
EB GUIDE documentation
Version 6.0.0.97672

EB GUIDE documentation

Page 2 of 265

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Legal notice

Confidential and proprietary information.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written permission
of Elektrobit Automotive GmbH.

ProOSEK®, tresos®, and street director® are registered trademarks of Elektrobit Automotive GmbH.

All brand names, trademarks and registered trademarks are property of their rightful owners and are used only
for description.
Copyright 2015, Elektrobit Automotive GmbH.

EB GUIDE documentation

Page 3 of 265

Table of Contents
1. About this documentation .. 15

1.1. Target audiences of the user documentation ... 15
1.1.1. Modelers .. 15
1.1.2. System integrators .. 16
1.1.3. Application developers ... 16
1.1.4. Extension developers .. 17

1.2. Structure of user documentation ... 17
1.3. Typography and style conventions .. 18
1.4. Naming conventions ... 20

2. Safe and correct use .. 21
2.1. Intended use ... 21
2.2. Possible misuse ... 21

3. Support .. 22
4. Introduction to EB GUIDE ... 23

4.1. The EB GUIDE product line ... 23
4.2. EB GUIDE Studio .. 23

4.2.1. Modeling HMI behavior ... 23
4.2.2. Modeling HMI appearance ... 24
4.2.3. Handling data ... 24
4.2.4. Exporting the EB GUIDE model ... 24

4.3. EB GUIDE TF ... 24
5. Modeler’s manual ... 26

5.1. Overview ... 26
5.2. Components of the graphical user interface ... 26

5.2.1. Project center ... 26
5.2.1.1. Navigation area .. 27
5.2.1.2. Content area .. 27

5.2.2. Project editor .. 27
5.2.2.1. Navigation area .. 28
5.2.2.2. Content area .. 29
5.2.2.3. Command area .. 30
5.2.2.4. Toolbox .. 30
5.2.2.5. Properties panel ... 31
5.2.2.6. Status bar .. 31
5.2.2.7. Problems area .. 31

5.3. Tutorial: Getting started .. 32
5.3.1. Starting EB GUIDE ... 32
5.3.2. Creating a project ... 33
5.3.3. Modeling HMI behavior ... 34

EB GUIDE documentation

Page 4 of 265

5.3.4. Modeling HMI appearance ... 36
5.3.5. Starting the simulation ... 38

5.4. Background information .. 39
5.4.1. Animations .. 39
5.4.2. Application programming interface between application and model 40
5.4.3. Communication context ... 40
5.4.4. Datapool ... 41

5.4.4.1. Concept ... 41
5.4.4.2. Datapool items ... 41
5.4.4.3. Windowed lists ... 41

5.4.5. EB GUIDE model and EB GUIDE project ... 42
5.4.6. Event handling .. 43

5.4.6.1. Event system ... 43
5.4.6.2. Events ... 43

5.4.7. Languages .. 43
5.4.8. Resource management ... 44

5.4.8.1. Fonts ... 44
5.4.8.2. Images .. 44

5.4.8.2.1. SVG images .. 45
5.4.8.2.2. 9-patch images .. 45

5.4.8.3. 3D graphics ... 46
5.4.9. Scripting language EB GUIDE Script .. 47

5.4.9.1. Capabilities and areas of application ... 47
5.4.9.2. Namespaces and identifiers .. 47
5.4.9.3. Comments ... 48
5.4.9.4. Types .. 48
5.4.9.5. Expressions ... 49
5.4.9.6. Constants and references ... 49
5.4.9.7. Arithmetic and logic expressions ... 50
5.4.9.8. L-values and r-values ... 51
5.4.9.9. Local variables ... 51
5.4.9.10. While loops .. 52
5.4.9.11. If-then-else ... 53
5.4.9.12. Foreign function calls .. 54
5.4.9.13. Datapool access ... 54
5.4.9.14. Widget properties ... 55
5.4.9.15. Lists ... 56
5.4.9.16. Events ... 57
5.4.9.17. String formatting ... 59
5.4.9.18. The standard library .. 59

5.4.10. Shortcuts and icons ... 60
5.4.10.1. Shortcuts .. 60

EB GUIDE documentation

Page 5 of 265

5.4.10.2. Icons .. 60
5.4.11. State machines and states ... 61

5.4.11.1. State machines ... 61
5.4.11.1.1. Haptic state machine .. 61
5.4.11.1.2. Logic state machine ... 61
5.4.11.1.3. Dynamic state machine .. 61

5.4.11.2. States .. 62
5.4.11.2.1. Compound state .. 62
5.4.11.2.2. View state ... 63
5.4.11.2.3. Initial state ... 63
5.4.11.2.4. Final state ... 64
5.4.11.2.5. Choice state .. 65
5.4.11.2.6. History states ... 66

5.4.11.3. Transitions .. 69
5.4.11.4. Execution of a state machine .. 72
5.4.11.5. EB GUIDE notation in comparison to UML notation ... 76

5.4.11.5.1. Supported elements ... 76
5.4.11.5.2. Not supported elements ... 77
5.4.11.5.3. Deviations .. 77

5.4.12. Touch input ... 77
5.4.12.1. Non-path gestures .. 78
5.4.12.2. Path gestures ... 78
5.4.12.3. Input processing and gestures ... 78
5.4.12.4. Multi-touch input ... 79

5.4.13. Widgets .. 79
5.4.13.1. View widget .. 80
5.4.13.2. Basic widgets ... 80
5.4.13.3. Animations ... 81
5.4.13.4. 3D widgets ... 82
5.4.13.5. Widget properties ... 83
5.4.13.6. Widget templates .. 84

5.5. Modelling HMI behavior ... 85
5.5.1. Modelling a state machine ... 85

5.5.1.1. Adding a state machine .. 85
5.5.1.2. Defining an entry action for a state machine .. 86
5.5.1.3. Defining an exit action for a state machine ... 86
5.5.1.4. Deleting a state machine .. 87

5.5.2. Modelling states .. 87
5.5.2.1. Adding a state .. 87
5.5.2.2. Adding a state to a compound state .. 87
5.5.2.3. Adding a choice state ... 88
5.5.2.4. Defining an entry action for a state .. 90

EB GUIDE documentation

Page 6 of 265

5.5.2.5. Defining an exit action for a state .. 91
5.5.2.6. Deleting a model element from a state machine ... 91

5.5.3. Connecting states through transitions ... 92
5.5.3.1. Adding a transition between two states .. 92
5.5.3.2. Moving a transition ... 93
5.5.3.3. Defining a trigger for a transition ... 94
5.5.3.4. Adding a condition to a transition .. 95
5.5.3.5. Adding an action to a transition ... 96
5.5.3.6. Adding an internal transition to a state ... 97

5.6. Modeling HMI appearance ... 98
5.6.1. Managing graphical elements .. 98

5.6.1.1. Adding a view .. 98
5.6.1.2. Adding a widget to a view ... 99
5.6.1.3. Positioning a widget ... 99
5.6.1.4. Resizing a widget ... 100
5.6.1.5. Deleting a widget from a view ... 101
5.6.1.6. Adding an image to a view ... 101
5.6.1.7. Grouping widgets ... 102
5.6.1.8. Adding a 3D graphic to a view .. 102
5.6.1.9. Changing the font of a label .. 102
5.6.1.10. Linking between widget properties ... 103
5.6.1.11. Linking a widget property to a datapool item ... 104
5.6.1.12. Adding a user-defined property to a widget .. 106
5.6.1.13. Adding a widget feature .. 106
5.6.1.14. Removing a widget feature .. 107

5.6.2. Adding a language to the EB GUIDE model .. 108
5.6.2.1. Adding a language ... 108
5.6.2.2. Deleting a language .. 109

5.6.3. Re-using an element ... 110
5.6.3.1. Creating a template .. 110
5.6.3.2. Defining the template interface .. 110
5.6.3.3. Using a template .. 111

5.6.4. Tutorial: Modelling a path gesture .. 111
5.7. Handling data .. 113

5.7.1. Adding an event .. 113
5.7.2. Adding a parameter to an event ... 114
5.7.3. Addressing an event ... 114
5.7.4. Deleting an event .. 115
5.7.5. Adding a datapool item .. 116
5.7.6. Establishing external communication .. 116
5.7.7. Linking between datapool items ... 118
5.7.8. Deleting a datapool item .. 119

EB GUIDE documentation

Page 7 of 265

5.8. Handling a project .. 120
5.8.1. Creating a project .. 120
5.8.2. Opening a project .. 120

5.8.2.1. Opening a project from the file explorer ... 120
5.8.2.2. Opening a project within EB GUIDE Studio .. 121

5.8.3. Saving a project .. 121
5.8.4. Testing and improving an EB GUIDE model .. 122

5.8.4.1. Validating an EB GUIDE model ... 122
5.8.4.2. Starting the simulation .. 123

5.8.5. Exporting a project .. 123
6. System integrator's manual ... 125

6.1. Overview ... 125
6.2. Background information .. 125

6.2.1. Android APK ... 125
6.2.1.1. System requirements .. 125
6.2.1.2. Features of the EB GUIDE TF APK ... 125
6.2.1.3. Description of the EB GUIDE TF APK files ... 126
6.2.1.4. Restrictions .. 128
6.2.1.5. Released APK and custom APK .. 129

6.2.2. Application simulation .. 129
6.2.2.1. Control panels .. 129
6.2.2.2. Application script objects ... 132
6.2.2.3. Communication with the target .. 135
6.2.2.4. Command line mode .. 135

6.2.3. Configuration of touch screen devices .. 136
6.2.4. EB GUIDE TF and C++ exceptions .. 137
6.2.5. EB GUIDE TF and POSIX signals .. 137
6.2.6. Linking EB GUIDE TF statically .. 138
6.2.7. Message handling ... 138
6.2.8. Read-only file system support .. 138
6.2.9. Renderers supported in EB GUIDE .. 139
6.2.10. Software module structure of EB GUIDE TF ... 139

6.2.10.1. Run level and interface management ... 141
6.2.11. The gtfStartup.cfg configuration file ... 144

6.2.11.1. Mapping rule structure ... 145
6.2.11.2. Signals ... 145
6.2.11.3. Actions ... 146
6.2.11.4. Execution order of mapping rules ... 148
6.2.11.5. Example of a gtfStartup.cfg file .. 148

6.2.12. The GtfStartup.exe executable file .. 149
6.2.12.1. Command line parameters .. 149
6.2.12.2. Single instance detection on Windows platforms ... 150

EB GUIDE documentation

Page 8 of 265

6.3. Configuring profiles .. 150
6.3.1. Cloning a profile .. 150
6.3.2. Adding a library ... 151
6.3.3. Adding messages .. 152
6.3.4. Configuring a display ... 153

6.4. Configuring the system start ... 154
6.4.1. Configuring the system start for operating systems that support shared object files 154
6.4.2. Configuring the gtfStartup.cfg file ... 155

6.5. Evaluating memory usage .. 159
6.6. Creating a read-only file system (RomFS) container ... 160
6.7. Starting and connecting EB GUIDE Monitor ... 162
6.8. Using and creating an Android APK for EB GUIDE TF ... 163

6.8.1. Executing an exported EB GUIDE model on Android ... 163
6.8.2. Creating your own Android APK using the template ... 164
6.8.3. Creating your own Android APK from scratch ... 165

7. Application developer's manual ... 167
7.1. Overview ... 167
7.2. Interaction between HMI and applications ... 167

7.2.1. EB GUIDE model .. 168
7.2.2. External event system ... 168

7.2.2.1. Event receipt .. 168
7.2.2.2. Event publication .. 169

7.2.3. Datapool ... 169
7.2.3.1. Internal and external IDs for datapool items ... 169
7.2.3.2. Commitment of datapool items .. 170
7.2.3.3. Update of datapool items .. 170
7.2.3.4. Notifications on value updates for datapool items .. 170
7.2.3.5. Windowed lists ... 171

7.2.4. The main workloop .. 171
7.2.5. Observer patterns and callbacks .. 171
7.2.6. Functors ... 172

7.2.6.1. Initialization of functor templates .. 172
7.2.6.2. GtfFunctorX value behavior ... 173
7.2.6.3. Argument binding with functor objects .. 173

7.2.7. Inter-process communication .. 174
7.2.8. Project specific EB GUIDE Script functions ... 174

7.2.8.1. The EB GUIDE Script run-time stack ... 174
7.2.8.2. The foreign function interface .. 175

7.3. Communicating through a plugin ... 175
7.3.1. Exporting an EB GUIDE model .. 176
7.3.2. Adjusting the gtfStartup.cfg to load the plugin ... 176
7.3.3. Copying the header files of the exported EB GUIDE model .. 177

EB GUIDE documentation

Page 9 of 265

7.3.4. Writing a plugin ... 178
7.3.5. Copying the resulting DLL file .. 178
7.3.6. Starting the simulation directly with gtfStartup.exe .. 179

8. Extension developer's manual ... 180
8.1. Overview ... 180
8.2. Background information .. 180

8.2.1. Custom effect widgets ... 180
8.2.2. Custom shaders and custom effect API .. 181

8.2.2.1. Custom input parameters: Uniforms ... 181
8.2.2.1.1. Cube maps .. 183
8.2.2.1.2. Interaction of multiple GtfCustomEffect widgets 183

8.2.3. Model element descriptors ... 184
8.2.3.1. Property descriptor ... 185
8.2.3.2. Property constant descriptor .. 185

8.2.4. Renderer .. 185
8.2.5. Shaders .. 186

8.2.5.1. Shading languages ... 186
8.2.5.2. Input and output parameters ... 186
8.2.5.3. Default shaders .. 186
8.2.5.4. 2D and 3D default shaders ... 187
8.2.5.5. Touch shaders .. 187

8.2.6. Widget set .. 187
9. References ... 189

9.1. Android .. 189
9.1.1. Android lifecycle management ... 189
9.1.2. File path for models .. 189
9.1.3. Android layout handling ... 189
9.1.4. Android Events ... 190

9.2. Datapool items ... 190
9.3. EB GUIDE Script ... 191

9.3.1. EB GUIDE Script keywords ... 191
9.3.2. EB GUIDE Script operator precedence ... 192
9.3.3. EB GUIDE Script standard library .. 193

9.3.3.1. EB GUIDE Script functions A .. 193
9.3.3.1.1. abs ... 193
9.3.3.1.2. absf ... 194
9.3.3.1.3. acosf ... 194
9.3.3.1.4. animation_before ... 194
9.3.3.1.5. animation_beyond ... 194
9.3.3.1.6. animation_cancel ... 195
9.3.3.1.7. animation_cancel_end ... 195
9.3.3.1.8. animation_cancel_reset ... 195

EB GUIDE documentation

Page 10 of 265

9.3.3.1.9. animation_pause ... 195
9.3.3.1.10. animation_play ... 196
9.3.3.1.11. animation_reverse .. 196
9.3.3.1.12. animation_running ... 196
9.3.3.1.13. animation_set_time ... 196
9.3.3.1.14. asinf ... 197
9.3.3.1.15. assign_language_ids ... 197
9.3.3.1.16. assign_language_labels ... 197
9.3.3.1.17. atan2f ... 197
9.3.3.1.18. atan2i ... 198
9.3.3.1.19. atanf ... 198

9.3.3.2. EB GUIDE Script functions C - H .. 198
9.3.3.2.1. ceil ... 198
9.3.3.2.2. changeDynamicStateMachinePriority 198
9.3.3.2.3. character2unicode ... 199
9.3.3.2.4. clearAllDynamicStateMachines ... 199
9.3.3.2.5. color2string ... 199
9.3.3.2.6. cosf ... 200
9.3.3.2.7. deg2rad ... 200
9.3.3.2.8. expf ... 200
9.3.3.2.9. float2string ... 200
9.3.3.2.10. floor ... 201
9.3.3.2.11. focusNext ... 201
9.3.3.2.12. focusPrevious ... 201
9.3.3.2.13. formatFloat ... 201
9.3.3.2.14. formatInteger ... 202
9.3.3.2.15. getTextHeight ... 203
9.3.3.2.16. getTextLength ... 203
9.3.3.2.17. getTextWidth ... 203
9.3.3.2.18. has_list_window ... 204
9.3.3.2.19. hsba2color ... 204

9.3.3.3. EB GUIDE Script functions I - R .. 204
9.3.3.3.1. int2float ... 204
9.3.3.3.2. int2string ... 205
9.3.3.3.3. language ... 205
9.3.3.3.4. language_of_group ... 205
9.3.3.3.5. localtime_day ... 205
9.3.3.3.6. localtime_hour ... 206
9.3.3.3.7. localtime_minute ... 206
9.3.3.3.8. localtime_month ... 206
9.3.3.3.9. localtime_second ... 206
9.3.3.3.10. localtime_weekday ... 207

EB GUIDE documentation

Page 11 of 265

9.3.3.3.11. localtime_year ... 207
9.3.3.3.12. log10f ... 207
9.3.3.3.13. logf ... 207
9.3.3.3.14. nearbyint ... 208
9.3.3.3.15. popDynamicStateMachine ... 208
9.3.3.3.16. powf ... 208
9.3.3.3.17. pushDynamicStateMachine ... 208
9.3.3.3.18. rad2deg ... 209
9.3.3.3.19. rand ... 209
9.3.3.3.20. request_runlevel ... 209
9.3.3.3.21. rgba2color ... 209
9.3.3.3.22. round ... 210

9.3.3.4. EB GUIDE Script functions S - W .. 210
9.3.3.4.1. seed_rand ... 210
9.3.3.4.2. sinf ... 210
9.3.3.4.3. sqrtf ... 211
9.3.3.4.4. string2float ... 211
9.3.3.4.5. string2int ... 211
9.3.3.4.6. string2string ... 212
9.3.3.4.7. substring ... 212
9.3.3.4.8. system_time ... 212
9.3.3.4.9. system_time_ms ... 212
9.3.3.4.10. tanf ... 213
9.3.3.4.11. trace_dp ... 213
9.3.3.4.12. trace_string ... 213
9.3.3.4.13. transformToScreenX ... 213
9.3.3.4.14. transformToScreenY ... 214
9.3.3.4.15. transformToWidgetX ... 214
9.3.3.4.16. transformToWidgetY ... 214
9.3.3.4.17. trunc ... 215
9.3.3.4.18. widgetGetChildCount ... 215

9.4. Events ... 215
9.5. Scenes .. 216
9.6. Touch screen types supported by EB GUIDE GTF ... 217
9.7. Widgets ... 217

9.7.1. View widget .. 217
9.7.2. Basic widgets .. 218

9.7.2.1. Label ... 218
9.7.2.2. Rectangle ... 219
9.7.2.3. Image .. 219
9.7.2.4. Container ... 220
9.7.2.5. Instantiator ... 220

EB GUIDE documentation

Page 12 of 265

9.7.3. Animations .. 220
9.7.3.1. Animation ... 221
9.7.3.2. Constant curves ... 221
9.7.3.3. Fast start curves .. 222
9.7.3.4. Slow start curves .. 222
9.7.3.5. Quadratic curves .. 223
9.7.3.6. Sinus curves .. 223
9.7.3.7. Script curves .. 224
9.7.3.8. Linear curves ... 224
9.7.3.9. Linear interpolation curves .. 225

9.7.4. 3D widgets .. 225
9.7.4.1. 3D graphic ... 226

9.7.4.1.1. Supported 3D graphic formats .. 226
9.7.4.2. Light effect ... 227
9.7.4.3. Material effect .. 227
9.7.4.4. Light and material effect .. 228
9.7.4.5. No lighting effect .. 228

9.8. Widget features ... 229
9.8.1. Common ... 229

9.8.1.1. Virtual layer .. 229
9.8.1.2. Text truncation .. 229
9.8.1.3. Toggle button ... 230
9.8.1.4. State enabled ... 230
9.8.1.5. State selected .. 230
9.8.1.6. State focused ... 231
9.8.1.7. State touched ... 231
9.8.1.8. State pressed ... 232
9.8.1.9. Multi-state .. 232
9.8.1.10. Multi-line .. 233
9.8.1.11. Button group ... 233
9.8.1.12. Rotary button .. 234

9.8.2. Focus ... 234
9.8.2.1. User-defined focus ... 234
9.8.2.2. Auto focus .. 235

9.8.3. Input handling ... 236
9.8.3.1. Move over .. 236
9.8.3.2. Move out .. 236
9.8.3.3. Move in .. 236
9.8.3.4. Touch pressed .. 237
9.8.3.5. Touch released ... 237
9.8.3.6. Touch grab lost .. 237
9.8.3.7. Touch status changed ... 237

EB GUIDE documentation

Page 13 of 265

9.8.3.8. Touch move ... 237
9.8.3.9. Gestures .. 238
9.8.3.10. Key pressed ... 238
9.8.3.11. Key Unicode ... 238
9.8.3.12. Key released .. 238
9.8.3.13. Key status changed .. 238
9.8.3.14. Rotary .. 239
9.8.3.15. Moveable ... 239

9.8.4. Gestures ... 239
9.8.4.1. Hold gesture .. 239
9.8.4.2. Long hold gesture .. 240
9.8.4.3. Flick gesture .. 241
9.8.4.4. Pinch gesture ... 241
9.8.4.5. Rotate gesture .. 242
9.8.4.6. Path gestures ... 242

9.8.4.6.1. Gesture IDs ... 243
9.8.5. Effects .. 244

9.8.5.1. Border .. 244
9.8.5.2. Coloration .. 244

9.8.6. Layout .. 245
9.8.6.1. Absolute layout ... 245
9.8.6.2. Flow layout .. 245
9.8.6.3. Grid layout ... 246
9.8.6.4. Box layout .. 246
9.8.6.5. List layout .. 246
9.8.6.6. Layout margins ... 247

9.8.7. List management ... 248
9.8.7.1. List index ... 248
9.8.7.2. Line index .. 248
9.8.7.3. Line template index .. 248
9.8.7.4. View port ... 248

9.8.8. Transformations .. 249
9.8.8.1. Translation ... 249
9.8.8.2. Rotation ... 249
9.8.8.3. Scaling ... 250
9.8.8.4. Shearing .. 250
9.8.8.5. Pivot .. 250

10. Installation .. 252
10.1. Background information .. 252

10.1.1. Restrictions ... 252
10.1.2. System requirements ... 252

10.2. Downloading from EB Command .. 253

EB GUIDE documentation

Page 14 of 265

10.3. Installing EB GUIDE ... 254
10.4. Troubleshooting the installation ... 255

10.4.1. Renderer errors ... 255
10.5. Uninstalling EB GUIDE ... 255

Glossary ... 257
Index .. 261

EB GUIDE documentation
Chapter 1. About this documentation

Page 15 of 265

1. About this documentation

1.1. Target audiences of the user documentation
This chapter informs you about target audiences involved in an EB GUIDE project and the tasks they usually
perform.

