Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Rudolf Grave December 3, 2015

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Agenda

- About EB Automotive
- Autonomous Driving
- Requirements for a future car infrastructure
- Concepts for fail-operational systems

Summary

•

EB Elektrobit

AUT@SAR

In-car infrastructure solutions

We provide products and engineering services for in-car infrastructures to address your projectspecific electronic control unit (ECU) requirements

- Architecture development and software integration for ECUs
- Full AUTOSAR support with one basic software stack and one tool environment
- Tailor-made products, services, and support for all leading OEMs
- Meeting latest automotive technologies like functional safety, security, Ethernet
- Extensive partner ecosystem: car manufacturers, 3rd party tool vendors, and microcontroller manufacturers

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Agenda

- About EB Automotive
- Autonomous Driving
- Requirements for a future car infrastructure
- Concepts for fail-operational systems

• Summary

EB Elektrobit

AUT@SAR

Autonomous driving

High automation Valet Parking Vision of transport Partial automation High automation with fun

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Pictures taken from http://www.bmwblog.com/ 5

EB Elektrobit

Levels of Autonomous Driving (AD) 26262 AUT OSAR degree of automation **Driver** Auto-Driver Full Partial Conditional High Assisted automation automation only automation automation mation 2 3 0 1 5 4 SAE 2 1 3 0 1 4 NHTSA driver in the loop yes (required) not required time to take control several couple of minutes ~ 1s back seconds other activities not allowed all (even sleeping) specific while driving FCW, ACC, Traffic Jam Highway examples Valet Parking Robot car Chauffeur LDW LKA Assistant FCW ... Forward Collosion Warning ACC... Adaptive Cruise Control Source: SAE, NHTSA, VDA LDW ... Lane Departure Warning LKA ... Lane Keeping Assistant

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

7

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Agenda

- About EB Automotive
- **Autonomous Driving** •
- Requirements for a future car • infrastructure
- Concepts for fail-operational systems •

Summary

•

EB Elektrobit

Requirements for a future car infrastructure

- Main drivers
 - Automated Driving
 - Car-2-X applications
- Requirements
 - High computing power
 - High data rates
 - High availability, fail-operational systems
 - Update over the air

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

Requirements for a future car infrastructure

High Level Requirements	Technical Concepts
High computing power	High Performance Controllers and GPUs
High data rates	Ethernet (1 GigE, 10 GigE)
High availability, fail-operational systems	Redundancy Concept Service oriented architecture (SOA) Dependable Communication Software System Engineering
Car-2-X communication, update over the air	Reliable Security mechanisms, concepts and infrastructure

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

Contemporary car infrastructure

 Basic software mostly based on AUTOSAR or similar proprietary system

Pro:

- Efficient on small microcontrollers
- Well suited for time-critical, safe and secure applications

Contra:

- Only proprietary solutions for fail-over and redundant functionality
- Fixed, inflexible communication mechanisms

OBD

Connector

Gateway

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Elektrobit

Future architecture of a car infrastructure

- Split up ECUs in low performance IO Controller and high performance controller
- Establish a service oriented architecture (SOA)

• Performance Controller

- High computation power
- Widespread, POSIX-like Operating System (e.g. Linux), Adaptive AUTOSAR
- IO Controller
 - Provide Sensor and Actuator Services
 - Deeply embedded, real-time Operating System (e.g. Classic AUTOSAR)

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EB Elektrobit

How to divide the functionalities?

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

Benefit of performance controller

Performance Controller

- request IOs/data on demand (SOME/IP)
- can be updated over the air (new functions, bug fixing, function on demand)
- substitute each other (fail-operational)

Requirements for a future car infrastructure

High Level Requirements	Technical Concepts	Technologies
High computing power	High Performance Controllers and GPUs	 Autosar Adaptive Platform, Hypervisor
High data rates	Ethernet (1 GigE, 10 GigE) Dependable Communication	 Fault-tolerant Communication QoS and Timesync Safe & Secure Communication
High availability, fail- operational systems	Redundancy Concept Service oriented architecture Software System Engineering	 2003, 1002D, (Semi-) dynamic reconfiguration
Car-2-X communication, update over the air	Reliable Security mechanisms, concepts and infrastructure	 Secure Onboard Communication & Key management Crypto Algorithms , Security HW Secure Separation

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Agenda

- About EB Automotive
- Autonomous Driving
- Requirements for a future car infrastructure
- Concepts for fail-operational systems

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EB Elektrobit

Summary

•

Fault Propagation in Systems

Basic Concepts and Taxonomy of Dependable and Secure Computing,

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

Current Systems (usually fail-safe)

- Deactivate / degrade function
 → Safe State
- Inform the driver
- Report a diagnostic error

Standard approach in many safety relevant systems:

- Airbag, ESP, air conditioning, battery charging, ...
- Driver assistant functions such as adaptive cruise control, lane assist, ...

