdDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a hold gesture

onGestureHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when holdDuration is expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: X coordinate of the contact position

► y: Y coordinate of the contact position

15.9.4.2. Long hold gesture

A long hold gesture without movement

NOTE The Long hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 15.128. Properties of the Long hold gesture widget feature

Property name Description

longHoldDuration The minimal time in milliseconds the contact must stay in place for the gesture to
be recognized as a long hold gesture

EB GUIDE documentation
Chapter 15. References

Page 153 of 173

Property name Description

onGestureLongHold The reaction that is triggered once the gesture is recognized. The reaction is
triggered only once per contact: when longHoldDuration has expired and the
contact still is in a small boundary box around the initial touch position

Reaction arguments:

► x: X coordinate of the contact position

► y: Y coordinate of the contact position

15.9.4.3. Flick gesture

A quick brush of a contact over a surface

Table 15.129. Properties of the Flick gesture widget feature

Property name Description

flickMaxTime The maximal time in milliseconds the contact may stay in place for the gesture to
be recognized as a flick gesture

onGestureFlick The reaction that is triggered once the gesture is recognized

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: X part of the direction vector of the gesture

► directionY: Y part of the direction vector of the gesture

flickMinLength The minimal distance in pixels a contact has to move on the surface to be recog-
nized as a flick gesture

15.9.4.4. Pinch gesture

Two contacts that move closer together or further apart

Table 15.130. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart The reaction that is triggered once the start of the gesture is recog-
nized. Reaction arguments:

► ratio: Current contact distance to initial contact distance ratio

EB GUIDE documentation
Chapter 15. References

Page 154 of 173

Property name Description

► centerX: X coordinate of the current center point between the two
contacts

► centerY: Y coordinate of the current center point between the two
contacts

onGesturePinchUpdate The reaction that is triggered when the pinch ratio or center point
change

onGesturePinchEnd The reaction that is triggered once the gesture is finished

pinchThreshold The minimal distance in pixels each contact has to move from its initial
position for the gesture to be recognized. Reaction arguments:

► Angle: Angle between the line specified by the initial position of the
two contacts and the line specified by the current position of the
two contacts. The angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two
contacts

► centerY: Y coordinate of the current center point between the two
contacts

15.9.4.5. Rotate gesture

Two contacts that move along a circle

Table 15.131. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart The reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate The reaction that is triggered when the recognized angle or center point
changes

onGestureRotateEnd The reaction that is triggered once the gesture is finished

rotateThreshold The minimal distance in pixels each contact has to move from its initial
position for the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, and onGestureRotateUpdate:

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two contacts

► centerY: Y coordinate of the current center point between the two contacts

EB GUIDE documentation
Chapter 15. References

Page 155 of 173

15.9.4.6. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

Table 15.132. Properties of the Path gesture widget feature

Property name Description

onPathStart The reaction that is triggered once a contact moves beyond the minimal box
(pathMinXBox, pathMinYBox.) Reaction argument:

► gestureId: ID of the path that was matched

onPathNotRecognized The reaction that triggered when the entered shape does not match. The reac-
tion is only triggered if onPathStart has been triggered already.

onPath The reaction that is triggered when the entered shape matches. The reaction is
only triggered if onPathStart has been triggered already.

pathMinXBox The X coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

pathMinYBox The Y coordinate of the minimal distance in pixels a contact must move so that
the path gesture recognizer starts considering the input

15.9.4.6.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 15.133. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

EB GUIDE documentation
Chapter 15. References

Page 156 of 173

ID Shape Description

3 Horizontal line right to left

4 Check mark

5 Wave shape left to right

6 Wave shape right to left

15.9.5. Effects

15.9.5.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Table 15.134. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

15.9.5.2. Coloration

EB GUIDE documentation
Chapter 15. References

Page 157 of 173

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 15.1.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

Table 15.135. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The coloration used. Possible values:

► Pure

► Opaque

► White

15.9.6. Layout

15.9.6.1. Absolute layout

The Absolute layout widget feature of a parent widget defines the position and size of the child widgets.
Invisible child widgets are ignored. The added widget feature properties consist of integer lists. Each list element
is mapped to one child widget.