You can categorize your tasks and find the documentation relevant to you.

The following roles exist:

► section 1.1.1, “Modelers”

► section 1.1.2, “System integrators”

► section 1.1.3, “Application developers”

► section 1.1.4, “Extension developers”

1.1.1. Modelers
Modelers use EB GUIDE Studio to create an interface between man and machine. The interface is a model
called an HMI (human machine interface). Communication with applications is carried out through determined
events using the event mechanism, through datapool items using the datapool and through user-specific EB
GUIDE Script functions.

Modelers perform following tasks:

► Use widgets and view architecture to specify the graphical elements that are shown on the displays

► Communicate with designers and usability experts to optimize user interfaces

► Use state machine functionality to specify when graphical elements are displayed

► Define how the elements' behavior reacts to input from devices such as control panels or touch screens

► Define how elements receive required information from other hardware, or software applications that offer
services like a navigation unit

► Define interfaces between model elements as well as input and output devices

Modelers have the profound knowledge of the following:

► EB GUIDE Studio features

► The UML state machine concept

► The specifications and requirements of the domain

EB GUIDE documentation
Chapter 1. About this documentation

Page 16 of 265

► The interchanged data and the EB GUIDE GTF communication mechanism

1.1.2. System integrators
System integrators make sure that all the different system parts are integrated into one complete and working
system.

System integrators perform the following tasks:

► Ensure that the different project parts are executed together

► Configure required modules and file system folder structures

► Integrate customer specific framework extensions and HMI applications

► Carry out settings to ensure system integrity within EB GUIDE Studio and on the target system

► Carry responsibility for the project setup in EB GUIDE Studio, for example, create a shared workspace in
projects involving different people working together on one EB GUIDE model

System integrators have the profound knowledge of the following:

► The system, including the target platform used and the restrictions of this target platform

► The generating mechanism that ensures compatibility of an EB GUIDE model and the target system

1.1.3. Application developers
Application developers write source code for HMI applications, such as a CD player or a radio. Such applications
add distinct functionality to the system, for example control of hardware components.

Application developers perform the following tasks:

► Program additional functionality that is required by the system

► Write code to interface with the EB GUIDE TF, provide application data to the HMI, and provide commu-
nication with the HMI

► Consider the required communication data between the HMI model and its application

► Define datapool items and events

► Determine the flow of data between HMI model and application

► Communicate with modelers to know what data can be provided by hardware devices and how to use the
different EB GUIDE GTF communication mechanisms

Application developers have the profound knowledge of the following:

EB GUIDE documentation
Chapter 1. About this documentation

Page 17 of 265

► C++, to know how to compile for the existing EB GUIDE TF C++ interfaces

► All programming languages used, as applications can be written in any programming language

► The specifications and requirements of the domain

1.1.4. Extension developers
There may be missing features that cannot be provided through simply modeling an EB GUIDE Studio model
or adding customer-specific applications. This is when new widgets or a specific renderer may be required.

Extension developers perform the following tasks:

► Communicate with members of the EB GUIDE development team through chapter 3, “Support“ to find out
if there are already solutions to problems

► Work on the framework and develop new plugins or features

► Write code for additional modules or replace the following items:

► Existing EB GUIDE TF modules such as widgets or the renderer

► Existing EB GUIDE Studio plugins such as problem checkers

Extension developers have the profound knowledge of the following:

► EB GUIDE interfaces

► Interaction between the central modules

► Structure of the framework's data

1.2. Structure of user documentation
The information is structured as follows:

► Background information

Background information introduce you to a specific topic and important facts. With this information you are
able to carry out the related instructions.

► How-to-instruction

The instructions guide you step-by-step through a specific task and show you how to use EB GUIDE.
Instructions are recognized by the present participle in the title (ing), for example, Starting EB GUIDE
Studio.

► Tutorial

EB GUIDE documentation
Chapter 1. About this documentation

Page 18 of 265

A tutorial is an extended version of a how-to-instruction. It guides you through a complex task. The headline
starts with Tutorial:, for example Tutorial: Creating a button.

► Reference

References provide detailed technological parameters and tables as well as the EB GUIDE Monitor API
documentation.

► Demonstration

Demonstrations give you insight into how an application is written and the sequence of interactions. The
demonstrations are part of the EB GUIDE GTF SDK.

1.3. Typography and style conventions
Throughout the documentation you will see that words and phrases are displayed in bold or italic font, or in
monospaced font. To find out what these conventions mean, please consult the following table. All default text
is written in Arial Regular font without any markup.

Convention Item is used Example

Arial italics to emphasize If your project’s release version is mixed, all content
types are available. It is thus called mixed version.

Arial boldface for menus and submenus Select the Options menu.

Arial boldface for buttons Select OK.

Arial boldface for keyboard keys Press the Enter key.

Arial boldface for keyboard combination of keys Press Ctrl + Alt + Delete.

Arial boldface for commands Convert the XDM file to the newer version by using
the legacy convert command.

Monospaced
font (Courier)

for file and folder names, also for
chapter names

Put your script in the function_name\abcfolder.

Monospaced
font (Courier)

for code CC_FILES_TO_BUILD =(PROJECT_-

PATH)\source\network\can_node.c

CC_FILES_TO_BUILD += $(PROJECT_-

PATH)\source\network\can_config.c

Monospaced
font (Courier)

for function names, methods, or
routines

The cos function finds the cosine of each array ele-
ment. Syntax line example is MLGetVar ML_var_-
name.

Monospaced
font (Courier)

for user input/indicates variable
text

Enter a three-digit prefix in the menu line.

EB GUIDE documentation
Chapter 1. About this documentation

Page 19 of 265

Convention Item is used Example

Square brackets
[]

denote optional parameters; for
command syntax with optional pa-
rameters

insertBefore [<opt>]

Curly brackets {} denote mandatory parameters; for
command syntax with mandatory
parameters (in curly brackets)

insertBefore {<file>}

Three dots … indicate further parameters; for
command syntax

insertBefore [<opt>…]

Warning to warn about danger of death or
severe personal injury

WARNING This is an example for a
warning
This is what a warning looks like.

Caution to warn about danger of slight per-
sonal injury or material damage

CAUTION This is an example for a cau-
tion
This is what a caution looks like.

Notice to give additional but not vital infor-
mation on a subject

NOTE This is an example for a no-
tice
This is what a notice looks like.

Tip to provide helpful hints and tips TIP This is an example for a tip
This is what a tip looks like.

Example to demonstrate or illustrate infor-
mation

Example 1.1.
This is an example

This is what an example looks like.

This is a step-by-step instruction

Whenever you see the bar with step traces, you are looking at step-by-step instructions or how-tos.

EB GUIDE documentation
Chapter 1. About this documentation

Page 20 of 265

Prerequisite:

■ This line lists the prerequisites to the instructions.

Step 1
An instruction to complete the task.

Step 2
An instruction to complete the task.

Step 3
An instruction to complete the task.

1.4. Naming conventions
In EB GUIDE documentation the following directory names are used:

► The directory to which you installed EB GUIDE is referred to as $GUIDE_INSTALL_PATH.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.0

► The directory for your EB GUIDE SDK platform is referred to as $GTF_INSTALL_PATH. The name pattern
is $GTF_INSTALL_PATH\platform\<platform name>.

For example:

C:\Program Files\Elektrobit\EB GUIDE Studio 6.0\platform\win32

► The directory to which you save EB GUIDE projects is referred to as $GUIDE_PROJECT_PATH.

For example:

C:\Users\[user name]\Documents\EB GUIDE 6.0\projects\

EB GUIDE documentation
Chapter 2. Safe and correct use

Page 21 of 265

2. Safe and correct use

2.1. Intended use
► EB GUIDE Studio and EB GUIDE GTF are intended to be used in user interface projects for infotainment

head units, cluster instruments and selected industry applications.

► Main use cases are mass production, specification and prototyping usage depending on the scope of the
license.

2.2. Possible misuse
WARNING Possible misuse and liability

You may use the software only as in accordance with the intended usage and as permitted
in the applicable license terms and agreements. Elektrobit Automotive GmbH assumes no
liability and cannot be held responsible for any use of the software that is not in compliance
with the applicable license terms and agreements.

► Do not use the EB GUIDE product line as provided by EB to implement human machine interfaces in safety
relevant systems as defined in ISO 26262/A-SIL.

► EB GUIDE product line is not intended to be used in safety relevant systems that require specific certifi-
cation such as DO-178B, SIL or A-SIL.

Usage of EB GUIDE GTF in such environments is not allowed. If you are unsure about your specific
application, contact EB for clarification at chapter 3, “Support“.

EB GUIDE documentation
Chapter 3. Support

Page 22 of 265

3. Support
EB GUIDE support is available in the following ways.

► For community edition:

Find comprehensive information in our articles, blogs, and forums.

► For enterprise edition:

Contact us according to your support contract.

When you look for support, prepare the version number of your EB GUIDE installation. To find the version
number, go to the project center and click HELP. The version number is located in the lower right corner of
the dialog.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 23 of 265

4. Introduction to EB GUIDE
EB GUIDE assists users in development process of the human machine interface (HMI). The EB GUIDE product
line provides tooling and platform for graphical user interfaces. The EB GUIDE product line is intended to be
used in projects for infotainment head units, cluster instruments and selected industry applications. Main use
cases are mass production, specification, and prototyping.

4.1. The EB GUIDE product line
The EB GUIDE product line comprises the following software parts:

► EB GUIDE Studio

► EB GUIDE TF

EB GUIDE Studio is the modeling tool on your PC. With EB GUIDE Studio you model the whole HMI functionality
as a central control element that provides the user access to functions.

The EB GUIDE TF executes an EB GUIDE model created in EB GUIDE Studio. The EB GUIDE TF is available
for development PCs and for different embedded platforms.

The EB GUIDE model created with EB GUIDE Studio and the application executed on the EB GUIDE TF are
completely separated. They interact with each other, but cannot block one another.

4.2. EB GUIDE Studio

4.2.1. Modeling HMI behavior

The dynamic behavior of the EB GUIDE model is specified by placing states and by combining multiple states
in state machines.

► State machines

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system.
In EB GUIDE Studio different types of state machines are available, for example a haptic state machine.
Haptic state machines allow the specification of graphical user interfaces.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 24 of 265

► States

States are linked by transitions. Transitions are the connection between states and trigger state changes.

4.2.2. Modeling HMI appearance

To create a graphical user interface EB GUIDE Studio offers widgets. Widgets are model elements that define
the look. They are mainly used to display information, for example text labels or images. Widgets also allow
users to control system behavior, for example buttons or sliders. Multiple widgets are assembled to a structure,
which is called view.

4.2.3. Handling data

The communication between the HMI and the application is implemented with the datapool and the event
system.

► Events are temporary triggers. Events can be sent to both parties to signal that something specific happens.

► The datapool is an embedded database that holds all data that needs to be displayed and all other internal
information. Datapool items store and exchange data.

Application software can access events and the datapool through the API.

4.2.4. Exporting the EB GUIDE model

To use the EB GUIDE model on the target platform, you need to export the EB GUIDE model from EB GUIDE
Studio and to convert it into a format that the target platform understands. During the export, all relevant data
is exported as a set of ASCII files.

4.3. EB GUIDE TF
The EB GUIDE TF is a set of libraries, executables, and software tools, which are required to execute an EB
GUIDE model.

Most of the program code of EB GUIDE TF is platform-independent. The code can be ported to a new system
very easily.

EB GUIDE documentation
Chapter 4. Introduction to EB GUIDE

Page 25 of 265

It is possible to exchange the complete HMI, simply by exchanging the EB GUIDE model files. It is not necessary
to recompile the EB GUIDE TF. The changed EB GUIDE model just needs to be re-exported from EB GUIDE
Studio.

EB GUIDE TF uses the following platform abstractions:

► OS abstraction

Platform dependencies of the operating system (OS) are encapsulated by the Operating System Abstrac-
tion Layer (GtfOSAL). Functionalities that EB GUIDE TF uses from the operating system are for example
the file system or TCP sockets.

► GL abstraction

Platform dependencies of the graphics subsystem are encapsulated by the renderer. An EB GUIDE model
contains element properties such as geometry and lighting. The data contained in the exported EB GUIDE
model is passed to the renderer for processing and output to a digital image. The renderer is the abstraction
to the real graphic system on your hardware. The EB GUIDE TF supports various renderers for different
platforms.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 26 of 265

5. Modeler’s manual

5.1. Overview
As a modeler you are the target audience for the following chapters. For more information, see section 1.1.1,
“Modelers”.

For more information on the structure of the manual, see section 1.2, “Structure of user documentation”.

5.2. Components of the graphical user interface
The graphical user interface of EB GUIDE Studio is divided into two components: the project center and the
project editor. In the project center, you administer your EB GUIDE projects, configure project options, and
export projects for copying to the target device. In the project editor, you model HMI appearance and behavior.

5.2.1. Project center

The project center is the first screen that is displayed after starting EB GUIDE Studio. All project-related func-
tions are located in the project center. The project center consists of two parts: the navigation area and the
content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 27 of 265

Figure 5.1. Project center with navigation area (1) and content area (2)

5.2.1.1. Navigation area

The navigation area of the project center consists of function tabs such as CONFIGURE or EXPORT. You
select a tab in the navigation area and the content area displays the corresponding functions and settings.

5.2.1.2. Content area

The content area of the project center is where project management and configuration takes place. For exam-
ple, you select a directory to save a project or define the start-up behavior for your EB GUIDE model. The
appearance of the content area depends on the tab selected in the navigation area.

5.2.2. Project editor

After creating a project the project editor is displayed. In the project editor you model the behavior and the
appearance of the HMI: you model state machines, create views, and manage events and the datapool. The
project editor consists of the following areas.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 28 of 265

Figure 5.2. Project editor with its areas

1 Navigation area

2 Content area

3 Command area

4 Toolbox

5 Properties panel

6 Status bar

7 Problems area

5.2.2.1. Navigation area

The navigation area displays the model elements of your EB GUIDE model as a hierarchical structure and
allows you to navigate to any element. Selecting a model element in the navigation area displays the model
element in the content area.

The navigation area is divided into two tabs, the All tab and the Outline tab.

► The All tab gives you an overview of all graphical and non-graphical elements of the EB GUIDE model
and reflects the state machine hierarchy.

The All tab is also where you add events and datapool items.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 29 of 265

► The Outline tab displays the structure of the selected view tree element and its sub-elements.

At the top of the navigation area you find a search box to search for the name of any model element.

Figure 5.3. Navigation area in project editor

5.2.2.2. Content area

What is displayed in the content area depends on the selection in the navigation area. To edit a model element,
you double-click the model element in the navigation area and the content area displays it. For example, you
model the states of a state machine, you arrange widgets in a view, or you edit an EB GUIDE Script in the
content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 30 of 265

Figure 5.4. Content area in project editor

5.2.2.3. Command area

In the command area you find the button to open the project center and further menus.

5.2.2.4. Toolbox

All tools you need for modeling are available in the toolbox. Depending on the element that is displayed in the
content area, the toolbox offers a different set of tools. For example, the toolbox can contain the following:

► If the content area displays a state machine, the toolbox contains states you can add to the state machine.

► If the content area displays a view, the toolbox contains widgets and animations you can arrange in the
view.

► If the content area displays a scripted value property, the toolbox contains EB GUIDE Script functions you
can insert.

You drag model elements from the toolbox to the content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 31 of 265

Figure 5.5. Toolbox in project editor

5.2.2.5. Properties panel

The properties panel displays the properties of the selected model element, for example of a widget or a state.
Properties in the properties panel are grouped by categories. If a model element is selected, you can edit its
properties in the properties panel.

Figure 5.6. Properties panel displaying properties of a widget

5.2.2.6. Status bar

The status bar displays status information about EB GUIDE Studio.

5.2.2.7. Problems area

The problems area displays errors and warning for the EB GUIDE model.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 32 of 265

5.3. Tutorial: Getting started
The following section gives you a short overview on how to create an EB GUIDE model. It explains you how to
start EB GUIDE Studio, how to create a project, how to model the behavior and appearance of an EB GUIDE
model, and how to simulate an EB GUIDE model.

5.3.1. Starting EB GUIDE

Starting EB GUIDE

Prerequisite:

■ EB GUIDE is installed.

Step 1
In the Windows Start menu, click All Programs.

Step 2
In the Elektrobit menu, click the version you want to start.

EB GUIDE Studio starts. The project center is displayed.

Figure 5.7. Project center

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 33 of 265

5.3.2. Creating a project

Creating a project

Prerequisite:

■ EB GUIDE Studio is started.

■ A directory C:\temp is created.

Step 1
In the navigation area, click the NEW tab.

Step 2
Select the C:\temp directory.

Step 3
Enter the project name MyProject.

Step 4
Click the CREATE button.

The project is created. The project editor opens and displays the empty project.

The Main state machine is added by default and displayed in the content area.

Figure 5.8. Project editor with Main state machine

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 34 of 265

5.3.3. Modeling HMI behavior

The behavior of your EB GUIDE model is defined by state machines. EB GUIDE uses a syntax similar to UML
to do that.

In the following section, you learn how to model a state machine that displays a defined view on start-up and
changes to a different view when a button is pressed.

Adding states to the state machine

EB GUIDE offers a variety of states. The following section shows three different states. An initial state de-
fines the starting point of the state machine. A view state displays a view by default. And the final state of the
state machine terminates the state machine.

Prerequisite:

■ The project MyProject is created.

■ The project editor is displayed.

■ In the content area the Main state machine is displayed.

Step 1
Drag a view state from the toolbox to the content area.

Along with View state 1, a view is added to the EB GUIDE model.

Step 2
Repeat step 1.

View state 2 is added.

Step 3
Drag an initial state from the toolbox to the content area.

Step 4
Drag a final state from the toolbox to the content area.