Some functions provide a degraded mode, sometimes limited in time:

- Electronic Power Steering
- Braking

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. AUT OSAR

AUT OSAR

From Fail safe to Fail operational

Safe State means:

- Continue driving until driver is in the loop
 - approx. 7-15s for conditional autonomous driving
 - Several minutes for high and full autonomous driving
- Perform an autonomous ",safe-stop" (stand-still at a non-hazardous place)
 - Main issue is to get the driver attention focused on the situation
 - Several minutes, depending on the situation

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

1st approach: 2 channels with comparison

• Two ECUs working on the input data and compare the output data

1st approach: 2 channels with comparison

- Two ECUs working on the input data and compare the output data
- A "2 channels with comparison-system" is simply fail-safe and since it is not possible to distinguish between "ECU1 not ok" and "ECU2 not ok".
- The safe state is a complete system shutdown, which is not acceptable for autonomous driving

Improving Availability by Redundancy

- Aerospace domain
 - Space Shuttle: 5 identical general purpose digital computers
 - Saturn V: triple redundancy
- Avionics
 - Boing 777: triple triplex
 - Airbus: Triple redundancy plus software diversity

2nd approach: 2003 systems

- A well established pattern
- If one of the ECUs fails, the system can continue with the remaining two ECUs.
- Failures in the input data can be detected by an "Input-Voter".

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EB Elektrobit

2nd approach: 2003 systems

- The "2 out of 3 system approach" is a well established pattern
- If one of the ECUs fails, the system can continue with the remaining two ECUs.
- Failures in the input data can be detected by an "Input-Voter".

Avionics vs Automotive Domain

Automotive:

- Time to reach safe state < 5min
- It is assumed unlikely that a further independent failure occurs, whereas in avionics time to reach safe state several hours

2003 systems applicable for automotive?

- More ECUs
- More wiring
- More weight
- More power consumption
- More complexity

Key question: What does it mean to the car driver?

According to 2 independent studies by KPMG 2013 and autelligence2015, customers would pay 1500 – 3000\$ more for an autonomous driving car (mid-size)

-> 2003 can be hardly realized due to costs issues.

3rd approach: 1002D System

- High diagnostic coverage needed to detect failures in one channel
- If a component fails in one of the two channels, the system does not shut down
- The system continues to operate with one channel

3rd approach: 1002D System

- High diagnostic coverage needed to detect failures in one channel
- If a component fails in one of the two channels the system does not shut down
- The system continues to operate with one channel

Common sense:

It 's not best policy to operate a highly safety critical system on a single channel – **but it 's sufficient for a certain period of time, the so called hand-over-time to the car driver**

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

EB Elektrobit

1002D - Normal operation

EB Elektrobit

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

1002D – 1 channel

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

1002D*

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

Req. 1: Reconfiguration in classic AUTOSAR systems

- Application information based on AUTOSAR xml description available
- Runtime environment (RTE) supporting starting and stopping of software components
- Threads can started/stopped in EB tresos Safety OS via partitions
- FailOpManager
 - Monitoring of own health status
 - Monitoring of foreign health status
 - Triggering of reconfiguration

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Elektrobit

Redundant Sensor/Actuators

- Duplication and higher costs
- Only limited reconfiguration of vehicle lifetime due to hardwired sensors

Sensor/Actuators are accessible via network

- Service orientated communication (SOME/IP and Service Discovery)
- Multi-cast fault-tolerant Ethernet

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Elektrobit

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

Agenda

- About EB Automotive
- Autonomous Driving •
- Requirements for a future car • infrastructure
- Concepts for fail-operational systems •

Summary

•

EB Elektrobit

systems with cost constraints.

Let's build the next generation software systems for autonomous driving!

today.

- Established concepts for fail-operational system are available and can be reused in automotive
- a high diagnostic coverage are available today

Re-use of available integrity mechanisms from

fail-safe systems is the basis for building fail-

- Fault tolerant Automotive Ethernet is available

Autonomous Driving – From Fail-Safe to Fail-Operational Systems

- Software systems that are designed to achieve

Summary

operational systems.

AUT@SAE

Elektrobit

Contact us!

automotive.elektrobit.com Rudolf.Grave@elektrobit.com

CC SSE Grave, Much | 2015-12-04 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.