Table 15.136. Properties of the Absolute layout widget feature

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for the child widgets.
Each list element is mapped to a child widget.

itemRightOffset An integer list that stores the offset from the right border for the child widgets.
Each list element is mapped to a child widget.

EB GUIDE documentation
Chapter 15. References

Page 158 of 173

Property name Description

itemTopOffset An integer list that stores the offset from the top border for the child widgets.
Each list element is mapped to a child widget.

itemBottomOffset An integer list that stores the offset from the bottom border for the child widgets.
Each list element is mapped to a child widget.

15.9.6.2. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 15.137. Properties of the Flow layout widget feature

Property name Description

horizontalChildAlign The horizontal alignment of child widgets

verticalChildAlign The vertical alignment of child widgets

► center (=0): The child widget is placed in the center.

► top (=1): The child widget is placed at the top

► bottom (=2): The child widget is placed at the buttom.

layoutDirection The direction in which the list elements i.e. the child widgets are posi-
tioned.

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

15.9.6.3. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 15.138. Properties of the Grid layout widget feature

Property name Description

numColumns Defines the number of columns

numRows Defines the number of rows

EB GUIDE documentation
Chapter 15. References

Page 159 of 173

Property name Description

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

15.9.6.4. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Table 15.139. Properties of the Box layout widget feature

Property name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the list elements i.e. the child widgets are positioned.

15.9.6.5. List layout

The List layout widget feature defines position and size of each child widget.

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiators to create the child widgets.

For details about the List index widget feature, refer to section 15.9.7.1, “List index”.

Table 15.140. Properties of the List layout widget feature

Property name Description

layoutDirection The direction in which the list elements i.e. the child widgets are positioned.

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

firstListIndex The list index of the first visible list element, defined by the widget feature

listLength The number of list elements

scrollValueMin The minimum scroll value, which is mapped to the beginning of the list

scrollValueMax The maximum scroll value, which is mapped to the end of the list

EB GUIDE documentation
Chapter 15. References

Page 160 of 173

Property name Description

scrollValue The current scroll value

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at
the list elements given in the scrollIndex property.

scrollOffset The amount of pixels to scroll the list

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is
translated to scrollIndex. The remaining offset is written to the scrollOff-
set property.

bounceValue The bounceValue property is zero as long as the scrollOffset property re-
sults in a position inside the valid scroll range. It has a positive value if the scroll
position exceeds the beginning of the list and a negative value if the scroll posi-
tion exceeds the end of the list. If bounceValue is added to scrollOffset,
the scroll position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll
range. scrollOffset is truncated if the user tries to scroll further.

wrapAround Possible values:

► true: The scrollValue property continues at the inverse border, if scrol-
lValueMin or scrollValueMax is exceeded.

► false: The scrollValue property does not decrease/increase, if scroll-
ValueMin or scrollValueMax is exceeded.

15.9.6.6. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout or the
Absolute layout widget feature.

Table 15.141. Properties of the Layout margins widget feature

Property name Description

topMargin The margin of the top border

bottomMargin The margin of the bottom border

leftMargin The margin of the left border

rightMargin The margin of the right border

15.9.6.7. Scale mode

The Scale mode widget feature defines how an image is displayed if its size differs from the size of the widget.

EB GUIDE documentation
Chapter 15. References

Page 161 of 173

Table 15.142. Properties of the Scale mode widget feature

Property name Description

scaleMode The scale mode of the image. Possible values:

► 0 = original size

► 1 = fit to size

► 2 = keep aspect ratio

15.9.7. List management

15.9.7.1. List index

The List index widget feature adds a listIndex property to a widget. It is intended to be used in combination
with the List layout widget feature.