The four states you added to the Main state machine are displayed both in the content area as a diagram
and in the navigation area as a hierarchical tree view.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 35 of 265

Figure 5.9. Project editor with states

Adding a transition

Transitions are the connection between states and trigger state changes. There are different transition types.
The following section shows a default transition and an event-triggered transition.

Prerequisite:

■ In the content area, an initial state, two view states, and a final state are displayed.

Step 1
Select the initial state as a source state for the transition.

Step 2
Click the green drag point and keep the mouse button pressed.

Step 3
Drag the mouse to the target state, View state 1.

Step 4
When the target state is highlighted green, release the mouse button.

A transition is created and displayed as a green arrow.

Step 5
Add a transition between View state 1 and View state 2.

Select View state 1 and repeat steps 2 - 4.

Step 6
Select the transition between View state 1 and View state 2.

As a next step, you associate the transition to an event.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 36 of 265

Step 7
In the PROPERTIES panel expand the Trigger combo box.

Step 8
Enter Event 1 in the Trigger combo box and click Add event.

An event called Event 1 is created and added as a transition trigger. Whenever Event 1 is fired, the tran-
sition is executed.

Step 9
Add a transition between View state 2 and the final state.

Select View state 2 repeat steps 2 - 4.

Add a new event Event 2 as a trigger.

At this point, your state machine resembles the following figure:

Figure 5.10. States linked by transitions with events

You have defined the behavior of a basic state machine.

5.3.4. Modeling HMI appearance

The state machine you created in the section above contains two view states. In the following section, you
learn how to model a view.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 37 of 265

Opening a view

Prerequisite:

■ In navigation area the All tab is opened.

■ View state 1 is added.

Step 1
In the content area double-click View state 1.

In the content area View 1 is displayed.

Adding a button to a view

With EB GUIDE Studio you have a variety of options to model the appearance of a view.

To give you one example, the next section shows you how to add a rectangle widget to a view. The rectangle
widget reacts on user input and thus functions as a button.

Prerequisite:

■ In the content area View 1 is displayed.

Step 1
Drag a rectangle widget from the toolbox to the content area.

Step 2
In the PROPERTIES panel go to the Widget features category and click the Add/Remove button.

The Widget features dialog is displayed.

Step 3
Expand the Common category and select State Touched.

The related properties are added to the PROPERTIES panel.

Step 4
Expand the Input handling category and select Touch Released.

The related properties are added to the PROPERTIES panel.

Step 5
To close the Widget features dialog, click outside the dialog.

Step 6
In the PROPERTIES panel set the touchPolicy property to Press then react.

The rectangle widget reacts on touch input.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 38 of 265

Step 7
Go to the touchShortReleased property and click the Edit button.

Step 8
Enter the EB GUIDE Script expression fire_delayed 500, ev:"Event 1"().

If the rectangle is touched, Event 1 is fired after 500 milliseconds.

Step 9
Click Accept.

Step 10
In the PROPERTIES panel set the fillColor property to red.

Step 11
Open View 2 and repeat steps 1 - 7.

Step 12
Enter the EB GUIDE Script expression fire_delayed 500, ev:"Event 2"().

Figure 5.11. Widget property with an EB GUIDE Script expression

Step 13
Click Accept.

If the rectangle is touched, Event 2 is fired after 500 milliseconds.

Step 14
In the PROPERTIES panel set the fillColor property to blue.

5.3.5. Starting the simulation

EB GUIDE allows you to simulate your model on the PC before exporting it to the target device.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 39 of 265

Starting the simulation

Step 1
In the command area, click .

The EB GUIDE model starts and shows the behavior and appearance you modeled.

First, View 1 is displayed. A click on the red rectangle changes the screen to View 2. This is because the
click fires Event 1 and Event 1 executes the transition from View state 1 to View state 2.

Then, View 2 is displayed. A click on the blue rectangle in View 2 terminates the state machine. This is be-
cause the click fires Event 2 and Event 2 executes the transition from View state 2 to the final state. The

simulation window remains open. To stop the simulation, click .

5.4. Background information
The topics in this chapter are sorted alphabetically.

5.4.1. Animations

With widget animations, you can animate widgets within a view. Each animation has one or more animation
curves associated to it.

An animation curve has a target widget property and describes the time-based change of the target property.
For example, there are constant curves, linear interpolation curves, or sinus curves.

Among others, widget animations can do the following:

► Move a widget within a view

► Change the size of a widget

► Gradually change the color of a widget

An animation is controlled by the script functions f:animation_play, f:animation_pause,
f:animation_cancel, etc.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 40 of 265

TIP Concurrent animations
In EB GUIDE, animations are concurrent animations and animation curves are executed in
parallel. This means: If the curves of several animations use the same widget property as
a target, the curves overwrite that target property's value concurrently.

For animation and curve properties, see section 9.7.3, “Animations”.

5.4.2. Application programming interface between application
and model

EB GUIDE abstracts all communication data between an application and the EB GUIDE TF in an application
programming interface (API). An application may be for example a media player or a navigation.

The API is defined by datapool items and events. Events are sent between HMI and application.

Example 5.1.
Contents of an API

► Event START_TRACK that is sent to the application and that contains the parameter track for the
number of the track that should be played

► Event TRACK_STOPPED that is sent from the application to the HMI when the played track has
ended

► The dynamic datapool item MEDIA_CURRENT_TRACK that is written by the application

► The dynamic datapool item MEDIA_PLAY_SPEED that defines the speed for playing and is set by
the user in the HMI

5.4.3. Communication context

The communication context describes the environment in which communication occurs. An example for a com-
munication context is a media or a navigation application which communicates with an HMI model. Changes
made by one communication context are invisible to other communication contexts until the changes are pub-
lished by the writer context and updated by the reader context.

A communication context is identified by a unique name and numerical ID (0...255) in the project configuration.

A datapool item has one property for the communication context that writes a value, and another property for
the communication context that is notified about the changed value and reacts on the value change.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 41 of 265

5.4.4. Datapool

5.4.4.1. Concept

During the execution, a model communicates with different applications. To enable the communication, your EB
GUIDE model has to provide an interface. The datapool is an interface which allows access to datapool items
to exchange data. Datapool items store values and communicate between HMI and applications. Datapool
items are defined in the EB GUIDE model.

5.4.4.2. Datapool items

Datapool items are used to the follwing:

► send data from the applications to the HMI

► send data from the HMI to the applications

► store data which is only used in either HMI or applications.

To channel communication, you use the communication context.

With the Writer context property you define which communication context writes new values.

With the Reader context property you define which communication context is notified about changed values
and reacts on the value change.

In internal communication, one communication context acts as both reader and writer of a datapool item. In-
ternal communication is used to store data. For example, datapool items with internal communication are used
in widget properties.

Using two different communication contexts establishes external communication. External communication is
only possible if the read-only property of a datapool item is cleared.

5.4.4.3. Windowed lists

Using the datapool item property Windowed, the EB GUIDE product line supports the concept of windowed
lists. The windowed list operating mode is often used to reduce memory consumption for the display of large
lists, for example all MP3 titles in a directory. Those lists are typically provided by one communication context,
for example media application, and are only partially displayed by another communication context, for example
HMI.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 42 of 265

NOTE A datapool item with the enabled property Windowed needs a writer context and reader
contexts which differ.

The writer communication context defines a virtual list length and a number of windows, which possibly contain
only parts of the list. The reader communication context reads data only from locations that are covered by
windows. Reading from other locations fails. In such a use case, the reader communication context has to
inform the writer communication context about the currently required parts of the list. For example, HMI can
make application calls that provide the current cursor position within the complete list.

Example 5.2.
Windowed list

The MP3 title list of an audio player device has 1,000,000 elements. The HMI has to display this list on
three different displays in parallel: head unit display, cluster instrument display, and head-up display.

Each display is controlled separately, has a different number of display lines and has a different cursor
position within the complete list.

Whenever one of the three cursors moves, the HMI sends the new position asynchronously to the me-
dia application through an event. The media application provides a list with three windows. Each of the
three windows is associated to one of the three displays. Because of the asynchronous communication
based on events and datapool updates, window updates delay a little bit after the cursor moves. There-
fore it is advisable to use window positions and window sizes which cover an extended range around
the lines that are shown by the specific display.

5.4.5. EB GUIDE model and EB GUIDE project

An EB GUIDE model is the sum of all elements that describe the look and behavior of an HMI. It is built entirely
in EB GUIDE Studio. You can simulate the EB GUIDE model on your PC.

To execute an EB GUIDE model on a target platform, you export the EB GUIDE model and copy the resulting
binary files to the target platform.

An EB GUIDE project consists of an EB GUIDE model and settings that are needed for modeling. It includes
project-specific options, extensions, resources, and, for graphical projects, the description of a haptic dialog.

An EB GUIDE project contains objects that are configured and linked within an EB GUIDE model. These objects
are called EB GUIDE model elements. Examples for EB GUIDE model elements are as follows:

► Datapool item

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 43 of 265

► Event

► State

► State machine

► Widget

► Resource

► Language

5.4.6. Event handling

5.4.6.1. Event system

The event system is an asynchronous mechanism for communication within or between communication con-
texts.

The EB GUIDE event system delivers all events exactly in the order they were sent. There is no pre-defined
order for delivering an event to different subscribers.

5.4.6.2. Events

Group ID
The group IDs 0...65535 are reserved for internal use within the EB GUIDE product line. The remaining
range of group IDs is available for customer-specific applications.

Event ID
If you set the property, the given numeric value defines the event ID used by EB GUIDE TF to send and
receive the event.

5.4.7. Languages

Most human machine interfaces offer the possibility to display written texts in the user's preferred language.
Such language management is also provided by EB GUIDE. You add and select languages for an EB GUIDE
model in the project configuration.

Example 5.3.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 44 of 265

Language support

In the project configuration three languages are added: English, German, and French. A datapool item
has the value Welcome in English and the values Willkommen in German and Bienvenue in French.

The current language of the exported EB GUIDE model can be set during run-time.

A numerical identifier is assigned to every language. To change a language during run-time, you require the
identifier. Set a unique numerical identifier to know which identifier belongs to which language.

For more details see: section 5.6.2.1, “Adding a language”.

NOTE Support of languages
It is possible to make datapool items language dependent. A datapool item defines a value
for each language. To support languages the read-only property has to be selected.

5.4.8. Resource management
Resources are content that is not created within EB GUIDE but is required by your projects. Locate all resources
of an EB GUIDE Studio project in the resources directory.

The resources directory is located at $GUIDE_PROJECT_PATH/<project name>/resources.

There are three types of resource in EB GUIDE:

1. Fonts

2. Images

3. 3D graphics

In order to use resources in the project, add the resource files to the directory.

5.4.8.1. Fonts

In order to use a font in the project, add the font to the directory $GUIDE_PROJECT_PATH/<project name>/
resources.

Supported font types are TrueType fonts (*.ttf, *.ttc) and OpenType fonts (*.otf).

5.4.8.2. Images

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 45 of 265

In order to use an image in the project, add the image to the directory $GUIDE_PROJECT_PATH/<project
name>/resources. If you select an image from a different directory, the image is copied to the directory .

The supported image formats are Portable Network Graphic (*.png), Portable Pixel Map (*.ppm), JPEG (*.-
jpg;*.jpeg), Scalable Vector Graphics (*.svg), and 9-patch images (*.9.png). .

5.4.8.2.1. SVG images

EB GUIDE supports the following SVG element types:

Basic shapes

► Rectangle

► Circle

► Ellipse

► Line

► Polyline

► Polygon

► Path: moveto, lineto, curve, closepath, cubic bézier curve, quadratic bézier curve

Painting modes

► Fill

► Stroke: solid and with dashes

Paint types

► Color

► Linear and radial gradients, including spread modes

Only the OpenVG renderer can process SVG images.

NOTE Mandatory attributes for SVG files
For correct clipping and scaling, EB GUIDE Studio depends on the SVG attributes width
and height. The size of SVG files has to match the view area.

5.4.8.2.2. 9-patch images

EB GUIDE Studio supports images with additional meta information according to the 9-patch image approach.
9-patch images are stretchable PNG images. 9-patch images contain two black markers, one at the top and

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 46 of 265

one at the left side of the image. Areas that are not marked will not be scaled. Marked areas will be scaled.
Markers are not displayed in EB GUIDE Studio.

Figure 5.12. 9-patch example

When you work with 9-patch images, consider the following:

► 9-patch processing works with the OpenGL ES 2.0 and theDirectX renderer only.

► 9-patch processing works with PNG images only. PPM images do not support 9-patch processing.

► for 9-patch images the *.9.png extension is mandatory.

► It is possible to specify none, one, or more than one marker at the top and the left side. The 9-patch
definition also includes markers for text areas at the right side and at the bottom of the image. These
markers are not evaluated in EB GUIDE Studio.

5.4.8.3. 3D graphics

It is possible to display 3D graphics in EB GUIDE Studio. .

In order to use a 3D graphic in the project, add the 3D graphic to the directory $GUIDE_PROJECT_PATH/
<project name>/resources.

3D graphics can have textures. Textures are images that are mapped to the 3D graphic. Copy any 3D graphic
texture manually into a directory with a name equal to the 3D graphic file but without the file extension.

Example 5.4.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 47 of 265

Naming of textures for 3D graphics

The 3D graphic is called car.dae. Place any related texture images in a directory called car that re-
sides in the same directory as the file car.dae.

Only the OpenGL ES 2.0 and DirectX 11 renderers can display 3D graphics. For supported 3D graphic formats
see section 9.7.4.1.1, “Supported 3D graphic formats”.

5.4.9. Scripting language EB GUIDE Script

EB GUIDE Script is the built-in scripting language of EB GUIDE. This chapter describes EB GUIDE Script
language features, syntax, and usage.

5.4.9.1. Capabilities and areas of application

You can use EB GUIDE Script in a variety of places in a project, for example:

► In a widget property

► In the state machine as part of a transition or state

► In a datapool item

Not all features of EB GUIDE Script are available in all cases. For example access to local widget properties is
only allowed when the script is part of a widget. Access to the datapool, on the other hand, is always allowed.

With EB GUIDE Script you can directly manipulate model elements, for example to do the following:

► Fire events

► Write datapool items

► Modify widget properties

5.4.9.2. Namespaces and identifiers

In EB GUIDE, it is possible to give identical names to different kinds of objects. For example, you can name both
an event and a datapool item Napoleon. EB GUIDE Script namespaces make this possible. Every identifier, i.-
e. name of an object, in EB GUIDE Script must be prefixed with a namespace and a colon.

The set of namespaces is fixed in EB GUIDE Script, you cannot introduce new namespaces. The following
namespaces exist:

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 48 of 265

► ev: events

► dp: datapool items

► f: user-defined actions (foreign functions)

► v: local variables

For example, ev:Napoleon specifies the event named Napoleon while dp:Napoleon specifies the datapool
item named Napoleon.

Identifiers without a namespace prefix are string constants.

Identifiers in EB GUIDE contain many characters including spaces and punctuation. Thus it can be necessary
to quote identifiers in EB GUIDE Script. If an identifier does not contain special characters, for example a valid
C identifier consisting only of letters, numbers and underscores, it does not have to be quoted.

Example 5.5.
Identifiers in EB GUIDE Script

dp:some_text = foo; // foo is a string here

dp:some_text = "foo"; // this statement is identical to the one above

dp:some_text = v:foo; // foo is the name of a local variable

// of course you can quote identifiers, even if it is not strictly necessary

dp:some_text = v:"foo";

// again, a string constant

dp:some_text = "string with spaces, and -- punctuation!";

// identifiers can also contain special characters, but you have to quote them

dp:some_text = v:"identifier % $ with spaces @ and punctuation!";

5.4.9.3. Comments

EB GUIDE Script has two kinds of comment: C style block comments and C++ style line comments. Block
comments must not be nested.

Example 5.6.
Comments in EB GUIDE Script

/* this is a C style block comment */

// this is a C++ style line comment

5.4.9.4. Types

EB GUIDE Script is a strongly-typed and statically-typed programming language. Every expression has a well
defined type. Supplying an unexpected type results in an error.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 49 of 265

EB GUIDE Script supports the following types:

► Integer (int)

► Unicode strings (string)

► Objects with reference counting

► Type definitions to the above listed types and to the following:

► Color (int for 32-bit RGBA value)

► Boolean (bool)

► IDs of different model elements: datapool items, views, state machines, pop-ups (all of int type)

► Void, also known as the unit type. This type has a role as in functional programming, for example Haskell.

► Widget and event references. These are record types, the fields of which you may access by using the dot
notation, as known in C or Java. You cannot directly create new objects of these kinds, they are created
automatically where appropriate.

All types and type definitions are incompatible with each other and there are no typecasts. This feature ensures
type safety once a script is successfully compiled.

5.4.9.5. Expressions

EB GUIDE Script is expression-based. Every language construct is an expression. You form larger expressions
by combining smaller expressions with operators.

To evaluate an expression means to replace it by its value.

Example 5.7.
Evaluation of an integer value

1 + 2 // when this expression is evaluated, it yields the integer 3

5.4.9.6. Constants and references

The basic expressions are integer, color, boolean, and string constants and references to model elements.

The void type also has a value constant that can be written in two different but semantically equivalent ways:

► With the opening curly brace followed by the closing curly brace {}

► With the keyword unit

Example 5.8.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 50 of 265

Usage of constants

"hello world" // a string constant

true // one of the two boolean constants

ev:back // the event named "back" of type event_id

dp:scrollIndex // the datapool item named "scrollIndex",

 // the type is whichever type the dp item has

5 // integer constants have a dummy type "integer constant"

5::int // typecast your constants to a concrete type!

color:255,255,255,255 // the color constant for white in RGBA format

 // the following are two ways to express the same

 if(true)

{

}

else

{

}

if(true)

 unit

else

 unit

5.4.9.7. Arithmetic and logic expressions

EB GUIDE Script supports the following arithmetic expressions:

► Addition (+), subtraction (-), multiplication (*), division (/), and modulo (%) can be applied to ex-
pressions of type int.

► The logical operators or (||), and (&&), not (!) can be applied to expressions of type bool.

► Integers and strings can be compared with the comparison operators greater-than (>), less-than (<),
greater-than-or-equal (>=), less-than-or-equal (<=).

► Every type can be compared with the equality operators (==) and (!=).

► Strings can be concatenated with the (+) operator.

Example 5.9.
Arithmetic and logic expressions

10::int + 15::int // arithmetic expression of type int

dp:scrollIndex % 2 // arithmetic expression of type int,

 // the concrete type depends on the type

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 51 of 265

 // of dp:scrollIndex

"Morning Star" == "Evening Star" // type bool and value false (wait, what?)

!true // type bool, value false

!(0 == 1) // type bool, value true

// as usual, parenthesis can be used to group expressions

((10 + dp:scrollIndex) >= 50) && (!dp:buttonClicked)

// string concatenation

"Napoleon thinks that " + "the moon is made of green cheese"

f:int2string(dp:speed) + " km/h" // another string concatenation

5.4.9.8. L-values and r-values

There are two kinds of expressions in EB GUIDE Script: l-values and r-values. L-values have an address and
can occur on the left hand side of an assignment. R-values do not have an address and may never occur on
the left hand side of an assignment.

► L-values are datapool references, local widget properties, and local variables.

► R-values are event parameters and constant expressions such as string or integer constants.

5.4.9.9. Local variables

The let expression introduces local variables. It consists of a list of variable declarations and the in expres-
sion, in which the variables are visible. Variables are l-values, you can use them on the left hand side of as-
signments. Variables have the namespace v:. The syntax of the let expression is as follows:

let v:<identifier> = <expression> ;

 [v:<identifier> = <expression> ;]...

in

 <expression>

The type and value of the let expression are equal to the type and value of the in expression.

let expressions may be nested, variables of the outer let expressions are also visible in the inner expres-
sions.

Example 5.10.
Usage of the let expression

// assign 5 to the datapool item "Napoleon"

let v:x = 5 in dp:Napoleon = v:x;

// define several variables at once

let v:morning_star = "Venus";

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 52 of 265

 v:evening_star = "Venus";

in

 v:morning_star == v:evening_star; // Aha!

let v:x = 5;

 v:y = 20 * dp:foo;

in

{

 // Of course you may have a sequence as the in expression,

 // but parenthesis or braces are required then.

 v:x = v:y * 10;

 dp:foo = v:x;

}

// Because let expression also have types and values, we can have them

// at the right hand side of assignments.

dp:x = let v:sum = dp:x + dp:y + dp:z

 in v:sum; // this is the result

 // of the let expression

// A nested let expression

let v:x = dp:x + dp:y;

in

 let v:z = v:x + v:a;

 in

 dp:x = v:z;

5.4.9.10. While loops

while loops in EB GUIDE Script have a syntax similar to that in C or Java, they consist of a condition expression
and a do expression. The syntax is as follows:

while (<condition expression>) <do expression>

The do expression is evaluated repeatedly until the condition expression yields false. The condition ex-
pression must be of type bool, the do expression must be of type void. The while expression is of type
void and must not occur at the left or right hand side of an assignment.

Example 5.11.
Usage of the while loop

// Assume dp:whaleInSight is of type bool

while(! dp:whaleInSight)

{

 dp:whaleInSight = f:lookAtHorizon();

}

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 53 of 265

5.4.9.11. If-then-else

if-then-else in EB GUIDE Script behaves like the ternary conditional operator (?:) in C and Java.

The if-then-else expression consists of the following sub-expressions:

► condition expression

► then expression

► else expression

The syntax is as follows:

if (< condition expression>) <then expression> else <else expression>

if-then-else is processed as follows:

1. First, the condition expression is evaluated. It must be of type bool.

2. If the condition is true, the then expression is evaluated.

3. If the condition is false, the else expression is evaluated.

if-then-else itself is an expression. The type of the whole expression is the type of the then expression and
the else expression, which must be identical. The value of if-then-else expressions is either the value of
the then expression, or the value of the else expression, in accordance with the rules above.

There is a special form of if-then-else, in which you may omit the else branch. This special form is of
type void and can not be used to return values from scripts.

Example 5.12.
Usage of if-then-else

// Assume dp:whaleInSight is of type bool

// and dp:user is of type string.

if(dp:whaleInSight && dp:user == "Captain Ahab")

{

 dp:mode = "insane";

}

else

{

 dp:mode = "normal";

}

// Because if-then-else is also an expression,

// we may simplify the previous example:

dp:mode = if(dp:whaleInSight && dp:user == "Captain Ahab")

 "insane"

 else

 "normal"

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 54 of 265

if (<expression>) <expression> // This is the reduced way of

 writing if-then-else

 //It is an alternative to the following

 if(<expression>) { <expression> ; {} } else {}

5.4.9.12. Foreign function calls

You can extend EB GUIDE Script with functions written in C, so-called foreign functions.

An identifier prefixed by f: is the name of a foreign function. Foreign functions have an argument list and a
return value, as they do in C. The syntax of foreign function calls is as follows:

f:<identifier> (<expression> [, <expression>] ...)

Example 5.13.
Calling foreign functions

// write some text to the connection log

f:trace_string("hello world");

// display dp:some_index as the text of a label

v:this.text = f:int2string(dp:some_index);

// passing different parameters of matching type

f:int2string(v:this.x)

f:int2string(4)

f:int2string(dp:myInt)

f:int2string(v:myVar)

//passing parameters of different types

// starts an animation (parameter type GtfTypeRecord) from a script

// located in its parent widget

f:animation_play(v:this->Animation);

// checks the number of children of a widget (parameter type widget)

f:widgetGetChildCount(v:this);

// traces debugging information about a datapool item (parameter type dp_id)

// to the connection log; uses the address of the datapool item as parameter

f:trace_dp(&dp:myFlag);

5.4.9.13. Datapool access

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 55 of 265

Scripts written in EB GUIDE Script can read and write datapool items. An identifier prefixed by a namespace
dp: is called datapool item expression. Its type is datapool item of type X, where X is the type of the datapool
entry it refers to.

If a datapool item of type X occurs on the left hand side of an assignment, and an expression of type X occurs
on the right hand side of the assignment, the value of the datapool item is written.

If a datapool item occurs somewhere in a program but not on the left hand side of an assignment, the value
of the datapool item is read.

Example 5.14.
Assignment of datapool values

// Assume intA to be of type int. Assign 10 to it.

dp:intA = 10;

// Assume strA to be of type string. Assign the string "blah" to it.

dp:strA = blah; // Yes, we can omit the quotes, remember?

dp:strA = 42; // Error: integer cannot be assigned to string

// Assign the value of the datapool item intB to intA.

// Both datapool items must have the same type.

dp:intA = dp:intB;

// Multiply the value of intB by two and assign it to intA.

dp:intA = 2 * dp:intB;

// Use the value of a datapool item in an if-clause.

if(dp:speed > 100)

{

 // ...

}

The following operators can be applied to the datapool items:

► The reference operator (&) can be applied to datapool items. It refers to the address of a datapool item
rather than to its value. The reference operator is used in foreign function calls to pass parameters of
type dp_id.

► The redirect-reference operator (=>) assigns a different datapool item to a datapool reference. It may only
be applied to datapool references.

5.4.9.14. Widget properties

If a script is part of a widget, it can access the local properties of that widget. EB GUIDE Script creates a local
variable called v:this to access the properties using the dot notation.

A script is part of a widget if it is attached to a local widget property, for example as an input reaction such
as click or button press.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 56 of 265

Example 5.15.
Setting widget properties

// assume this script is part of a widget

v:this.x = 10; // if the widget has an x coordinate

v:this.text = "hello world"; // if the widget is a label and has a text property

// assume testEvent has one integer parameter

fire ev:testEvent(v:this.x);

If a script is part of a widget, it can also access properties of other widgets in the widget tree.

The go-to operator (->) is used to refer to other widgets within the widget tree. The syntax is as follows:

<expression> -> <expression>

The expression on the left hand side must refer to a widget and the expression on the right hand side must
be a string, the name of a child widget. To navigate to the parent widget, use the symbol ^ on the right hand
side. The whole go-to expression refers to a widget.

Navigating the widget tree might affect run-time performance. Widgets are assigned to local variables for the
efficient manipulation of multiple properties.

Example 5.16.
Accessing widget properties

v:this.x // access the properties of the current widget

v:this->^.x // access the x property of the parent widget

v:this->^->caption.text // access the text property of a label called caption,

 // read: "go-to parent, go-to caption, text"

// Modify several properties of the caption.

// This way, the navigation to the caption is only performed once.

let v:cap = v:this->^->caption

in

{

 v:cap.textColor = color:0,0,0,255;

 v:cap.x += 1;

 v:cap.y += 1;

}

5.4.9.15. Lists

Datapool items and widget properties can hold lists. The subscript operator ([]) accesses list elements. The
syntax is as follows:

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 57 of 265

<expression> [<expression>]

The first expression must evaluate to a list type, the second expression must evaluate to an integer value. If
the list is of type list A, the whole list subscript expression must be of type A.

If the list subscript expression occurs at the left hand side of an assignment, the value of the referred list
element is written.

The length keyword returns the number of elements of a list. If it is put in front of a list expression, the whole
expression must be of type int.

Example 5.17.
Lists

// Assume this widget is a label and dp:textList is a list of strings

v:this.text = dp:textList[3];

dp:textList[1] = v:this.text; // writing the value of the list element

v:this.width = length dp:textList;// checking the length of the list

dp:textList[length dp:textList - 1] = "the end is here";

Adding elements to and removing elements from lists is currently not supported in EB GUIDE Script.

Trying to access list elements beyond the end of a list stops the execution of the script immediately. Make sure
that all your list accesses are in range.

5.4.9.16. Events

EB GUIDE Script offers the following expressions to handle events:

► The fire expression sends events. The syntax is as follows:

fire ev:<identifier> (<parameter list>)

Events can, but do not need to have parameters. The parameter list of the fire expression must match
the parameters of the fired event. If an event has no parameters, the parentheses must be empty.

Example 5.18.
Using the fire expression

fire ev:toggleView(); // the event "toggleView" has no parameters

fire ev:mouseClick(10, 20); // "mouseClick" has two integer parameters

fire ev:userNameEntered("Ishmael"); // string event parameter

► The fire_delayed expression sends events after a specified time delay. The syntax is as follows:

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 58 of 265

fire_delayed <time> , ev:<identifier> (<parameter list>)

The time parameter is an integer value that specifies the delay in milliseconds.

Example 5.19.
Using the fire_delayed expression

fire_delayed 3000, ev:mouseClick(10, 20); // send the event "mouseClick"

 //in 3 seconds.

► The cancel_fire expression cancels the delayed event. The syntax is as follows:

cancel_fire ev:<identifier>

► The match_event expression checks whether the execution of a script has been triggered by an event.
The syntax is as follows:

match_event v:<identifier> = ev:<identifier>

in

 <expression>

else

 <expression>

The type of the match_event expression is the type of the in expression and the else expression,
which must be identical.

There is a special form of the match_event expression, in which you can omit the else branch. This
special form is of type void and cannot be used to return values from scripts.

Example 5.20.
Using the match_event expression

match_event v:theEvent = ev:toggleView in

{

 // this code will be executed when the "toggleView" event

 // has triggered the script

 dp:infoText = "the view has been changed";

}

else {}

match_event (<expression>) in <expression> //special form

 //without an else branch

 //The special form is an alternative way to express the following

 match_event (<expression>) in { <expression> ; {} } else {}

If a script has been triggered by an event with parameters, the parameters are accessible in the in expression
of a match_event expression. Read parameters using the dot notation, as you would access fields of a
structure in C. Event parameters are not available in the else expression.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 59 of 265

Example 5.21.
Event parameters

// assume that "mouseClick" has two parameters: x and y

match_event v:event = ev:mouseClick in

{

 dp:rectX = v:event.x;

 dp:rectY = v:event.y;

}

5.4.9.17. String formatting

String formatting in EB GUIDE Script is done using the concatenation operator (+) on strings in combination
with various data-to-string conversion functions. The EB GUIDE Script standard library comes with the following
conversion functions:

► int2string for simple integer-to-string conversion

► formatInteger for advanced integer-to-string conversion including features like fill characters and for-
matting in binary, hexadecimal, and decimal format

Example 5.22.
String formatting

// Assume this widget is a label and has a text property.

// Further assume that the datapool item dp:time_hour and

// dp:time_minute hold the current time.

v:this.text = "the current time is: " + f:int2string(dp:time_hour)

 + ":" + f:int2string(dp:time_minute);

5.4.9.18. The standard library

EB GUIDE Script comes with a standard library that consists of a set of foreign functions for example as follows:

► String formatting

► Language management

► Tracing

► Time and date

► Random number generation

For more information on the standard library, see section 9.3.3, “EB GUIDE Script standard library”.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 60 of 265

5.4.10. Shortcuts and icons

5.4.10.1. Shortcuts

The following table lists shortcuts available in EB GUIDE and explains their meaning.

Table 5.1. Shortcuts

Hotkey Description

Ctrl + Y Redo

Ctrl + Z Undo

Del Deletes the selected widget from a view in the content area

F1 Opens the user documentation

F2 Renames the selected model element in the navigation area

Up/Down/Left/Right Moves the selected state or widget in the content area one pixel up,
down, left, or right

5.4.10.2. Icons

The following table lists icons that are used in EB GUIDE and explains their meaning.

Table 5.2. Icons in the command area

Icon Description

Undo

Redo

Save

Starts the simulation

Stops the simulation

Table 5.3. Icons in the navigation area

Icon Description

Indicates a template

Indicates a transition

Synchronizes content area and navigation area

Adds an event, a datapool item or a state machine

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 61 of 265

Table 5.4. Icons in the PROPERTIES panel

Icon Description

Indicates a local property

Indicates that a property is linked to another property

Indicates that a property is linked to a datapool item

Widget template:

Indicates that a property is added to the widget template interface

Widget template instance:

Indicates that a property value is equal to the value in the template

5.4.11. State machines and states

5.4.11.1. State machines

A state machine is a deterministic finite automaton and describes the dynamic behavior of the system. In EB
GUIDE, a state machine consists of an arbitrary number of hierarchically ordered states and of transitions
between the states.

In EB GUIDE you can create the following types of state machines:

5.4.11.1.1. Haptic state machine

Haptic state machine allows the specification of GUI.

5.4.11.1.2. Logic state machine

Logic state machine allows the specification of some logic without GUI.

5.4.11.1.3. Dynamic state machine

Dynamic state machine runs parallel to other state machines.

Dynamic state machine does not start automatically at system start. The start and stop of dynamic state ma-
chines is initiated by another state machine.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 62 of 265

There are two kinds of dynamic state machines:

► Haptic dynamic state machine

► Logic dynamic state machine

5.4.11.2. States

EB GUIDE uses a concept of states. States determine the status and behavior of a state machine. States
are linked by transitions. Transitions are the connection between states and define the destination of a state
change.

A state has the following properties:

► Entry action

► Exit action

► Internal transitions

5.4.11.2.1. Compound state

A compound state can have other states within it as child states. The compound state structure is hierarchical
and the number of possible child states is arbitrary. Any type of state can be nested in a compound state.

Figure 5.13. Compound states

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 63 of 265

In the navigation area, the state hierarchy is shown as a tree structure.

Figure 5.14. State hierarchy as a tree

A compound state can have an arbitrary number of incoming and outgoing transitions, and of internal transitions.
Child states inherit the transitions of parent states.

5.4.11.2.2. View state

A view state contains a view. A view represents a project specific HMI screen. The view is displayed while
the corresponding view state is active. The view consists of widgets which are the interface between user and
system.

5.4.11.2.3. Initial state

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 64 of 265

An initial state defines the starting point of the state machine. An initial state has an outgoing default transition
that points to the first state. An initial state has no incoming transition.

Initial state can be used as starting point of a compound state or to enter a compound state in the following ways:

► With a transition to compound state, initial state is mandatory

► With a transition to compound state children

Figure 5.15. An example of an initial state

5.4.11.2.4. Final state

A final state is used to exit a compound state. If the final state of the state machine is entered, the state machine
terminates. Any history states within the compound state are reset. A final state does not have any outgoing
transitions.

A compound state can have only one final state. The final state is triggered by the following actions:

► A transition from a child state to the outside of the compound state (the transition with event z)

► An outgoing transition from the compound state (the transition with event y)

► A transition to the final state in a compound state (the transition with event x)

If a compound state contains a final state, the compound state must have an outgoing transition.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 65 of 265

Figure 5.16. Final state usage in a compound state

5.4.11.2.5. Choice state

A choice state realizes a dynamic conditional branch. It is used when firing an event depends on conditions. A
choice state is the connection between a source state and a destination state. A choice state can have several
incoming and outgoing transitions. Every outgoing transition is assigned a condition and is only executed if the
condition evaluates to true. One outgoing transition is the else transition. It is executed if all other conditions
evaluate to false. The else transition is mandatory.

It is possible that several of the outgoing transitions are true, thus it is necessary to define the order in which
the outgoing transitions are evaluated.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 66 of 265

Figure 5.17. Choice state with incoming and outgoing transitions

5.4.11.2.6. History states

EB GUIDE supports two types of history states:

► Shallow history state stores the most recent active sub-state: the sub-state that was active just before
exiting the compound state.

► Deep history state stores a compound state and its complete sub-hierarchy just before the compound
state is exited.

When the parent state of a history state is entered for the first time, the last active child state is restored.

A shallow history state only remembers the last state that was active before compound state was exited. It
cannot remember hierarchies.

A shallow history state restores the last active state recorded within a compound state. It has an outgoing
default transition without conditions but can have multiple incoming transitions.

When a compound state is entered for the first time the shallow history state is empty. When an empty shallow
history state is entered the shallow history state default transition determines the next state.

Example 5.23.
Shallow history state

A shallow history state can be used as follows.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 67 of 265

Figure 5.18. Shallow history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the shallow history state is entered.

3. From the shallow history state, the state machine enters state D because state D was the last
active state in Compound State.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again the shallow history state is entered.

3. From the shallow history state, the state machine enters Inner state because shallow his-
tory states remember the state last active but cannot remember hierarchies.

4. Entering Inner state leads to state A.

A deep history state is able to save hierarchical histories.

Example 5.24.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 68 of 265

Deep history state

A deep history state can be used as follows.

Figure 5.19. Deep history state

► Case 1: The active state is D.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state D because state D was the last ac-
tive state in Compound State.

► Case 2: The active state is B.

1. event b is fired and state C is entered.

2. event b is fired again and the deep history state is entered.

3. From the deep history state, the state machine enters state B because state B was the last ac-
tive state and deep history state remembers state hierarchies.

One state can have either a shallow history state or deep history state. You can have a history state in a parent
state and another history state in a child state.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 69 of 265

5.4.11.3. Transitions

A transition is a directed relationship between a source state and a target state. It takes the state machine from
one state to another. A transition has the following properties:

► A trigger to execute the transition

A trigger can either be an event or the change of a datapool item.

► A condition that must be evaluated as true to execute the transition

► An action that executed along with the transition

Figure 5.20. A transition

NOTE Transitions are deterministic
It is not possible to have more than one transition for the same event even with different
conditions. If the state machine is supposed to jump to different destination states depending
on different conditions, use a choice state.

A state inherits all transitions from its parent states. If a number of states share the same transitions to another
state, an enclosing compound state can be used to bundle the transitions and thus reduce the number of
conditions.

Example 5.25.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 70 of 265

Transition inheritance

Figure 5.21. Transition inheritance

If the event b is fired while the state machine is in State B1, the transition to State C is executed be-
cause the child states State B1 and State B2 inherit the transitions of state State B.

If an internal transition from the child state uses the same event as the external transition from the parent state,
transition inheritance is overridden.

Example 5.26.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 71 of 265

Transition override

Figure 5.22. Transition override

If event d is fired while the state machine is in state State B, the transition to State C is executed.

If event d is fired while the state machine is in state State B1, the transition to State B2 is executed
instead of the transition to State C. Because the two transitions have the same name, the inner transi-
tion overrides the outer one.

NOTE Execution hierarchy
In a state machine the hierarchy for the execution of transitions that use the same event
is always from the inside out.

There are different types of transitions.

► Default transition

A default transition is triggered automatically and not by any event or datapool item update. It has no
condition, but can have an action. It is used with initial state, final state, choice state, and history states.

► Choice transition

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 72 of 265

A choice transition is an outgoing transition with a condition assigned to it. Its source state is a choice
state. Choice transitions are triggered by the evaluation of their condition. They result in an action. The
first choice transition that has condition true is executed.

► Else transition

An else transition is the mandatory counterpart of a choice transition. Every choice state needs to have
one else transition which is executed if the conditions of all its choice transitions evaluate to false.

► Internal transition

An internal transition is a transition that has no destination state and thus does not change the active state.
The purpose of an internal transition is to react to an event without leaving the present state. It can have
a condition and it results in an action.

It is possible to have several internal transitions for the same event in a state. The order of execution is
defined.

► Self transition

A self transition is a transition with the same state as source state and destination state. Unlike an internal
transition, a self transition leaves and re-enters the state and thus executes its entry and exit actions.

5.4.11.4. Execution of a state machine

When a state machine is executed, at any moment in time it has exactly one active state. A state machine
is event-driven.

The state machine cycle is as follows:

1. The state machine is started by entering its initial state.

2. The state machine waits for incoming events.

a. Internal transitions are found.

i. Start at the current state and search for the first internal transition that is triggered by the current
event and has condition true. If such a transition is found, it is executed.

ii. If no transition is found, go to the parent state and search for the first internal transition that is
triggered by the current event and has condition true.

iii. If no transition is found, repeat step ii until the top-level state is reached.

b. Internal transitions are processed.

Executing an internal transition only triggers the action that is connected to the internal transition. The
state is not exited and re-entered.

c. Transitions are found.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 73 of 265

i. Start at the current state and search for a transition that is triggered by the current event and has
condition true. If such a transition is found, it is executed.

ii. If no transition is found, go up to the parent state and search for a transition.

iii. Repeat step 2 until the first fitting transition is found.

d. Transitions are processed.

Executing a transition changes the state machine from one state to another state. The source state
is exited and the destination state is entered.

A transition is only executed when its corresponding event is fired and the condition is evaluated to
true.

A transition can exit and enter several compound states in the state hierarchy. Between the exit cas-
cade and the entry cascade the transition's action is executed.

Entering a state may require a subsequent transition, for example entering a compound state requires
executing the transition of an initial state as a subsequent transition. A chain of several subsequent
transitions is possible.