Table 15.143. Properties of the List index widget feature

Property name Description

listIndex The index of the current widget in a list

15.9.7.2. Line index

The Line index widget feature adds a line index property to a widget. It is intended to be used in combination
with tables.

Table 15.144. Properties of the Line index widget feature

Property name Description

lineIndex The index of the current line in a table

15.9.7.3. Template index

The Template index widget feature adds a line template index property to a widget. It is intended to be used
in combination with instantiators.

Table 15.145. Properties of the Template index widget feature

Property name Description

lineTemplateIndex The index of the used line template

EB GUIDE documentation
Chapter 15. References

Page 162 of 173

15.9.7.4. View port

The View port widget feature clips oversized elements at the widget borders. It is intended to be used in
combination with containers or lists.

Table 15.146. Properties of the View port widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

15.9.8. Model

15.9.8.1. 3D graphic extension

The 3D graphic extension widget feature adds options to import its key-frame animations.

Requirements:

► The widget feature is available for 3D graphics.

Table 15.147. Properties of the 3D graphic extension widget feature

Property name Description

animationEnabled Defines if the 3D graphic's animation is imported and applied to the 3D graphic

animationTime Defines the current animation state in milliseconds

15.9.9. Transformations
Transformations modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

EB GUIDE documentation
Chapter 15. References

Page 163 of 173

6. Rotation around x-axis

15.9.9.1. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 15.148. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX The translation on the x-axis

translationY The translation on the y-axis

translationZ The translation on the z-axis if widget is a 3D graphic

15.9.9.2. Rotation

The Rotation widget feature is used to rotate the widget and its subtree.

Table 15.149. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX The rotation angle on the x-axis. This property only affects 3D graphics.

rotationAngleY The rotation angle on the y-axis. This property only affects 3D graphics.

rotationAngleZ The rotation angle on the z-axis

15.9.9.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree.

Table 15.150. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX The scaling on the x-axis in percent

scalingY The scaling on the y-axis in percent

scalingZ The scaling on the z-axis in percent if widget is a 3D graphic

EB GUIDE documentation
Chapter 15. References

Page 164 of 173

15.9.9.4. Shearing

The Shearing widget feature is used to distort widgets in the widget subtree.

Table 15.151. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY The shearing amount of x-axis by y-axis

shearingXbyZ The shearing amount of x-axis by z-axis if widget is a 3D graphic

shearingYbyX The shearing amount of y-axis by x-axis

shearingYbyZ The shearing amount of y-axis by z-axis if widget is a 3D graphic

shearingZbyX The shearing amount of z-axis by x-axis if widget is 3D.

shearingZbyY The shearing amount of z-axis by y-axis if widget is a 3D graphic

15.9.9.5. Pivot

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

Table 15.152. Properties of the Pivot widget feature

Property name Description

pivotX The pivot point on the x-axis relative to parent widget

pivotY The pivot point on the y-axis relative to parent widget

pivotZ The pivot point on the z-axis relative to parent widget if widget is a 3D graphic

15.9.10. Appearance

NOTE OpenVG for Appearance category
For the widget feature properties in the Appearance category, the OpenVG renderer is
required. To change the renderer, go to the project center, and click Configure > Profiles.

15.9.10.1. Rounded

The Rounded widget feature applies rounded corners to a rectangle widget.

EB GUIDE documentation
Chapter 15. References

Page 165 of 173

The widget feature affects images and labels only if the widget feature Border is selected.

Table 15.153. Properties of the Rounded widget feature

Property name Description

arcHeight The height of the arc which defines the rounding of the corner

arcWidth The width of the arc which defines the rounding of the corner

15.9.10.2. Fill pattern

The widget feature Fill pattern allows the usage of an image tile to fill a widget. It replaces the standard fill
color of the widget.