3. The state machine stops when the final state of the state machine is reached.

If a transition crosses several states in the state hierarchy, a cascade of exit and entry actions is executed.

Example 5.27.
Executing a transition

Figure 5.23. Entry/exit cascade

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 74 of 265

When event a is fired, the following happens:

1. State B is exited.

2. State C is entered.

When event b is fired, the following happens:

1. State B is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

When event c is fired, the following happens:

1. If state B or state C is active, state B or state C is exited.

2. State A is exited.

3. State New state is entered.

4. State New state 2 is entered.

5. State New state 3 is entered.

Example 5.28.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 75 of 265

Executing a transition

Figure 5.24. Executing a transition

When event a triggers the transition, the following happens:

1. State S8 is exited.

2. State S5 is exited.

3. State S2 is exited.

4. State S3 is entered.

5. State S6 is entered.

Example 5.29.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 76 of 265

Executing a transition

Figure 5.25. Executing a transition

The transition that is triggered by event a causes the following transition sequence:

1. The state machine goes to state S2.

2. The default transition leads to state S3.

3. The next default transition enters the shallow history state.

4. Shallow history state restores the last active state of state S3, either state S4 or state S5.

For each step the entry-exit-cascade is executed separately.

5.4.11.5. EB GUIDE notation in comparison to UML notation

In this section the EB GUIDE notation is compared to the Unified Modeling Language (UML) 2.5 notation.

5.4.11.5.1. Supported elements

The following table shows all UML 2.5 elements that are supported by EB GUIDE. The names of some elements
deviate from the naming convention in UML 2.5, but the functionality behind these elements remains the same:

Name in EB GUIDE Name in UML 2.5

Initial state Initial (pseudostate)

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 77 of 265

Name in EB GUIDE Name in UML 2.5

Final state Final state

Compound state State

Choice state Choice (pseudostate)

Deep history state DeepHistory (pseudostate)

Shallow history state ShallowHistory (pseudostate)

Internal transition Internal transition

Transition External/local transition a

aEB GUIDE does not differentiate between external and local transitions.

5.4.11.5.2. Not supported elements

The following UML 2.5 elements are not supported in EB GUIDE:

► Join

► Fork

► Junction

► Entry point

► Exit point

► Terminate

5.4.11.5.3. Deviations

Some elements of the UML 2.5 notation are not implemented in EB GUIDE. But the functionality of these
elements can be modeled with EB GUIDE concepts.

Concept in UML 2.5 Workaround with EB GUIDE

Parallel states Concept is implemented using dynamic state machines.

Number of triggers per transition Concept is implemented using EB GUIDE Script in a datapool item or a
view.

Time triggers at transitions Concept is implemented using EB GUIDE Script (fire_delayed) in a
state machine, a datapool item, a transition or a view.

5.4.12. Touch input
EB GUIDE supports two types of touch input: touch gestures and multi-touch input.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 78 of 265

Each touch gesture is represented in EB GUIDE Studio as a widget feature. Enabling the widget feature adds
a set of properties to a widget.

The gestures are divided into two basic types:

► Non-path gestures

► Path gestures

5.4.12.1. Non-path gestures

EB GUIDE implements the following non-path gestures:

► Flick

► Pinch

► Rotate

► Hold

► Long hold

Non-path gestures include multi-touch and single-touch gestures. Multi-touch gestures require an input device
that supports multi-touch input. Single-touch gestures work with any supported input device.

Each gesture reacts independently of the others. If several gestures are enabled, the modeler is responsible
to make sure that the EB GUIDE model behaves consistently.

5.4.12.2. Path gestures

Path gestures are shapes drawn by a finger on a touch screen or entered by some other input device. When
a widget has the widget feature enabled, the user can enter a shape starting on the widget. The shape has to
exceed a configurable minimal bounding box to be considered by the path gesture recognizer. The shape is
matched against a set of known shapes and, if a match is found, a gesture is recognized.

5.4.12.3. Input processing and gestures

Gesture recognition runs in parallel to ordinary input processing. Each gesture can request that the contact
involved in the gesture is removed from ordinary input processing. The moment at which a gesture requests
contact removal depends on the actual gesture and for some gestures this can be configured.

Contact removal is only relevant for fingers involved in a gesture. Once a contact is removed, it is ignored by
ordinary input handling until a release event is received for the contact. On a touch screen without proximity
support this implies that a contact, once removed, does not trigger any further touch reactions.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 79 of 265

TIP Removing a contact from ordinary input processing
Consider a window with a button and a widget feature for gestures. When a contact is
involved in a gesture it should not cause the action associated with the button to be triggered,
even if the contact is released while on the button.

5.4.12.4. Multi-touch input

EB GUIDE is able to handle multi-touch input, if a compatible multi-touch input device is used.

Multi-touch is the ability of a surface to recognize and track more than one point of contact on an input device.
The typical scenario are multiple fingers touching a touch screen.

► Multi-touch event handling

Multi-touch events are dispatched using the mechanism for touch events, in the same way events from
the mouse and from single-touch touch screens are dispatched. The only difference is that each contact
triggers touch reactions independently of all others. To be able to distinguish individual contacts, each
touch reaction is supplied with a parameter called fingerid.

► Finger ID

Each contact tracked by an input device is assigned a number that identifies it. This identifier is called
fingerid and is unique per input device. However, the same value can be assigned to another contact
at a later time when it is no longer in use.

Consider the extra touch interaction sequences the end user is allowed to make when multi-touch input is
enabled. They include the following:

► The end user can interact with multiple elements of the interface at the same time, for example press a
button while scrolling in a list.

► The end user can place multiple fingers on a single widget.

Two typical situations where this manifests are scrolling and dragging. They can be handled correctly by em-
ploying fingerid. Depending on the required behavior, possible solutions include the following:

► Allow only the first finger that pressed a widget to do scrolling and/or dragging.

► Always use the last finger to land on a widget to do scrolling and/or dragging. This is easily achieved by
a slight modification of the previous approach.

5.4.13. Widgets
Widgets are the basic graphical elements an EB GUIDE model is composed of.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 80 of 265

Widgets can be customized: Editing the properties of a widget adapts the widget to individual needs. Example
properties are size, color, layout, or behavior when being touched or moved.

Widgets can be combined: Out of small building blocks, complex structures are created. For example, a button
can be made up of a rectangle, an image, and a label.

Widgets can be nested: In a widget hierarchy, the subordinate widgets are referred to as child widgets, the
superordinate widgets are referred to as parent widgets.

5.4.13.1. View widget

A view widget is the topmost widget of each scene. While modeling, basic widgets, 3D widgets and animations
are placed into view widgets. Every view widget is associated to exactly one view state. A view widget cannot
exist without a view state.

Figure 5.26. A view state that contains a rectangle, a label, and an image

5.4.13.2. Basic widgets

► Label

A label widget places text into a view widget.

► Rectangle

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 81 of 265

A rectangle widget draws a colored rectangle with the dimensions and coordinates of the widget into the
view widget.

► Image

An image widget places a picture into the view widget. For supported file types see section 5.4.8.2,
“Images”.

► Container

A container widget holds several widgets as children and thus groups the widgets.

► Instantiator

An instantiator widget creates widget instances during run-time. It can be used to model lists or tables.
The child widgets of an instantiator widget serve as line templates for the list or table which is created
during run-time.

5.4.13.3. Animations

The Animation category provides the animation widget and a set of curve widgets to specify animation details.
For each curve, there is one widget per supported data type.

► Animation

An animation widget defines an animation for its parent widget. An animation widget requires at least one
curve widget as a child widget.

► Constant curve bool, Constant curve color, Constant curve float, Constant curve integer

A constant curve widget sets a target value after a defined delay.

► Fast start color, Fast start float, Fast start integer

A fast start widget periodically sets a value that increases fast in the beginning but loses speed constantly
until the end.

► Linear curve color, Linear curve float, Linear curve integer

A linear curve widget periodically sets a value using a linear progression curve.

► Linear interpolation color, Linear interpolation float, linear interpolation integer

A linear interpolation widget periodically sets a value using a linear interpolation curve.

► Quadratic curve color, Quadratic curve float, Quadratic curve integer

A quadratic curve widget periodically sets a value using a quadratic function curve.

► Script curve bool, Script curve color, Script curve float, Script curve integer

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 82 of 265

A script curve widget sets a value using a curve that is described by an EB GUIDE Script.

► Sinus curve color, Sinus curve float, Sinus curve integer

A sinus curve widget periodically sets a value using a sinus function curve.

► Slow start color, Slow start float, Slow start integer

A slow start widget periodically sets a value that increases slowly in the beginning but rises constantly
until the end.

5.4.13.4. 3D widgets

There are two kinds of 3D widgets. First, the 3D graphic widget which displays a 3D object. Second, four custom
effect widgets which modify the graphical representation of a 3D graphic. Custom effects cannot be combined.
Only one custom effect can be used on a 3D graphic at a time. Custom effect widgets influence a 3D graphic
which is modeled as a child widget. Therefore, custom effect widgets are only regarded by the OpenGL ES
2.0 and DirectX 11 renderers.

NOTE Supported renderers
To display 3D graphics, OpenGL ES 2.0 or DirectX 11 renderer is required.

3D widgets include the following:

► 3D graphic

A 3D graphic widget places a 3D object into a view. For supported file types see section 5.4.8.3, “3D
graphics”.

► Material effect

A material effect widget modifies the appearance of a 3D graphic. Placed as a parent to the 3D graphic
widget, it customizes the color and shininess of the 3D graphic.

► Light effect

A light effect widget modifies the appearance of a 3D graphic. Placed as a parent to the 3D graphic widget,
it customizes the light position of the 3D graphic.

► Light and material effect

A light and material effect widget modifies the appearance of a 3D graphic. Placed as a parent to the 3D
graphic widget, it customizes the light position, the color, and the shininess of the 3D graphic.

► No lighting effect

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 83 of 265

A no lighting effect widget modifies the appearance of a 3D graphic. Placed as a parent to the 3D graphic
widget, it disables 3D lighting of the 3D graphic. Disabling 3D lighting considerably speeds up rendering.

5.4.13.5. Widget properties

A widget is defined by a set of properties which specify the appearance and behavior of the widget. The
PROPERTIES panel displays the properties of the currently focused widget and allows editing the properties.

Figure 5.27. A rectangle widget and its properties

There are three types of widget properties:

► Default widget properties are created along with each widget instance. For a list of default properties for
all widgets see chapter 9, “References“.

► User-defined widget properties are created by the modeler in addition to the default ones.

► Widget features supply widgets with additional properties. Adding a widget feature to a widget means
adding one or more properties. Widget feature properties are grouped by categories.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 84 of 265

Figure 5.28. Widget features

For example, the Touched widget features defines if and how a widget reacts to being touched by adding
four properties: a flag touchable, a flag touched, and int values for touch policy and touch be-
havior.

5.4.13.6. Widget templates

A widget template allows adding a customized widget in several locations of an EB GUIDE model. You can
define templates on the basis of existing widgets and then modify the template according to your needs.

Dragging a widget template to the content area means creating an instance from the widget template. Widget
templates are displayed in the toolbox. Widget instances are displayed in the content area and in the navigation
area.

A widget template has a template interface. The template interface specifies the properties of the template which
are passed on to widget instances. A widget instance thus inherits the properties of its template's interface.
Inherited properties are called template properties. Template properties are marked with the icon.

When you change the value of a template property, the property is turned into a local property. Local properties
are marked with the icon.

Example 5.30.
Relation of the properties of a widget and its template

Let a widget BlueSquare be derived from a widget template Square. Let Square have a property
color. Let the value of color be red.

► BlueSquare inherits color with the value red.

► Change the value of color in the Square template to green.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 85 of 265

=> The value of color in BlueSquare changes to green, too.

► Change the value of color in BlueSquare to blue.

Change the value of color in the Square template to yellow.

=> The value of color in BlueSquare remains blue.

5.5. Modelling HMI behavior

5.5.1. Modelling a state machine

5.5.1.1. Adding a state machine

Adding a state machine

Prerequisite:

■ In the navigation area the All tab is displayed.

Step 1
In the navigation area point to State machines.

The button appears.

Step 2
Click .

A menu expands.

Step 3
Click a type for the state machine.

A new state machine of the selected type is added.

Step 4
Rename the state machine.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 86 of 265

5.5.1.2. Defining an entry action for a state machine

Defining an entry action for a state machine

Prerequisite:

■ A state machine is added to the EB GUIDE model.

Step 1
Select a state machine.

Step 2
In the PROPERTIES panel go to the Entry action property and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

You defined an entry action for a state machine.

5.5.1.3. Defining an exit action for a state machine

Defining an exit action for a state machine

Prerequisite:

■ A state machine is added to the EB GUIDE model.

Step 1
Select a state machine.

Step 2
In the PROPERTIES panel go to the Exit action property and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

You defined an exit action for a state machine.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 87 of 265

5.5.1.4. Deleting a state machine

Deleting a state machine

Prerequisite:

■ In the navigation area the All tab is displayed.

■ A state machine is added to the EB GUIDE model.

Step 1
In the navigation area right-click the state machine.

Step 2
In the context menu click Delete.

The state machine is deleted.

5.5.2. Modelling states

5.5.2.1. Adding a state

Adding a state

Prerequisite:

■ In the content area, a state machine is displayed.

Step 1
Drag a state from the toolbox to the content area.

A state is added to the state machine.

NOTE Initial state and final state are unique
Inserting initial state and final state is only possible once per compound state.

5.5.2.2. Adding a state to a compound state

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 88 of 265

Adding a state to a compound state

To create a state hierarchy, you create a state as a child to another state. You do so by adding a state to a
compound state.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains a compound state.

Step 1
In the content area click to expand the compound state.

Step 2
Drag a state from the toolbox to the compound state.

The state is added as a child state to the compound state.

Figure 5.29. A compound state with a nested view state

5.5.2.3. Adding a choice state

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 89 of 265

Adding a choice state

Prerequisite:

■ In the content area a state machine is displayed.

■ The state machine contains at least two states.

Step 1
Drag a choice state from the toolbox to the content area.

Step 2
Add an outgoing transition from the choice state.

Step 3
Add a condition to the outgoing transition.

The condition is assigned priority one. When the state machine enters the choice state, the condition with pri-
ority one is evaluated first.

Step 4
To add more choice transitions, repeat the two previous steps.

A new choice transition is assigned a lower priority than the transition that was created before.

Step 5
Add an outgoing transition from the choice state.

Step 6
Right-click the transition and in the context menu click Convert to else.

You added an else transition. The else transition is executed when all conditions which are assigned to out-
going choice transitions evaluate to false.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 90 of 265

Figure 5.30. A choice state with its choice transitions

5.5.2.4. Defining an entry action for a state

Defining an entry action for a state

For view states and compound states you can define an entry action. The entry action is executed every time
the state is entered.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains a view state or a compound state.

Step 1
Select a state.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 91 of 265

Step 2
In the PROPERTIES panel go to the Entry action property and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

5.5.2.5. Defining an exit action for a state

Defining an exit action for a state

For view states and compound states you can define an exit action. The exit action is executed every time
the state is exited.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains a view state or a compound state.

Step 1
Select a state.

Step 2
In the PROPERTIES panel go to the Exit action property and click Add.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

5.5.2.6. Deleting a model element from a state machine

Deleting a model element from a state machine

Prerequisite:

■ In the content area, a state machine is displayed.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 92 of 265

■ The state machine contains at least one model element.

Step 1
In the navigation area right-click a model element.

Step 2
In the context menu click Delete.

The model element is deleted.

5.5.3. Connecting states through transitions

5.5.3.1. Adding a transition between two states

Adding a transition between two states

With a transition, you connect a source state to a target state.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains at least two states.

Step 1
Select a state as a source state for the transition.

Step 2
Click the green drag point and keep the mouse button pressed.

Step 3
Drag the mouse to the target state.

Step 4
When the target state is highlighted green, release the mouse button.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 93 of 265

Figure 5.31. A transition

A transition is added and displayed as a green arrow.

TIP Connect transitions to the state machine
The state machine is the top-most compound state. Therefore, you can create transitions
to and from the border of the state machine. All states in the state machine inherit such a
transition.

5.5.3.2. Moving a transition

Moving a transition

You move a transition by moving one of its end points.

Prerequisite:

■ In the content area, a state machine is displayed.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 94 of 265

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
In the content area, select a transition.

Two green drag points are displayed.

Step 2
Click the drag point you would like to move and keep the mouse button pressed.

Step 3
Drag the mouse to a different state.

Step 4
When the state is highlighted green, release the mouse button.

The transition is moved.

5.5.3.3. Defining a trigger for a transition

Defining a trigger for a transition

For a transition, you can define an event that triggers it.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
In the PROPERTIES panel expand the Trigger combo box.

Step 3
Select an event.

Step 4
To create a new event, enter a name in the Trigger combo box and click Add event.

The event is added as a transition trigger.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 95 of 265

Figure 5.32. A transition with a trigger

5.5.3.4. Adding a condition to a transition

Adding a condition to a transition

For every transition, you can define a condition that needs to be fulfilled to execute the transition.

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add a condition to the transition, click Add in the PROPERTIES panel.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 96 of 265

Step 3
Enter a condition using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

The condition is added to the transition.

Figure 5.33. A transition with a condition

5.5.3.5. Adding an action to a transition

Adding an action to a transition

For every transition, you can define an action that is executed along with the transition.

Prerequisite:

■ In the content area, a state machine is displayed.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 97 of 265

■ The state machine contains at least two states.

■ The states are connected by a transition.

Step 1
Select a transition.

Step 2
To add an action to the transition, click Add in the PROPERTIES panel.

Step 3
Enter an action using EB GUIDE Script.

For background information see section 5.4.9, “Scripting language EB GUIDE Script”

Step 4
Click Accept.

The action is added to the transition.

Figure 5.34. A transition with an action

5.5.3.6. Adding an internal transition to a state

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 98 of 265

Adding an internal transition to a state

Prerequisite:

■ In the content area, a state machine is displayed.

■ The state machine contains a state.

Step 1
In the content area, select a state.

Step 2
In the PROPERTIES panel, go to Internal transitions and click Add.

An internal transition is added to the state. The internal transition is visible in the navigation area.

5.6. Modeling HMI appearance

5.6.1. Managing graphical elements

5.6.1.1. Adding a view

Adding a view

Prerequisite:

■ In the content area a state machine is displayed.

Step 1
Drag a view state from the toolbox to the content area.

Along with the view state, a view is added to the model.

Step 2
Press the F2 key and rename the view.

Step 3
Double-click the view state in the content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 99 of 265

The content area displays the new view.

5.6.1.2. Adding a widget to a view

Adding a widget to a view

Prerequisite:

■ In the content area a view is displayed.

Step 1
Drag a widget from the toolbox into the view.

The widget is added to the view.

5.6.1.3. Positioning a widget

Positioning a widget

Prerequisite:

■ In the content area a view is displayed. The view contains a widget.

Step 1
Select a widget.

The PROPERTIES panel displays the properties of the selected widget.

Step 2
To define the x coordinate of the widget enter a value in the x text box.

Step 3
To define the y coordinate of the widget enter a value in the y text box.

Step 4
Click outside the text box.

The content area displays the widget at the entered position.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 100 of 265

TIP Alternative approach
To position a widget by visual judgment, select the widget and move it with the mouse.

5.6.1.4. Resizing a widget

Resizing a widget

Prerequisite:

■ In the content area a view is displayed. The view contains a widget.

Step 1
Select a widget.

The PROPERTIES panel displays the properties of the selected widget.

Figure 5.35. Properties of an image

Step 2
To define the height of the widget enter a value in the height text box.

Step 3
To define the width of the widget enter a value in the width text box.

Step 4
Click outside the text box.

The content area displays the widget with the entered size.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 101 of 265

TIP Alternative approach
To resize a widget by visual judgment, select the widget and drag one of its corners with
the mouse.

5.6.1.5. Deleting a widget from a view

Deleting a widget from a view

Prerequisite:

■ In the content area a view is displayed. The view contains a widget.

Step 1
Select a widget.

Step 2
Press the Delete key.

The widget is deleted from the view.

5.6.1.6. Adding an image to a view

Adding an image to a view

Prerequisite:

■ An image file is located in the $GUIDE_PROJECT_PATH\resources directory. For supported file types
see section 9.7.4.1.1, “Supported 3D graphic formats”.

■ In the content area a view is displayed.

Step 1
Drag an image widget from the toolbox to the view.

Step 2
In the PROPERTIES panel select an image from the image drop-down list box.

The view displays the image.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 102 of 265

5.6.1.7. Grouping widgets

Grouping widgets

A container allows grouping widgets.

Step 1
Drag a container widget from the toolbox to the view.

Step 2
In the content area, enlarge the container by dragging one of its corners.

Step 3
Drag two or more widgets from the toolbox to the container.

The widgets are modeled as children of the container. Moving the container moves its child widgets along
with it.

5.6.1.8. Adding a 3D graphic to a view

Adding a 3D graphic to a view

Prerequisite:

■ A 3D graphic file is located in the $GUIDE_PROJECT_PATH\resources directory. For supported 3D
graphic formats see section 9.7.4.1.1, “Supported 3D graphic formats”.

■ In the content area a view is displayed.

Step 1
Drag a 3D graphic widget from the toolbox to the view.

Step 2
In the PROPERTIES panel select a 3D graphic file from the model drop-down list box.

The view displays the 3D graphic.

5.6.1.9. Changing the font of a label

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 103 of 265

Changing the font of a label

Prerequisite:

■ A TTF file is located in the $GUIDE_PROJECT_PATH\resources directory.

■ In the content area a view is displayed. The view contains a label.

Step 1
Select the label in the view.

Step 2
In the PROPERTIES panel select a font from the font drop-down list box.

The view displays the label with the new font.

5.6.1.10. Linking between widget properties

Linking between widget properties

In order to make sure that two widget properties have the same value at all times, you can link two widget
properties. As an example, the following instructions show you how to link the width property of a rectangle
to the width property of a view.

Linking widget properties is only possible in the following cases:

► Between child widgets of the same parent widget

► Between a parent widget and a child widget

Prerequisite:

■ In the content area a view is displayed.

■ The view contains a rectangle widget.

Step 1
In the content area select the rectangle widget.

The PROPERTIES panel displays the properties of the rectangle widget.

Step 2
In the PROPERTIES panel go to the width property and click the icon next to the property.

A menu expands.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 104 of 265

Step 3
In the menu click Add link to widget property.

A dialog opens.

Step 4
In the dialog go to the view and select its width property.

Figure 5.36. Linking between widget properties

Step 5
Click Accept.

The dialog closes. The icon is displayed next to the width property. The icon indicates that the width
property of the rectangle widget is now linked to the width property of the view widget. Whenever you
change the width of the view, the width of the rectangle changes and vice versa.

5.6.1.11. Linking a widget property to a datapool item

Linking a widget property to a datapool item

In order to make sure that a widget property and a datapool item have the same value at all times, you can
link a widget property to a datapool item. As an example, the following instructions show you how to link the
image property of an image widget to a new datapool item.

Prerequisite:

■ In the content area a view is displayed.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 105 of 265

■ The view contains an image widget.

Step 1
In the content area select the image widget.

The PROPERTIES panel displays the properties of the image widget.

Step 2
In the PROPERTIES panel go to the image property and click the icon next to the property.

A menu expands.

Step 3
In the menu click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the combo box.

Step 5
Click Add datapool item.

A dialog opens.

Step 6
Select a type for the datapool item.

Step 7
Click Accept.

Step 8
If the datapool item is of a list type, enter an index in the Value text box.

Figure 5.37. Linking to a datapool item

Step 9
Click Accept.

The dialog closes. The icon is displayed next to the image property. The icon indicates that the image
property is now linked to a datapool item. Whenever you change the image, the datapool item changes and
vice versa.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 106 of 265

5.6.1.12. Adding a user-defined property to a widget

Adding a user-defined property to a widget

Prerequisite:

■ In the content area a view is displayed.

■ A widget is added to the view.

Step 1
Select a widget in the content area.

The PROPERTIES panel displays the properties of the selected widget.

Step 2
In the PROPERTIES panel go to the User-defined properties category and click the Add button.

A menu expands.

Step 3
In the menu select a type for the user-defined property.

A new widget property of the selected type is added to the widget.

Step 4
Rename the user-defined property.

5.6.1.13. Adding a widget feature

Adding a widget feature

Widget features supply widgets with additional properties. Adding a widget feature to a widget means adding
one or more properties.

For a list of widget features grouped by categories see section 9.8, “Widget features”.

Prerequisite:

■ In the content area a view is displayed.

■ A widget is added to the view.

Step 1
Select a widget in the content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 107 of 265

The PROPERTIES panel displays the properties of the selected widget.

Step 2
In the PROPERTIES panel go to the Widget features category and click the Add/Remove button.

The Widget features dialog is displayed.

Figure 5.38. Widget features dialog

Step 3
Expand a category and select the widget feature you want to add.

The related properties are added to the widget and displayed in the PROPERTIES panel.

TIP Dependencies between widget features
Some widget features require other widget features. Therefore, in some cases, if you select
a widget feature, other widget features are selected automatically.

For example, you want to add the widget feature Moveable. In addition the widget features
State Touched and Touch Move are added automatically.

5.6.1.14. Removing a widget feature

Removing a widget feature

Prerequisite:

■ In the content area a view is displayed.

■ A widget is added to the view.

■ Widget features are added to the widget.

Step 1
Select the widget in the content area.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 108 of 265

The PROPERTIES panel displays the properties of the selected widget.

Step 2
In the PROPERTIES panel go to the Widget features category and click the Add/Remove button.

The Widget features dialog is displayed.

Figure 5.39. Widget features dialog

Step 3
Expand a category and clear the widget feature you want to remove.

The related properties are removed from the PROPERTIES panel.

NOTE Removing widget features with dependencies
Widget feature with dependencies to other widget features cannot be removed directly. Clear
the parent widget feature before you clear the child widget feature.

5.6.2. Adding a language to the EB GUIDE model

To enable language support during run-time, you add languages to the project.

5.6.2.1. Adding a language

Adding a language

The first language in the list is always the default language and can not be deleted. If you add a language,
the language uses the standard language settings as initial values.

Step 1

Click .

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 109 of 265

The project center opens.

Step 2
In the navigation area click CONFIGURE > Languages.

The available languages are displayed.

Step 3
In the content area click .

A language is added to the table.

Step 4
Enter a name for the language.

Step 5
Select a language from the Language drop-down list box.

Step 6
Select a country from the Country drop-down list box.

Step 7
Enter a unique numerical ID in the Identifier text box.

5.6.2.2. Deleting a language

Deleting a language

Prerequisite:

■ At minimum two languages are added to the project.

Step 1

Click .

The project center opens.

Step 2
In the navigation area click CONFIGURE > Languages.

The available languages are displayed.

Step 3
In the content area select a language.

Step 4
In the content area click the Delete button.

The language is deleted from the table.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 110 of 265

5.6.3. Re-using an element

5.6.3.1. Creating a template

Creating a template

Prerequisite:

■ In the content area a view is displayed.

Step 1
In the toolbox, right-click the widget you want to create a template from.

Step 2
In the context menu click Create template.

A template is created and opened in a new tab.

Step 3
Press the F2 key and rename the template in the navigation area.

Step 4
Select the template in the content area.

Step 5
In the PROPERTIES panel edit the template's properties and define the template interface.

5.6.3.2. Defining the template interface

Defining the template interface

Prerequisite:

■ In the content area, a template is displayed.

Step 1
In the content area, select a template.

Step 2
To add a property to the template interface, right-click the icon next to the property. In the context menu,
click Add to template interface.

The icon is displayed next to the property.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 111 of 265

Step 3
To remove a property from the template interface, right-click the icon next to the property. In the context
menu, click Remove from template interface.

The icon is no longer displayed next to the property.

5.6.3.3. Using a template

Using a template

Prerequisite:

■ In the content area a view is displayed.

■ In the toolbox a template is available.

Step 1
Drag a widget template from the toolbox to the view.

An instance of the template is added to the view. The PROPERTIES panel displays the properties which be-
long to the template interface.

TIP Define the template interface
If the PROPERTIES panel does not display any properties for a template instance, no
properties have been added to the template interface. Define the template interface to
change that.

Step 2
In the PROPERTIES panel edit the properties of the template instance.

After editing a property, the icon changes to the icon.

Step 3
To reset a property value to the value of the template, right-click the icon next to the property. In the con-
text menu click Reset to template value.

5.6.4. Tutorial: Modelling a path gesture

Tutorial: Modelling a path gesture

For a list of widget features for gestures see section 9.8.4, “Gestures”.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 112 of 265

Prerequisite:

■ In the content area a view is displayed.

Step 1
Drag a rectangle widget from the toolbox to the view.

Step 2
Drag a label widget from the toolbox to the rectangle.

The label is added as a child widget to the rectangle.

The PROPERTIES panel displays the properties of the label widget.

Step 3
Select the rectangle widget.

The PROPERTIES panel displays the properties of the rectangle widget.

Step 4
In the PROPERTIES panel go to fillColor and select red.

Step 5
In the PROPERTIES panel go to the Widget feature category and click the Add/Remove button.

The Widget features dialog is displayed.

Step 6
Expand the Gesture category and select Path gestures.

The State touched widget feature is automatically selected, as it is required for the Gesture widget fea-
ture.

The related properties are added to the rectangle widget and displayed in the PROPERTIES panel.

Step 7
For the Path gestures widget feature edit the following properties:

Step 7.1
Next to the onPath property click the Edit button.

Step 7.2
Enter the following EB GUIDE Script expression:

 v:this->"Label 1".text = "recognized path gesture #"

+ f:int2string(v:gestureId);

Step 7.3
Next to the onPathNotRecognized property click the Edit button.

Step 7.4
Enter the following EB GUIDE Script expression:

v:this->"Label 1".text = "shape not recognized";

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 113 of 265

Step 7.5
Next to the onPathStart property click the Edit button.

Step 7.6
Enter the following EB GUIDE Script expression:

v:this->"Label 1".text = "path gesture start";

Step 7.7
In the pathMinXBox text box, enter 50.

Step 7.8
In the pathMinXBox text box, enter 50.

5.7. Handling data

5.7.1. Adding an event

Adding an event

Prerequisite:

■ In the navigation area the All tab is displayed.

Step 1
In the navigation area point to Events.

The button appears.

Step 2
Click .

An event is added to the navigation area.

Step 3
Rename the event.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 114 of 265

5.7.2. Adding a parameter to an event

Adding a parameter to an event

Prerequisite:

■ In the navigation area the All tab is displayed.

■ An event is added.

Step 1
In the navigation area click an event.

The PROPERTIES panel displays the properties of the selected event.

Step 2
In the PROPERTIES panel point to Parameters.

The button appears.

Step 3
Click .

A parameter is added to the event.

Step 4
Rename the parameter.

Step 5
Select a type for the parameter.

5.7.3. Addressing an event
Event IDs and event group IDs are used to address events. EB GUIDE TF uses the IDs to send and receive
the events at run-time.

Adding an event group

The group IDs 0 to 65535 are reserved for internal use within the EB GUIDE product line.

Step 1

Click .

The project center opens.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 115 of 265

Step 2
In the navigation area click CONFIGURE > Event groups.

Step 3
In the content area click the Add button.

An event group is added to the table.

Step 4
Rename the event group.

Step 5
To change an event group ID, type a number for ID.

Addressing an event for EB GUIDE TF

Prerequisite:

■ An event group is added.

■ The project editor is displayed.

■ In the navigation area the All tab is displayed.

■ In the navigation area an event is added.

Step 1
In the navigation area click an event.

The PROPERTIES panel displays the properties of the selected event.

Step 2
In the PROPERTIES panel insert an ID in the Event ID text box.

Step 3
In the PROPERTIES panel select an event group from the Event group drop-down list box.

5.7.4. Deleting an event

Deleting an event

Prerequisite:

■ In the navigation area the All tab is displayed.

■ An event is added.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 116 of 265

Step 1
In the navigation area right-click the event.

Step 2
In the context menu click Delete.

The event is deleted.

5.7.5. Adding a datapool item

Adding a datapool item

Prerequisite:

■ In the navigation area the All tab is displayed.

Step 1
In the navigation area point to Datapool.

The button appears.

Step 2
Click .

A menu expands.

Step 3
In the menu click a type for the datapool item.

A new datapool item of the selected type is added. The datapool item is prepared for internal use.

Step 4
Rename the datapool item.

5.7.6. Establishing external communication

To establish external communication for example between the EB GUIDE model and an application, you add
communication contexts to the project.

Adding a communication context

With communication contexts you are able to channel communication.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 117 of 265

Step 1

Click .

The project center opens.

Step 2
In the navigation area click CONFIGURE > Communication contexts.

Step 3
In the content area click the Add button.

A communication context is added to the table.

Step 4
Rename the communication context, for example to Media.

Step 5
To change a communication context ID, enter a number in the ID text box.

Step 6
To run the communication context in an own thread, select Use own thread.

Figure 5.40. Communication context Media.

Using external communication in a datapool item

Prerequisite:

■ At minimum two communication contexts are added to the project .

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 118 of 265

■ The project editor is opened.

■ In the navigation area the All tab is displayed.

■ A datapool item is added.

Step 1
In the navigation area click the datapool item.

The PROPERTIES panel displays the properties of the selected datapool item.

Step 2
In the PROPERTIES panel select a communication context from the Reader context drop-down list box,
for example hmi.

Step 3
In the PROPERTIES panel select a different communication context from the Writer context drop-down
list box, for example media.

The datapool item has two different communication contexts. After export of the EB GUIDE model, the dat-
apool item sends data from Reader context to Writer context.

In the instruction above the data is sent from hmi to media.

5.7.7. Linking between datapool items

Linking between datapool items

Prerequisite:

■ A datapool item is added in the navigation area.

Step 1
In the navigation area click a datapool item.

The PROPERTIES panel displays the properties of the datapool item.

Step 2
In the PROPERTIES panel go to the Value property and click the icon next to the property.

A menu expands.

Step 3
In the menu, click Add link to datapool item.

A dialog opens.

Step 4
To add a new datapool item, enter a name in the combo box.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 119 of 265

Step 5
Click Add datapool item.

A dialog opens.

Step 6
Select a type for the datapool item.

Step 7
Click Accept.

Step 8
If the datapool item is of a list type, enter an index in the Value text box.

Figure 5.41. Linking between datapool items

Step 9
Click Accept.

The dialog closes. Next to the Value property the icon is displayed. The icon indicates that the Value
property is linked to a datapool item. Whenever one of the datapool items changes its value, the value of the
other changes as well.

5.7.8. Deleting a datapool item

Deleting a datapool item

Prerequisite:

■ In the navigation area the All tab is displayed.

■ A datapool item is added.

Step 1
In the navigation area right-click the datapool item.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 120 of 265

Step 2
In the context menu click Delete.

The datapool item is deleted.

5.8. Handling a project

5.8.1. Creating a project

Creating a project

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the NEW tab.

Step 3
Enter a project name and select a location.

Step 4
Click the CREATE button.

The project is created. The project editor opens and displays the new project.

5.8.2. Opening a project

5.8.2.1. Opening a project from the file explorer

Opening a project from the file explorer

Prerequisite:

■ An EB GUIDE Studio project already exists.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 121 of 265

Step 1
Open the file explorer and select the EB GUIDE Studio project file you would like to open. EB GUIDE Studio
project files have the file extension .ebguide.

Step 2
Double-click the EB GUIDE Studio project file.

The project opens in EB GUIDE Studio.

5.8.2.2. Opening a project within EB GUIDE Studio

Opening a project within EB GUIDE Studio

Prerequisite:

■ An EB GUIDE Studio project already exists.

Step 1

Click .

The project center opens.

Step 2
In the navigation area, click the OPEN tab.

Step 3
Select the EB GUIDE Studio project file you would like to open. EB GUIDE Studio project files have the file
extension .ebguide. Click the OPEN button.

The project opens in EB GUIDE Studio.

5.8.3. Saving a project

Saving a project

Prerequisite:

■ A project is opened in EB GUIDE Studio.

■ New widgets are added to the project.

Step 1

Click .

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 122 of 265

The project center opens.

Step 2
In the navigation area, click the SAVE tab.

The project is saved.

5.8.4. Testing and improving an EB GUIDE model
Before exporting an EB GUIDE model to the target device, you resolve errors and simulate the model on your
PC.

5.8.4.1. Validating an EB GUIDE model

Validating an EB GUIDE model

In the problems area, EB GUIDE displays the following:

► errors

► warnings

Step 1

In the problems area, click the button.

The number of errors and warnings is displayed.

Step 2
Click Problems to expand the problems area.

A list of errors and warnings is displayed.

Figure 5.42. Problems area

Step 3
To navigate to the source of a problem, double-click the corresponding line.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 123 of 265

The element that causes the problem is highlighted.

Step 4
Solve the problem.

Step 5
Click the VALIDATE button.

The problem you solved is no longer listed in the problems area.

Step 6
To collapse the problems area, click Problems once again.

5.8.4.2. Starting the simulation

Starting and stopping the simulation

Step 1
To start the simulation, click in the command area.

The simulation and EB GUIDE Monitor start. The simulation starts with its own configuration.

To change the configuration, go to the project center and click CONFIGURE > Profiles.

Step 2
To stop the simulation, click in the command area.

The simulation and EB GUIDE Monitor stop.

5.8.5. Exporting a project

Exporting a project

To copy the EB GUIDE model to the target device, you need to export it in EB GUIDE Studio.

Step 1

Click .

The project center opens.

Step 2
In the navigation area click the EXPORT tab.

EB GUIDE documentation
Chapter 5. Modeler’s manual

Page 124 of 265

Step 3
Select a location where to export the binary files.

Step 4
Click the EXPORT button.

The binary files are exported to the selected location.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 125 of 265

6. System integrator's manual

6.1. Overview
As a system integrator you are the target audience for the following chapters. For more information, see sec-
tion 1.1.2, “System integrators”.

For more information on the structure of the manual, see section 1.2, “Structure of user documentation”.

6.2. Background information

6.2.1. Android APK
The Android application package (APK) file format is used to distribute and install applications and other mid-
dleware on Android devices.

6.2.1.1. System requirements

The Android APK version that is currently released for EB GUIDE TF is designed to run on a wide range of
Android devices. It therefore fulfills the minimal requirements of most devices.

Table 6.1. Minimal requirements

Architecture ARMv7

Platform EB GUIDE TF: Android 4.3 (API Level 18).

6.2.1.2. Features of the EB GUIDE TF APK

Table 6.2. Features of the EB GUIDE TF APK

Feature Description

Lifecycle management EB GUIDE TF supports Android lifecycle manage-
ment, see section 9.1.1, “Android lifecycle manage-
ment”

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 126 of 265

Feature Description

Multi-touch support EB GUIDE TF supports up to ten fingers for mul-
ti-touch. The number of supported fingers may be
limited by the Android device.

Key handling EB GUIDE TF processes 16-bit UTF key mapping
codes.

Interaction with the Java API EB GUIDE TF can be started and controlled by the
Android activity. Example code and a template imple-
mentation are provided by the application. A native
activity is not necessary.

Android layout handling The exported EB GUIDE model is informed through
events if the layout of the visible screen area
changes. That way you can handle a virtual keyboard
or changes in rotation.

6.2.1.3. Description of the EB GUIDE TF APK files

► EB GUIDE Launcher.apk

EB GUIDE Launcher.apk is started by EB GUIDE Model Chooser. It starts EB GUIDE TF and displays
the exported EB GUIDE model.

Alternatively EB GUIDE Launcher.apk can be started without EB GUIDE Model Chooser. It then displays
the exported EB GUIDE model that was selected last by EB GUIDE Model Chooser.

If EB GUIDE Launcher.apk is not yet started by EB GUIDE Model Chooser or if the files from the
exported EB GUIDE model are deleted, an message is displayed.

► EB GUIDE Model Chooser.apk

EB GUIDE Model Chooser provides a user interface to select an exported EB GUIDE model that is exe-
cuted on the Android system. By selecting an exported EB GUIDE model, EB GUIDE Launcher.apk
is started with the corresponding model.

Clicking the Refresh icon updates the exported EB GUIDE model list.

Clicking the Info icon displays the directory where exported EB GUIDE models are stored for EB GUIDE
Model Chooser, and a list with device-related details.