Requirements:

► This feature is available for rectangles and labels.

► This feature cannot be used in combination with the following features:

► Linear Fill Gradient

► Radial Fill Gradient

Table 15.154. Properties of the Fill pattern widget feature

Property name Description

fillPattern The image which is used as a pattern

fillTileMode Defines how the pattern is used

15.9.10.3. Linear fill gradient

The Linear fill gradient widget feature allows the usage of a linear gradient to fill a widget. It replaces the
standard fill color of the widget.

Requirements:

► The widget feature is available for rectangles, images, and labels.

Table 15.155. Properties of the Linear fill gradient widget feature

Property name Description

fillGradientColors The colors used for this gradient

fillGradientEndX The horizontal position of the end point for the line defining the gradient

fillGradientEndY The vertical position of the end point of the line defining the gradient

EB GUIDE documentation
Chapter 15. References

Page 166 of 173

Property name Description

fillGradientRamp The ramp values which define the gradient

fillGradientSpreadMode Defines if the ramp is repeated, reflected, or just ended

fillGradientStartX The horizontal position of the start point for the line which defines the
gradient

fillGradientStartY The vertical position of the end point of the line which defines the gradi-
ent

15.9.10.4. Radial fill gradient

The Radial fill gradient widget feature allows the usage of a radial gradient to fill a widget. It replaces the
standard fill color of the widget.

Requirements:

► The widget feature is available for rectangles, images, and labels.

Table 15.156. Properties of the Radial fill gradient widget feature

Property name Description

fillGradientCenterX The horizontal center position of the radial gradient

fillGradientCenterY The vertical center position of the radial gradient

fillGradientColors The colors used for this gradient

fillGradientFocusX The horizontal focus position of the radial gradient

fillGradientFocusY The vertical focus position of the radial gradient

fillGradientRadius The radius of the radial gradient

fillGradientRamp The ramp values which define the gradient

fillGradientSpreadMode Defines if the ramp is repeated, reflected, or just ended

Glossary

Page 167 of 173

Glossary

A
API Application programming interface

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of the EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target devices.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

Glossary

Page 168 of 173

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying an HMI with a graph-
ical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE product line. It
consists of EB GUIDE GTF and EB GUIDE STF. It is required to run an EB
GUIDE model.

G
global property See datapool item.

GUI Graphical user interface

H
HMI Human machine interface

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

P
project center All project-related functions are located in the project center, for example pro-

files and languages.

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

property A property is a name-value pair. The name is used as identifier, the value
contains data.

R

Glossary

Page 169 of 173

resource A resource is a data package that is part of the EB GUIDE project. Examples
for resources are fonts, images, 3D-objects. Resources are stored outside of
the EB GUIDE model, for example in files, depending on the operating system.

S
state A state defines the status of the state machine. States and state transitions

are modeled in state diagrams.

state machine A state machine is a set of states, transitions between those states, and ac-
tions. A state machine describes the dynamic behavior of the system.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

view transition animation A view transition animation defines a blending or fading animation for entering
or exiting a view.

W
widget A widget is a basic graphical element. Widgets are used for interaction with

a graphical user interface.

Index

Page 170 of 173

Index
Symbols
3D graphic

data type, 101
reference, 141
supported formats, 141

3D graphic extension
reference, 162

3D graphic list
data type, 101

3D widgets
reference, 141

A
absolute layout

reference, 157
action, 26
Android APK, 49
Android APK restrictions , 52
animation

reference, 136
API, 167
auto focus

reference, 147

B
basic widgets

reference, 133
boolean

data type, 101
boolean list

data type, 101
border

reference, 156
box layout

reference, 159

C
C++ exception, 53
child visibility selection

reference, 144
color

data type, 101
coloration

reference, 156
command line, 23, 48
communication context, 167
conditional script

data type, 102
configuration file, 25
constant curve

reference, 137
container

reference, 135

D
data type

3D graphic, 101
3D graphic list, 101
boolean, 101
boolean list, 101
color, 101
conditional script, 102
float, 102
font, 103
image, 103
integer, 103
list, 104
string, 105

datapool, 167
datapool item, 167

reference, 100
DirectX 11, 22, 40

E
EB GUIDE GTF, 167
EB GUIDE GTF SDK, 167
EB GUIDE Launcher, 50
EB GUIDE model, 33, 167
EB GUIDE Model Chooser, 49
EB GUIDE product line, 167
EB GUIDE Script, 167