For information about the location of the exported EB GUIDE models in the file system, see section 9.1.2,
“File path for models”.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 127 of 265

Figure 6.1. EB GUIDE Model Chooser

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 128 of 265

Figure 6.2. Device Details

6.2.1.4. Restrictions

The Android APK that is currently released for EB GUIDE TF has the following restrictions:

► The exported EB GUIDE model is informed about rotation changes and layout changes, for example an
incoming virtual keyboard on the display. It is the responsibility of the exported EB GUIDE model to handle
these events.

► If the system uses Android layout handling, the Android flag SOFT_INPUT_ADJUST_NOTHING must not
be set in the configuration of the Android activity.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 129 of 265

6.2.1.5. Released APK and custom APK

EB GUIDE TF is delivered and installed as an APK. Use either a pre-built released APK of a released version
or create a custom version based on the delivered Android binaries and the APK template in the SDK.

The following lists help you to decide whether or not you need a custom APK.

If the following applies to your project, use the released APK:

► It contains EB GUIDE functionality or feature demonstrations with no further extensions.

► It contains project-specific extensions, for example EB GUIDE TF plugins, to be added to the exported
EB GUIDE model.

► Standard access rights are sufficient. The standard access rights are read or write to the external storage of
the device, network access android.permission.INTERNET, record audio, and modify audio settings.

If the following applies to your project, use the delivered APK template:

► You need additional access rights that are not granted by the released APK version, for example CALL_-
PHONE.

► You require a customer-specific APK, for example a customer signature for APK verification or icons.

► You use Android framework features that are not accessible in the stable API of the native development
kit (NDK). The NDK contains only a small subset of features and functionality which you can use with the
Java API.

► You need additional Android application functionalities that require modifications to Java-related code
pieces, for example activities, services, skins, intents, or compositing.

6.2.2. Application simulation
When simulating the application, the tool EB GUIDE Monitor observes and controls a running EB GUIDE model.
EB GUIDE Monitor includes mechanisms for communication with the datapool, the event system, and the state
machines of a running and connected EB GUIDE model.

6.2.2.1. Control panels

There is a GUI component that holds a control panel. Specify the components and layout of the control panel
in XML format.

The XML file has a mandatory root element named panel and optional child elements. You can add the
following child elements as often as required:

► button: A clickable button

Child elements:

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 130 of 265

► bounds: The size and location of the button

► text: The text on the button

► onPress: JavaScript code for the press action

► onRelease: JavaScript code for the release action

► rotary: A rotary input

Child elements:

► bounds: The size and location of the rotary input

► stepSize: The value change for each rotary step

Attributes:

► displayID: The ID of the display the rotary event is dispatched to

► viewArea: The area that shows the content of a display

Child elements:

► bounds: The size and location of the view area

Attributes:

► touchable: Flag which determines if touch events are dispatched to the display

► keyInput: Flag which determines if key events are dispatched to the display

► displayID: The ID of the display the content of which is displayed

Example 6.1.
Control panel XML file

<?xml version="1.0" ?>

<panel

 xmlns="http://www.elektrobit.com/gtf/monitor/view/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <button>

 <bounds>

 <x>5</x>

 <y>5</y>

 <width>80</width>

 <height>30</height>

 </bounds>

 <text>Mute</text>

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 131 of 265

 <onRelease>Events.send("VolumeMute");</onRelease>

 </button>

 <rotary displayID="65278">

 <bounds>

 <x>5</x>

 <y>120</y>

 <width>80</width>

 <height>80</height>

 </bounds>

 <stepSize>10</stepSize>

 </rotary>

 <viewArea touchable="true" keyInput="true" displayID="65278">

 <bounds>

 <x>100</x>

 <y>5</y>

 <width>480</width>

 <height>240</height>

 </bounds>

 </viewArea>

</panel>

Alternatively, the Events class allows sending key input, touch input, or rotary input events as well as
events with parameters. To replace the VolumeMute event by the key_phone_pressed event the
button code looks like this:

 <button>

 <bounds>

 <x>5</x>

 <y>5</y>

 <width>80</width>

 <height>30</height>

 </bounds>

 <text>PHONE</text>

 <onPress>Events.sendKeyPress(65278, 275);

 </onPress>

 </button>

To send the key_phone_released event as an event with parameters, the button code looks like this:

 <button>

 <bounds>

 <x>5</x>

 <y>5</y>

 <width>80</width>

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 132 of 265

 <height>30</height>

 </bounds>

 <text>PHONE</text>

 <onRelease>Events.send("key_phone_released", [65278,

 275, 0, 0]);</onRelease>

 </button>

6.2.2.2. Application script objects

EB GUIDE Monitor uses the Mozilla JavaScript engine Rhino which is included in the Oracle JDKs. For more
information on using JavaScript and Rhino see http://www.mozilla.org/rhino/.

To simplify scripting, all methods related to EB GUIDE TF are available through the following objects that are
globally accessible to every JavaScript.

► Datapool

► Reads and writes datapool items

► Looks up IDs by name and names by ID

► Executes functions such as commit() or switchLanguage()

► Events

► Fires events

► Looks up IDs by name and names by ID

► Registers events and reacts or runs on command

► StateMachine

► Jumps to a state

► Looks up IDs by name and names by ID

► Listens to state changes and executes reactions

► Test

► Tests expressions

► Compares values

► Modifies the exit code when EB GUIDE Monitor is executed in bash shell mode

http://www.mozilla.org/rhino/

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 133 of 265

NOTE Embedded JavaScript help in EB GUIDE Monitor
The JavaScript editor of EB GUIDE Monitor contains a help button that calls up a complete
API documentation of these objects.

Example 6.2.
Datapool interaction with JavaScript

importPackage(java.lang);

importPackage(com.elektrobit.gtf.monitor.types.values);

var ctx_hmi = Datapool.getContextID("hmi");

var ctx = Datapool.getContextID("pdal1");

var artist = Datapool.getID("artist");

var album = Datapool.getID("album");

var tracklist = Datapool.getID("tracklist");

var currentTrack = Datapool.getID("currentTrack");

var statusLine = Datapool.getID("statusLine");

var userList = Datapool.getID("userList");

var currentTime = Datapool.getID("currentTime");

var tracks =

[

 "Damage, Inc",

 "The Thing That Should Not Be",

 "Welcome Home (Sanitarium)",

 "Battery",

 "Master Of Puppets",

 "Disposeable Heroes",

 "Lepper Messiah",

 "Orion"

];

// write values to properties that have the context "pdal1" as a writer context

Datapool.writeValue(ctx, artist, "Metallica");

Datapool.writeValue(ctx, album, "Master of Puppets");

Datapool.clearList(ctx, tracklist);

for(var i = 0; i < tracks.length; ++i)

{

 Datapool.appendListItem(ctx, tracklist, tracks[i]);

}

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 134 of 265

var ref = new DPListReferenceConst(new DPReference(tracklist), new Uint32(0));

Datapool.writeValue(ctx, currentTrack, ref);

// read values from properties that have "pdal1" as a reader context

var currentTime = Datapool.readValue("pdal1", "currentTime");

var currentUserId = Datapool.readValue("pdal1", "currentUserId");

var currentUserName = Datapool.readListItem("pdal1", "userList", currentUserId);

Datapool.writeValue(ctx, statusLine, currentUserName + " " + currentTime);

Datapool.commit(ctx);

Example 6.3.
Sending and receiving events with JavaScript

importPackage(java.lang);

importPackage(com.elektrobit.gtf.monitor.types.values);

importPackage(com.elektrobit.gtf.monitor.event.remote);

listenerImpl = {

 eventOccurred: function(e) {

 // 'e' is of type com.elektrobit.gtf.monitor.event.remote.GtfEvent.

 // See the Javadoc of this class for more detailed information on

 // how to retrieve information from the event object.

 println("Received event: "

 + e.getGroupId() + " , "

 + e.getMessageId() + ") ");

 var params = e.getParameters();

 for(i = 0; i < params.size(); ++i) {

 param = params.get(i);

 println("Parameter " + param.getName() + ": " + param.getValue());

 }

 },

 // the equals function is important for automatic listener deregistration

 equals: function(other) {

 return true;

 }

}

Events.addListener(new GtfEventListener(listenerImpl));

Events.send("someEvent");

// Fire the event with the name 'someOtherEvent' and one integer parameter

Events.send("someOtherEvent", [new Int32(5)]);

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 135 of 265

Thread.sleep(1000);

6.2.2.3. Communication with the target

EB GUIDE Monitor communicates with a running EB GUIDE TF instance through a TCP/IP connection. The
connection is implemented in the TCP plugin for EB GUIDE Monitor and in the GtfService module for the target
framework. The TCP/IP connection is split into several virtual channels. Each channel is used by a different
interface in the EB GUIDE Monitor application.

6.2.2.4. Command line mode

It is possible to execute EB GUIDE Monitor in command line mode. When run in command line mode no pop-
up window opens up. In command line mode, EB GUIDE Monitor starts, loads its plugins, executes actions
specified in the command line, and exits the program.

EB GUIDE Monitor supports the following set of command line options to control the behavior of the application
from the command line.

-consoleMode
starts EB GUIDE Monitor in command line mode.

-model <path to monitor.cfg>
loads the EB GUIDE Monitor configuration from the specified file.

-userSettings <file name>
stores EB GUIDE Monitor user settings and allows loading them. The name is specified without file name
extension. If you do not specify it, the default value is monitor and thus creates file monitor.xml.

-plugin <plugin class name>
enables the specified plugin on start-up. Uses the full name of the plugin class.

-connect
requires an enabled TCP plugin. If a connection configuration is available, it automatically connects to the
EB GUIDE TF process on start-up.

-tcp <host>:<post>
requires an enabled TCP plugin. Creates a TCP connection configuration based on the specified host and
port.

-script <file name>
requires an enabled scripting plugin. Executes the script file with the file name specified.

Example 6.4.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 136 of 265

Command line

The following command line loads a configuration file, enables the TCP and scripting plugins, connects
to the target, and executes a script.

monitor.bat -consoleMode

 -model C:\MyModel\monitor.cfg

 -plugin com.elektrobit.gtf.monitor.tcp.TCPPlugin

 -plugin com.elektrobit.gtf.monitor.scripting.ScriptingPlugin

 -connect -tcp localhost:5456

 -script C:\MyModel\testcase.js

6.2.3. Configuration of touch screen devices

Depending on the target platform, it is be necessary to configure the touch screen device so that EB GUIDE
TF can use it.

For the following platforms no touch screen configuration is necessary, because EB GUIDE TF relies on the
environment to configure the touch screen.

► Windows PC

► Linux X11

For other platforms, you configure touch screens in the gtfStartup.cfg file. The corresponding entry has
the following form:

STARTUP 0 MESSAGE 550

UINT32 touchScreenType

UINT32 sceneId

STRBUF devicePath

UINT32 touchDeviceId

UINT32 outputWidth

UINT32 outputHeight

UINT32 Xright

UINT32 Xleft

UINT32 Ybottom

UINT32 Ytop

The touchScreenType value specifies the type of the touch screen device and is an indication of whether
multitouch input is supported. For a list of supported values see section 9.6, “Touch screen types supported
by EB GUIDE GTF”.

The sceneId value links the touch screen to a given scene: input events of the device are dispatched into the
scene with the given identifier.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 137 of 265

The devicePath value specifies which physical device is accessed. The format of this name depends on the
platform.

The remaining parameters are used to transform the raw device coordinates into the coordinates used by EB
GUIDE TF. Their values must be determined during touch screen calibration.

6.2.4. EB GUIDE TF and C++ exceptions

EB GUIDE TF is designed and built without support for C++ exceptions.

If your own C++ code uses exceptions it is your responsibility to ensure that your code is combined with EB
GUIDE TF and its libraries in a way that is safe for your system. Not following this rule can lead to crashes
for which the root cause is difficult to find.

If your system includes C++ standard libraries, only libraries containing C++ code without exceptions are al-
lowed to be loaded or linked into the EB GUIDE TF process. Make sure that the full dependency of all libraries
is adhered to.

For example, on QNX systems you are not allowed to load libraries that link against the libcpp.so library into
the EB GUIDE TF process, because the EB GUIDE TF process uses libraries that link against the libcpp-
ne.so library. libcpp.so is a C++ standard library with exceptions, whereas libcpp-ne.so is a C++ stan-
dard library without exception.

6.2.5. EB GUIDE TF and POSIX signals

POSIX signals may interrupt system calls. EB GUIDE TF does not support error handling for interrupted system
calls on POSIX platforms.

EB GUIDE TF does not use POSIX signals, but user applications possibly do. Therefore the following POSIX
signals are blocked in all EB GUIDE TF threads:

► SIGALRM

► SIGCHLD

► SIGUSR1

► SIGUSR2

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 138 of 265

WARNING POSIX signals
If EB GUIDE TF threads or user applications do not block POSIX signals while calling EB
GUIDE TF API methods, POSIX signals lead to undefined EB GUIDE TF behavior.

6.2.6. Linking EB GUIDE TF statically

By default EB GUIDE TF is provided with the GtfStartup.exe executable file and shared object libraries for
any dedicated platform. For details see section 6.2.10, “Software module structure of EB GUIDE TF”.

However, some systems do not support shared objects but require linking all software modules statically. EB
GUIDE TF can be configured as a set of static libraries for these kinds of systems.

If you intend to use a static system, contact the EB GUIDE support, see chapter 3, “Support“.

6.2.7. Message handling

Messages are an asynchronous mechanism for communication between software modules in EB GUIDE TF.
Messages transport up to 255 items of scalar data types, for example integers. List data types are not supported.

The EB GUIDE TF message system never drops any message but delivers all messages in exactly the order
in which they were sent. However, there is no pre-defined order for delivering one message to different sub-
scribers.

A message has a numeric message ID that addresses the subscribers. The message IDs from 0 to 65535
are reserved for internal use within EB GUIDE TF and the EB GUIDE product line. Customer-specific software
modules can use and manage the remaining message ID range.

GtfMessenger is the process-internal message system provided by the GtfPluginLoader. GtfMessenger is
thread-safe and available for all software modules running in EB GUIDE TF. It is mainly used for integration
and management of modules, for example run level and interface management or run-time environment con-
figuration.

For detailed information about events, refer to section 5.4.6, “Event handling”.

6.2.8. Read-only file system support

A read-only file system (RomFS) is a block-based file system. Its organization structure has less overhead than
regular file systems because it has read-only access and omits access right management.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 139 of 265

A RomFS has the purpose of overlaying the file system that is provided by an operating system (OS), for
example to speed the system up.

A RomFS can also be used to run EB GUIDE TF on embedded systems without OS file system support.

EB GUIDE TF RomFS support is completely implemented in user space and does not depend on any way
of the underlying OS.

EB GUIDE TF RomFS support is used as a layer between the following:

1. Interface provided by GtfFile and GtfPath

2. File system abstractions provided by the underlying OS

With a RomFS container, you are able to overlay a file system with your own container. The access to these
overlay containers is completely transparent, thus you do not have to change any EB GUIDE TF modules that
use the GtfFile and GtfPath interface.

NOTE Use the RomFS container
The RomFS container is the preferred container format although GtfOSAL overlay file sys-
tem support is designed to allow other container implementations, too. You may use other
container implementations for example to evaluate different designs.

6.2.9. Renderers supported in EB GUIDE

The following renderers are available with EB GUIDE:

► The OpenGL ES 2.0 renderer is capable of rendering 2D and 3D widgets and achieves best results for 24-
bit images. It needs a graphics processing unit that supports OpenGL ES 2.0. The OpenGL ES 2.0 renderer
utilizes a dedicated hardware unit for rendering. With the OpenGL ES 2.0 renderer, it is recommended to
optimize image resource files, for example using tools like 'Optipng'.

► The DirectX 11 renderer is capable of rendering 2D and 3D widgets. It needs an operating system that
supports DirectX 11. It utilizes a dedicated hardware unit for rendering.

► The OpenVG 1.1 renderer is capable of rendering 2D widgets and vector graphics and achieves best re-
sults for 32-bit images. The OpenVG 1.1 renderer needs a graphics processing unit that supports OpenVG
1.1. It utilizes a dedicated hardware unit for rendering. With the OpenVG 1.1 renderer, it is recommended
to optimize image resource files.

6.2.10. Software module structure of EB GUIDE TF

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 140 of 265

EB GUIDE TF consists of several software modules. Depending on the customer project some of them are
essential and others are optional. You as a system integrator can add additional project specific modules, for
example widget sets or applications, which are not part of EB GUIDE TF.

The default delivery of EB GUIDE TF runs on operating systems that support shared object files, for example
Windows 8, Linux or QNX. EB GUIDE TF is divided into the following executable files and libraries to fit most
customer projects out of the box:

► GtfStartup.exe

The executable file which contains platform-specific start-up code and interprets the gtfStartup.cfg config-
uration file. GtfStartup.exe is configurable with parameters.

► GtfCommon

Shared object library which contains

► base classes and an abstraction of the operating system

► memory management

► a trace logging system

► GtfPluginLoader

► GtfCore

Shared object library which contains all mandatory modules for each GUI project based on EB GUIDE
Studio and EB GUIDE TF. Example modules are state machine interpreter, action interpreter, and datapool.

► GtfWidgetSet

Shared object library which uses the Basic Widget Set and is required for EB GUIDE GTF based GUI
projects which are modeled with the Basic Widget Set.

► GtfWidgetSet3D

Shared object library which uses the 3D Widget Set and is required for EB GUIDE GTF based GUI projects
which are modeled with the 3D Widget Set.

► GtfWidgetSetOpenVG

Shared object library which uses the OpenVG Widget Set and is required for EB GUIDE GTF based GUI
projects which are modeled with the OpenVG Widget Set.

► GtfDisplayManager

Shared object library that is responsible for the connection between a GtfCoreRuntime and a specific
renderer.

► GtfOpenGLRenderer

Shared object library which allows dragging views and widgets using the OpenGL ES 2.0 API.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 141 of 265

► GtfDirectXRenderer

Shared object library which allows dragging views and widgets using the DirectX 11 API.

► GtfOpenGLRenderer

Shared object library which allows dragging views and widgets using the OpenGL ES 2.0 API.

► GtfOpenVGRenderer

Shared object library which allows dragging views and widgets using the OpenVG 1.1 API.

► GtfService

Shared object library which is required to establish TCP connections between EB GUIDE TF and EB
GUIDE Studio or EB GUIDE Monitor.

► GtfIPC

Shared object library which extends GtfService and provides inter-process communication (IPC). Imple-
ments a service running in the HMI process. Counterpart to GtfIPCClient.

► GtfIPCClient

Shared object library which can be used by separate application processes to access the external event
system and the datapool. Counterpart to GtfIPC.

6.2.10.1. Run level and interface management

You as a system integrator can influence the start-up and shutdown order of software modules by managing
run levels and interfaces. To manage run levels and interfaces, you use system messages.

For example, a system message does one of the following:

► It publishes the current run level and the direction of the boot process which can be start-up, final, or
shutdown.

► It is used by software modules for the publication of interface objects that the software modules provide
to other software modules.

A receiver of a run level message can perform specific activities for that run level and returns the next required
run level. Return values that request a run level which is already passed are ignored.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 142 of 265

NOTE Available run levels
Only the following run levels are guaranteed to be processed:

► Initial run levels

► Final run levels

► Requested run levels

Processing of additional run level information depends on your implementation.

An interface consists of the following:

► a data set that contains a unique identifier

► a version number

► a pointer to an object that provides the interface

A software module can typecast the object pointer after evaluating the unique identifier and the version number.
In addition, module interfaces provide the information about the lowest valid run level for the interface object.

Basic framework interfaces which are provided by GtfPluginLoader are available at least until gtf_destroy-
Module() is called.

Modules must not publish their interfaces before receiving the first run level message. If the run level falls
below the lowest valid level, multiple or incomplete start-up and shutdown cycles force the software modules
to publish their interfaces again.

NOTE Recommendation
It is recommended for every module to process the lowest valid run level of all used inter-
faces during shutdown.

The following tables show examples for run level and interface management during start-up and shutdown.