Index

Page 171 of 173

EB GUIDE Script functions, 38
EB GUIDE SDK, 167
EB GUIDE Studio, 167
EB GUIDE Studio SDK;, 167
EB GUIDE TF, 167
effects

widget feature, 156
enabled

reference, 142
entry animation

reference, 132
event

reference, 129
exit animation

reference, 132

F
fast start curve

reference, 137
fill pattern

reference, 165
flick gesture

reference, 153
float

data type, 102
flow layout

reference, 158
focused

reference, 142
font

data type, 103

G
gesture

reference, 150
gesture ID

reference, 155
global property, 168
grid layout

reference, 158
GtfCoreModel, 33
GtfPluginLoader, 22

gtfStartup.cfg, 22, 23, 25
profile, 58

GtfStartup.exe, 22, 23, 25
GUI, 168

H
HMI, 168
hold gesture

reference, 152

I
image

data type, 103
reference, 134

instantiator
reference, 135

integer
data type, 103

J
JavaScript, 47

K
key pressed

reference, 150
key released

reference, 150
key status changed

reference, 151
key unicode

reference, 150

L
label

reference, 133
layout margins

reference, 160
line index

reference, 161
linear curve, 140
linear fill gradient

reference, 165

Index

Page 172 of 173

linear interpolation curve, 140
list

data type, 104
list index

reference, 161
list layout

reference, 159
long hold gesture

reference, 152

M
message, 26, 29
model element, 168
move in

reference, 148
move out

reference, 148
move over

reference, 148
moveable

reference, 151
multiple lines

reference, 145
multisampling, 131

O
OpenGL ES 2.0, 22, 40
OpenVG 1.1, 22, 40

P
path gesture

reference, 155, 155
pinch gesture

reference, 153
pivot

reference, 164
POSIX signal, 54
pressed

references, 144
profile

gtfStartup.cfg, 58
project center, 168

project editor, 168
property, 168

Q
quadratic curve

reference, 138

R
radial fill gradient

reference, 166
rectangle

reference, 134
renderer, 40
resource, 168
RomFS, 55
rotary

reference, 151
rotate gesture

reference, 154
rotation

reference, 163
rounded

reference, 164

S
scale mode

reference, 160
scaling

reference, 163
scene configuration

reference, 130
script curve, 139
selected

reference, 142
Selection group

reference, 145
shearing

reference, 164
signal, 25
simulation, 45
sinus curve

reference, 139

Index

Page 173 of 173

slow start curve
reference, 138

Spinning
reference, 145

state, 169
state machine, 169
string

data type, 105

T
target, 47
template index

reference, 161
text truncation

reference, 141
token, 26
touch grab lost

reference, 149
touch move

reference, 149
touch pressed

reference, 148
touch released

reference, 149
touch screen, 42
touch status changed

reference, 149
touched

reference, 143
transition, 169
translation

reference, 163

U
UI, 169
user-defined focus

reference, 146

V
view, 169

reference, 132
view port

reference, 162
view template

reference, 132, 132

W
widget, 169

	EB GUIDE documentation
	Table of Contents
	1.About this documentation
	1.1. Target audiences of the user documentation
	1.1.1. System integrators
	1.1.2. Application developers
	1.1.3. Extension developers

	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Background information
	5.1. Software module structure of EB GUIDE TF
	5.1.1. The GtfStartup.exe executable file
	5.1.1.1. Command line parameters
	5.1.1.2. Single instance detection on Windows platforms

	5.1.2. The gtfStartup.cfg configuration file
	5.1.2.1. Mapping rule structure
	5.1.2.2. Signals
	5.1.2.3. Actions
	5.1.2.4. Execution order of mapping rules
	5.1.2.5. Example of a gtfStartup.cfg file

	5.2. Dimensions of communication
	5.2.1. Communication with plugins
	5.2.1.1. Message handling
	5.2.1.2. Run level and interface management

	5.2.2. Interaction between HMI and applications
	5.2.2.1. EB GUIDE model
	5.2.2.2. External event system
	5.2.2.2.1. Event receipt
	5.2.2.2.2. Event publication

	5.2.2.3. Datapool
	5.2.2.3.1. Internal and external IDs for datapool items
	5.2.2.3.2. Commitment of datapool items
	5.2.2.3.3. Update of datapool items
	5.2.2.3.4. Notifications on value updates for datapool items
	5.2.2.3.5. Windowed lists

	5.2.3. The main workloop
	5.2.4. Inter-process communication

	5.3. Extensions to the EB GUIDE TF
	5.3.1. Project specific EB GUIDE Script functions
	5.3.1.1. The EB GUIDE Script run-time stack
	5.3.1.2. The foreign function interface

	5.3.2. Customized drawing routine
	5.3.2.1. Renderer
	5.3.2.1.1. Renderers supported in EB GUIDE

	5.3.2.2. Shaders
	5.3.2.2.1. Shading languages
	5.3.2.2.2. Input and output parameters
	5.3.2.2.3. 2D and 3D default shaders
	5.3.2.2.4. Touch shaders

	5.3.2.3. Configuration of touch screen devices
	5.3.2.4. Model element descriptors
	5.3.2.4.1. Property descriptor
	5.3.2.4.2. Property constant descriptor

	5.3.3. Widget set

	5.4. Simulation with EB GUIDE Monitor
	5.4.1. Application script objects
	5.4.1.1. Communication with the EB GUIDE TF
	5.4.1.2. Command line mode

	5.5. Android APK
	5.5.1. System requirements
	5.5.2. Features of the EB GUIDE TF APK
	5.5.3. Description of the EB GUIDE TF APK files
	5.5.3.1. Released APK and custom APK
	5.5.3.2. Restrictions

	5.5.4. Android lifecycle management
	5.5.5. Directory for EB GUIDE models
	5.5.6. Android layout handling

	5.6. Integration
	5.6.1. EB GUIDE TF and C++ exceptions
	5.6.2. EB GUIDE TF and POSIX signals
	5.6.3. Linking EB GUIDE TF statically
	5.6.4. Read-only file system support

	5.7. Programming concept
	5.7.1. Observer patterns and callbacks
	5.7.2. Functors
	5.7.2.1. Initialization of functor templates
	5.7.2.2. GtfFunctorX value behavior
	5.7.2.3. Argument binding with functor objects

	6.Configuring profiles
	7.Configuring the system start
	7.1. Configuring the system start for operating systems that support shared object files
	7.2. Configuring the gtfStartup.cfg file

	8.Starting and connecting EB GUIDE Monitor
	9.Communicating through an EB GUIDE GTF extension
	9.1. Exporting an EB GUIDE model
	9.2. Adjusting the gtfStartup.cfg to load the EB GUIDE GTF extension
	9.3. Copying the header files of the exported EB GUIDE model
	9.4. Writing an EB GUIDE GTF extension
	9.5. Copying the resulting DLL file
	9.6. Starting the simulation directly with gtfStartup.exe

	10.Extending EB GUIDE Script with foreign functions
	10.1. Tutorial: Writing a basic sum function

	11.Adding widgets and widget features
	11.1. Tutorial: Writing an extended container widget
	11.2. Tutorial: Writing a widget feature for focus behavior of rectangles
	11.3. Adding an EB GUIDE GTF extension to an EB GUIDE model

	12.Using and creating an Android APK for EB GUIDE TF
	12.1. Executing an exported EB GUIDE model on Android
	12.2. Creating your own Android APK using the template
	12.3. Creating your own Android APK from scratch

	13.Evaluating memory usage
	14.Creating a read-only file system (RomFS) container
	15.References
	15.1. Android events
	15.2. Datapool items
	15.3. Data types
	15.3.1. 3D graphic
	15.3.2. Boolean
	15.3.3. Color
	15.3.4. Conditional script
	15.3.5. Float
	15.3.6. Font
	15.3.7. Image
	15.3.8. Integer
	15.3.9. List
	15.3.10. String

	15.4. EB GUIDE Script
	15.4.1. EB GUIDE Script keywords
	15.4.2. EB GUIDE Script operator precedence
	15.4.3. EB GUIDE Script standard library
	15.4.3.1. EB GUIDE Script functions A
	15.4.3.1.1. abs
	15.4.3.1.2. absf
	15.4.3.1.3. acosf
	15.4.3.1.4. animation_before
	15.4.3.1.5. animation_beyond
	15.4.3.1.6. animation_cancel
	15.4.3.1.7. animation_cancel_end
	15.4.3.1.8. animation_cancel_reset
	15.4.3.1.9. animation_pause
	15.4.3.1.10. animation_play
	15.4.3.1.11. animation_reverse
	15.4.3.1.12. animation_running
	15.4.3.1.13. animation_set_time
	15.4.3.1.14. asinf
	15.4.3.1.15. atan2f
	15.4.3.1.16. atan2i
	15.4.3.1.17. atanf

	15.4.3.2. EB GUIDE Script functions C - H
	15.4.3.2.1. ceil
	15.4.3.2.2. changeDynamicStateMachinePriority
	15.4.3.2.3. character2unicode
	15.4.3.2.4. clearAllDynamicStateMachines
	15.4.3.2.5. color2string
	15.4.3.2.6. cosf
	15.4.3.2.7. deg2rad
	15.4.3.2.8. expf
	15.4.3.2.9. float2string
	15.4.3.2.10. floor
	15.4.3.2.11. focusNext
	15.4.3.2.12. focusPrevious
	15.4.3.2.13. formatFloat
	15.4.3.2.14. formatInteger
	15.4.3.2.15. getTextHeight
	15.4.3.2.16. getTextLength
	15.4.3.2.17. getTextWidth
	15.4.3.2.18. has_list_window
	15.4.3.2.19. hsba2color

	15.4.3.3. EB GUIDE Script functions I - R
	15.4.3.3.1. int2float
	15.4.3.3.2. int2string
	15.4.3.3.3. isDynamicStateMachineActive
	15.4.3.3.4. language
	15.4.3.3.5. localtime_day
	15.4.3.3.6. localtime_hour
	15.4.3.3.7. localtime_minute
	15.4.3.3.8. localtime_month
	15.4.3.3.9. localtime_second
	15.4.3.3.10. localtime_weekday
	15.4.3.3.11. localtime_year
	15.4.3.3.12. log10f
	15.4.3.3.13. logf
	15.4.3.3.14. nearbyint
	15.4.3.3.15. popDynamicStateMachine
	15.4.3.3.16. powf
	15.4.3.3.17. pushDynamicStateMachine
	15.4.3.3.18. rad2deg
	15.4.3.3.19. rand
	15.4.3.3.20. request_runlevel
	15.4.3.3.21. rgba2color
	15.4.3.3.22. round

	15.4.3.4. EB GUIDE Script functions S - W
	15.4.3.4.1. seed_rand
	15.4.3.4.2. sinf
	15.4.3.4.3. sqrtf
	15.4.3.4.4. string2float
	15.4.3.4.5. string2int
	15.4.3.4.6. string2string
	15.4.3.4.7. substring
	15.4.3.4.8. system_time
	15.4.3.4.9. system_time_ms
	15.4.3.4.10. tanf
	15.4.3.4.11. trace_dp
	15.4.3.4.12. trace_string
	15.4.3.4.13. transformToScreenX
	15.4.3.4.14. transformToScreenY
	15.4.3.4.15. transformToWidgetX
	15.4.3.4.16. transformToWidgetY
	15.4.3.4.17. trunc
	15.4.3.4.18. widgetGetChildCount

	15.5. Events
	15.6. Scenes
	15.7. Touch screen types supported by EB GUIDE GTF
	15.8. Widgets
	15.8.1. View
	15.8.2. Basic widgets
	15.8.2.1. Label
	15.8.2.2. Rectangle
	15.8.2.3. Image
	15.8.2.4. Container
	15.8.2.5. Instantiator

	15.8.3. Animations
	15.8.3.1. Animation
	15.8.3.2. Constant curves
	15.8.3.3. Fast start curves
	15.8.3.4. Slow start curves
	15.8.3.5. Quadratic curves
	15.8.3.6. Sinus curves
	15.8.3.7. Script curves
	15.8.3.8. Linear curves
	15.8.3.9. Linear interpolation curves

	15.8.4. 3D widgets
	15.8.4.1. 3D graphic

	15.9. Widget features
	15.9.1. Common
	15.9.1.1. Text truncation
	15.9.1.2. Enabled
	15.9.1.3. Selected
	15.9.1.4. Focused
	15.9.1.5. Touched
	15.9.1.6. Pressed
	15.9.1.7. Child visibility selection
	15.9.1.8. Multiple lines
	15.9.1.9. Selection group
	15.9.1.10. Spinning

	15.9.2. Focus
	15.9.2.1. User-defined focus
	15.9.2.2. Auto focus

	15.9.3. Input handling
	15.9.3.1. Move over
	15.9.3.2. Move out
	15.9.3.3. Move in
	15.9.3.4. Touch pressed
	15.9.3.5. Touch released
	15.9.3.6. Touch grab lost
	15.9.3.7. Touch status changed
	15.9.3.8. Touch move
	15.9.3.9. Gesture
	15.9.3.10. Key pressed
	15.9.3.11. Key unicode
	15.9.3.12. Key released
	15.9.3.13. Key status changed
	15.9.3.14. Rotary
	15.9.3.15. Moveable

	15.9.4. Gestures
	15.9.4.1. Hold gesture
	15.9.4.2. Long hold gesture
	15.9.4.3. Flick gesture
	15.9.4.4. Pinch gesture
	15.9.4.5. Rotate gesture
	15.9.4.6. Path gestures
	15.9.4.6.1. Gesture IDs

	15.9.5. Effects
	15.9.5.1. Border
	15.9.5.2. Coloration

	15.9.6. Layout
	15.9.6.1. Absolute layout
	15.9.6.2. Flow layout
	15.9.6.3. Grid layout
	15.9.6.4. Box layout
	15.9.6.5. List layout
	15.9.6.6. Layout margins
	15.9.6.7. Scale mode

	15.9.7. List management
	15.9.7.1. List index
	15.9.7.2. Line index
	15.9.7.3. Template index
	15.9.7.4. View port

	15.9.8. Model
	15.9.8.1. 3D graphic extension

	15.9.9. Transformations
	15.9.9.1. Translation
	15.9.9.2. Rotation
	15.9.9.3. Scaling
	15.9.9.4. Shearing
	15.9.9.5. Pivot

	15.9.10. Appearance
	15.9.10.1. Rounded
	15.9.10.2. Fill pattern
	15.9.10.3. Linear fill gradient
	15.9.10.4. Radial fill gradient

	Glossary
	Index