Table 6.3. Run level and interface management during start-up

Software module Activity

GtfPluginLoader Loads and initializes modules

Module A Subscribes to system messages

Module B Subscribes to system messages

GtfPluginLoader Sends message GTF_MID_RUN_STARTUP

GtfRunlevelManager Publishes start-up at run level 0 to all subscribers

Module A Returns 100, the next required run level

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 143 of 265

Software module Activity

Module B Returns 50, the next required run level

... ...

GtfRunlevelManager Publishes start-up at run level 50

Module A ► Publishes the interface with 100, the lowest valid run level

► Returns the current run level 50 to indicate that it is not interested
in additional start-up steps

Module B Returns 100, the next required run level

Module B Receives the interface of module A

... ...

GtfRunlevelManager Publishes start-up at run level 100

Module A Returns the current run level 100 to indicate that it is not interested in
additional start-up steps

Module B ► Starts using the interface of module A

► Returns 200, the next required run level

... ...

GtfRunlevelManager Publishes start-up at run level 200

Module A Returns the current run level 200 to indicate that it is not interested in
additional start-up steps

Module B Returns the current run level 200 to indicate that it is not interested in
additional start-up steps

... ...

GtfRunlevelManager Publishes final run level 65535 to all subscribers

Module A Returns the current run level 65535

Module B Returns the current run level 65535

... ...

Table 6.4. Run level and interface management during shutdown

Module Activity

Module B Sends message GTF_MID_RUN_SHUTDOWN

GtfRunlevelManager Publishes shutdown at run level 65535 to all subscribers

Module A Returns 99, the next required run level

Module B Returns 100, the next required run level

... ...

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 144 of 265

Module Activity

GtfRunlevelManager Publishes shutdown at run level 100

Module A Returns 99, the next required run level

Module B ► Stops using the interface of module A

► Returns the current run level 100 to indicate that it is not interested
in additional shutdown steps

... ...

GtfRunlevelManager Publishes shutdown at run level 99

Module A Returns the current run level 99 to indicate that it is not interested in ad-
ditional shutdown steps

Module B Returns the current run level 99 to indicate that it is not interested in ad-
ditional shutdown steps

... ...

GtfRunlevelManager Publishes final run level 0 to all subscribers

Module A ► Unsubscribes to system messages

► Returns the current run level 0

Module B ► Unsubscribes to system messages

► Returns the current run level 0

... ...

GtfRunlevelManager Triggers the complete system shutdown by sending GTF_MID_-
SYSTEM_EXIT to GtfPluginLoader

GtfPluginLoader Unloads the modules and returns to the caller

Besides the return value during run level handling, a module can use the following messages to control Gt-
fRunlevelManager:

► Trigger a system shutdown by sending a GTF_MID_RUN_SHUTDOWN message.

► Lock the current run level by sending a GTF_MID_RUN_RUNLEVEL_LOCK message. Locking the run level
is useful for pending asynchronous activities during start-up or shutdown.

► Release a locked run level by sending an GTF_MID_RUN_RUNLEVEL_UNLOCK message. Releasing a
locked run level is useful as soon as possible after the pending asynchronous activity finishes.

The current run level is locked while the number of LOCK messages received by GtfRunlevelManager is higher
than the number of UNLOCK messages.

6.2.11. The gtfStartup.cfg configuration file

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 145 of 265

The gtfStartup.cfg configuration file contains rules that describe how to map signals to actions. Signals can be
run level changes, actions can be module loading or sending pre-defined messages file. After evaluating the
command line parameters, the GtfStartup.exe file reads the configuration file.

The configuration file is a line-oriented text file encoded with UTF8. It can be edited with any text editor that
supports UTF8 character encoding. Both DOS line endings and Unix line endings are allowed. One line de-
scribes one mapping rule. Multi-line rules or multiple rules in one line are not supported. It is possible to trigger
multiple actions for one signal by multiple mapping rules for the signal.

TIP Text editors without UTF8 character encoding support
The first 128 ASCII characters (0-127) are compliant with the UTF8 standard. Thus, if the
gtfStartup.cfg file does not contain any characters with Unicode code points above 127, it
is possible to edit the file with text editors without UTF8 character encoding.

6.2.11.1. Mapping rule structure

A mapping rule in EB GUIDE TF consists of one signal and one action. Both signals and actions are made
up of tokens.

Tokens are separated by spaces or tabulators. Everything between a double slash (//) and the end of line
is ignored. Empty lines are ignored. Text within double quotes ("") is parsed as one token even if it includes
spaces, tabulators, or comments. Decimal and hexadecimal number format is supported.

Table 6.5. Escape sequences used to enter special characters

Escape sequence Special character

\n line feed

\r carriage return

\\ \

\" "

\t TAB

6.2.11.2. Signals

The first token of a signal is a keyword which defines the signal type. The token after that is a type specific
parameter.

Table 6.6. Signals

Keyword Parameter Description

INIT none Loading gtfStartup.cfg is finished.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 146 of 265

Keyword Parameter Description

STARTUP <run level> <run level> (0...0xFFFF) is
reached during start-up.

6.2.11.3. Actions

The first token of an action is a keyword which defines the action type. The tokens after that are type specific
parameters.

Table 6.7. Actions

Keyword First parameter Following parameters Description

MESSAGE <MsgID> message parameters Sends a message with
the <MsgID> (0...-
0xFFFFFFFF) and mes-
sage parameters speci-
fied.

LOAD

(supported by INIT signal
only)

FW_PATH or

MODEL_PATH

<file path> Loads a plugin file and
initializes the includ-
ed modules. FW_PATH
means a path relative
to the GtfStartup.exe
executable file. MOD-
EL_PATH means a path
relative to the gtfS-
tartup.cfg file. For
absolute paths the key
words FW_PATH and
MODEL_PATH lead to the
same result.

LOAD_ALL

(supported by INIT signal
only)

FW_PATH or

MODEL_PATH

<directory path> Loads all plugin files in
the directory and initial-
izes the included mod-
ules. FW_PATH means
a path relative to the
GtfStartup.exe executable
file. MODEL_PATH
means a path relative
to the gtfStartup.cfg file.
For absolute paths the

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 147 of 265

Keyword First parameter Following parameters Description

key words FW_PATH and
MODEL_PATH lead to the
same result.

Message parameters consist of a keyword token followed by a value token.

Table 6.8. Message parameters

Keyword Value Description

UINT8 number 8-bit unsigned integer

UINT16 number 16-bit unsigned integer

UINT32 number 32-bit unsigned integer

INT8 number 8-bit signed integer

INT16 number 16-bit signed integer

INT32 number 32-bit signed integer

STRBUF string Pointer to a buffer storing the
string, available until shutdown is
completed

STRING string String

FW_PATH string Same as STRBUF, but the string is
interpreted as a path relative to the
GtfStartup.exe executable file.

MODEL_PATH string Same as STRBUF, but the given
string is interpreted as a path rela-
tive to the gtfStartup.cfg file.

The EB GUIDE TF message system is used for run level and interface management as well as for configuration
of framework modules, for example EB GUIDE TF modules or applications provided by the customer. Message
IDs and parameters of pre-defined messages are documented in the GtfMessageId.h file.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 148 of 265

TIP Working with message IDs
Message IDs are organized in message groups. That means, searching message ID 401
in the GtfMessageId.h file will not lead to any result. Instead, search the following line:

#define GTF_MID_RANGE_GTF_DISPLAY 400

All display-related messages are relative to ID 400. Searching the string GTF_MID_-
RANGE_GTF_DISPLAY will lead to the following entry for message ID 401:

#define GTF_MID_GTF_DISPLAY_CONNECT

 (uint32_t)(GTF_MID_RANGE_GTF_DISPLAY + 1)

NOTE Predefined messages in EB GUIDE TF
Message ID range 0...0xFFFF is reserved for EB GUIDE TF and the EB GUIDE product line.

Message ID range 0x10000...0xFFFFFFFF can be managed by you.

6.2.11.4. Execution order of mapping rules

Mapping rules in EB GUIDE TF are executed in the following order:

1. If the gtfStartup.cfg file has been parsed successfully, the INIT signal is triggered.

2. If EB GUIDE TF has entered the run level during system start-up, the STARTUP signal is triggered.

3. If a signal contains several mapping rules, the rules are executed in the order in which they are defined
in the gtfStartup.cfg file.

4. If EB GUIDE TF has entered the run level during system shutdown, the SHUTDOWN signal is triggered.

6.2.11.5. Example of a gtfStartup.cfg file

The following example is intended to show the syntax of a typical gtfStartup.cfg file. It is not intended to be
copied into your project because, taken out of its context, it will not work.

Example 6.5.
gtfStartup.cfg file

//init - load all modules in the framework path

INIT LOAD_ALL FW_PATH ""

//init - load specific modules relatively to the model directory

INIT LOAD MODEL_PATH "MyExampleA"

INIT LOAD MODEL_PATH "MyExampleB"

// startup - runlevel 499 - configure the example module

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 149 of 265

STARTUP 499 MESSAGE 65536 STRBUF "MyExample/fileA.bin"

// shutdown - runlevel 1 - configure the example module

SHUTDOWN 1 MESSAGE 0x10002 INT32 4711 FW_PATH "MyExample/fileB.bin" STRING "Hi"

6.2.12. The GtfStartup.exe executable file
The GtfStartup.exe executable file provides platform-specific start-up code and interprets the gtfStartup.cfg
configuration file. Additional functionality is available for specific platforms, for example command line parame-
ter handling or detection of other EB GUIDE TF instances.

6.2.12.1. Command line parameters

If you specify one single command line parameter, it is interpreted as file path of the configuration file. If you
do not provide any command line parameter, the start-up code looks for the file gtfStartup.cfg in the directory
in which the GtfStartup.exe executable file is located.

► <gtfStartupConfigurationFile> or

--startup-cfg <gtfStartupConfigurationFile>:

Optional parameter. If specified, the file gtfStartupConfigurationFile is loaded and parsed as start-
up configuration. Otherwise, gtfStartup.cfg is used by default.

► --debug: Optional parameter. If specified, the contents of error logs and traces are optimized for debug-
ging without EB GUIDE Studio. Otherwise, everything is optimized for display in EB GUIDE Studio.

► --monitor: Optional parameter. If specified, EB GUIDE TF synchronizes start-up with EB GUIDE Monitor.
The --monitor parameter is intended for internal EB GUIDE use-cases, for example simulation mode
in EB GUIDE Studio.

► --report: Optional parameter. If specified, EB GUIDE TF uses a buffer to avoid missing debug mes-
sages, error logs, and traces at start-up. Losing the connection to the GtfReport service triggers a shut-
down of EB GUIDE TF. The --report parameter is intended for internal EB GUIDE use-cases, for ex-
ample simulation mode in EB GUIDE Studio.

► --romfs <romFileSystemFile>: Optional parameter. If specified, the given ROM file system (RomFS)
is loaded. It is possible to specify multiple RomFS. Configuration files inside RomFS containers are sup-
ported. For example, the path to the gtfStartupConfigurationFile can refer to a file in the RomFS
romFileSystemFile.

► --remotefb: Optional parameter. If specified, EB GUIDE TF waits during start-up until a remote frame-
buffer client connects. The --remotefb parameter is intended for internal EB GUIDE use-cases, for ex-
ample simulation mode in EB GUIDE Studio.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 150 of 265

► --version: Optional parameter. If specified, EB GUIDE TF displays the version of the run-time on shut
down. The displayed version matches the version that is shown in EB GUIDE Studio

6.2.12.2. Single instance detection on Windows platforms

The Microsoft Windows concept of named events is used for optional detection of other EB GUIDE TF in-
stances. Single instance detection works as follows.

1. Configure the message GTF_MID_SYSTEM_SINGLE_INSTANCE_CONFIG in the gtfStartup.cfg file to en-
able a named event. See GtfMessageId.h for details.

2. The first EB GUIDE TF instance is started using the gtfStartup.cfg file. The configured message enables
the named event. The event checks that no instance is running yet. The instance observes the event.

3. As soon as a second EB GUIDE TF instance is started using the gtfStartup.cfg file, it triggers
the named event. The first EB GUIDE TF instance detects that and sends the message GTF_-
MID_SYSTEM_SECOND_INSTANCE_TRIGGER through the GtfMessenger. GTF_MID_SYSTEM_SE-
COND_INSTANCE_TRIGGER can be observed by an application and used to react to the start of the second
instance, for example by setting the focus to its own window.

4. If the second EB GUIDE TF instance detects that the named event already exists in another instance, it
triggers the event and immediately shuts down the framework.

6.3. Configuring profiles
EB GUIDE Studio offers the possibility to create different profiles for a project. Project profiles write the EB
GUIDE TF start-up configuration file gtfStartup.cfg.

You use profiles to do the following:

► Send messages

► Configure internal and user-defined libraries to load

► Configure a scene

► Configure a renderer

There are two default profiles: Edit and Simulation.

6.3.1. Cloning a profile

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 151 of 265

Cloning a profile

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

Step 1
In the navigation area, click CONFIGURE > Profiles.

Step 2
In the content area, select the Simulation profile.

Step 3
Click Clone.

A profile is added to the table. The profile is a clone of the default profile Simulation.

Step 4
Rename the profile to MySimulation.

Step 5
Select the radio button Use for simulation.

The MySimulation profile is used for simulation on the PC.

6.3.2. Adding a library

Adding a library

The default delivery of EB GUIDE TF runs on operating systems that support shared object files, for exam-
ple Windows 8, Linux or QNX. EB GUIDE TF is divided into executable files and libraries to fit most customer
projects out of the box.

For details see section 6.2.10, “Software module structure of EB GUIDE TF”.

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab CONFIGURE > Profiles is selected.

■ A profile MySimulation is added.

■ A library MyLibraryA is available in $GUIDE_PROJECT_PATH\ressources.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 152 of 265

Step 1
In the content area, select the MySimulation profile.

Step 2
Click to expand the libraries.

The Load table with all included libraries is displayed.

Step 3
Click Add.

A new row is added to the table.

Step 4
In the table select MODEL_PATH from the drop-down list box under Location.

Step 5
Enter MyLibraryA in the Name text box.

Figure 6.3. Table of libraries

You added the library MyLibraryA to the start-up code. MODEL_PATH indicates a path relative to the GtfS-
tartup.cfg configuration file.

6.3.3. Adding messages

You can start and stop software modules or alter the behavior of software modules by sending system mes-
sages. System messages have a run level that defines at which point during the start-up process they are sent.
Additionally system messages have an identifying ID and optional parameters.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 153 of 265

For details see section 6.2.10.1, “Run level and interface management”.

NOTE Predefined messages in EB GUIDE TF
Message ID range 0...0xFFFF is reserved for EB GUIDE TF and the EB GUIDE product line.

Message ID range 0x10000...0xFFFFFFFF can be managed by you.

Message IDs and parameters of pre-defined messages are documented in the GtfMessageId.h file.

Adding messages

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab CONFIGURE > Profiles is selected.

Step 1
In the content area, select a profile.

Step 2
Click to expand the libraries.

Step 3
The Messages table with all included libraries is displayed.

Step 4
Click Add.

A new row is added to the table.

Step 5
Enter 0 in Run level text box.

Step 6
Enter 300 in Message ID text box.

Step 7
Enter UINT32 0xDEADBEAF in the Parameter text box.

You added a system message.

The message GTF_MID_GTF_CORE_CREATE_MODEL makes EB GUIDE GTF create a GtfCoreModel with
the ID 0xDEADBEAF.

6.3.4. Configuring a display
Configure each display of your EB GUIDE model as follows.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 154 of 265

Configuring a display

Prerequisite:

■ The project center is displayed.

■ In the navigation area the tab CONFIGURE > Profiles is selected.

Step 1
Click to expand the scenes.

Step 2
Select a display from the State machines drop-down list box, for example Main.

Step 3
Adjust the properties for the display. For information on each property see section 9.5, “Scenes”.

6.4. Configuring the system start

6.4.1. Configuring the system start for operating systems that
support shared object files

Configuring the system start for operating systems that support shared object files

Step 1
Adjust the gtfStartup.cfg file for your project. For instructions see section 6.4.2, “Configuring the
gtfStartup.cfg file”.

Step 2
Export your project. For instructions see section 5.8.5, “Exporting a project”.

Step 3
Copy the following files to the target system:

► The EB GUIDE GTF version for your platform. This includes the executable file and all plugin files that
are required by your gtfStartup.cfg configuration.

► Your adjusted gtfStartup.cfg.

► The exported EB GUIDE model. Make sure the paths in gtfStartup.cfg refer to the EB GUIDE model's
files and its relative paths are correct.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 155 of 265

Step 4
Start EB GUIDE GTF on the target system.

Use a command line that enables you to type the commands that are suitable for your operating system.

You have configured the operating system on the target framework.

6.4.2. Configuring the gtfStartup.cfg file

Configuring the gtfStartup.cfg file

Look up functions names listed in this instruction in the GtfMessageId.h file.

Step 1
Load plugin files:

To define the files that contain the required shared objects, add the following example messages to the gtfS-
tartup.cfg file:

INIT LOAD FW_PATH "GtfModelConverter"

INIT LOAD FW_PATH "GtfCore"

INIT LOAD FW_PATH "GtfDisplayManager"

INIT LOAD FW_PATH "GtfService"

INIT LOAD FW_PATH "GtfWidgetSet"

INIT LOAD FW_PATH "GtfOpenGLRenderer"

Files can differ depending on the operating system.

Step 2
Configure the type manager:

To inform EB GUIDE GTF where to find the binary types file, add the following message to the gtfStartup.cfg
file:

STARTUP 0 MESSAGE 317 MODEL_PATH "types.bin"

This message (GTF_MID_GTF_TYPEMANAGER_CONFIG) specifies the file types.bin.

Step 3
Create a GtfCoreModel:

To be able to display and execute an EB GUIDE model, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 300 UINT32 0xDEADBEAF

This message (GTF_MID_GTF_CORE_CREATE_MODEL) makes EB GUIDE GTF create a GtfCoreModel with
the ID 0xDEADBEAF. The ID has to be unique. It is used in the following steps to load the model.

../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 156 of 265

Step 4
Create a GtfCoreRuntime:

To connect a GtfStateMachine to a GtfCoreModel, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 306 UINT32 0xDEADBEAF UINT8 0

This message (GTF_MID_GTF_CORE_CREATE_CORE_HOOK_ATF_WORKLOOP) creates the GtfCoreRun-
time in the thread that is identified by the communication context ID, which is 0 in the example. See GtfMes-
sageId.h for variations with different communication context IDs.

NOTE Context ID
The communication context ID of a state machine can be seen and configured in EB
GUIDE Studio. By default, the communication context ID is 0.

Step 5
Create a GtfViewFactory:

To define how to retrieve view descriptions, add the following message to the gtfStartup.cfg file:

STARTUP 403 MESSAGE 450 UINT32 0xBAADF00D MODEL_PATH "views.bin"

This message (GTF_MID_GTF_VIEWFACTORY_BINARY) creates a GtfViewFactory which loads view
descriptions from the views.bin binary file and defines the unique ID of the GtfViewFactory to be
0xBAADF00D. The keyword MODEL_PATH makes the file path relative to the gtfStartup.cfg file.

Step 6
Configure the .bdf input file:

To make the GtfCoreModel load the binary declaration file of the datapool, add the following message to the
gtfStartup.cfg file:

STARTUP 499 MESSAGE 308 UINT32 0xDEADBEAF MODEL_PATH "datapool.bdf"

This message (GTF_MID_GTF_DATAPOOL_DECLARATIONS) makes the GtfCoreModel with the ID 0xDEAD-
BEAF load the specified .bdf file.

Step 7
Configure the .bvf input file:

To make the GtfCoreModel load the binary value file of the datapool, add the following message to the gtfS-
tartup.cfg file:

STARTUP 499 MESSAGE 309 UINT32 0xDEADBEAF MODEL_PATH "datapool.bvf"

This message (GTF_MID_GTF_DATAPOOL_VALUES) makes the GtfCoreModel with the ID 0xDEADBEAF
load the specified .bvf file.

Step 8
Configure the state machine file:

../gtf_api/_gtf_message_id_8h.html
../gtf_api/_gtf_message_id_8h.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 157 of 265

To load the binary state machine file, add the following message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 311 UINT32 0xDEADBEAF MODEL_PATH "model.bin"

This message (GTF_MID_GTF_STATE_MACHINE_MODEL) makes the GtfCoreModel with the ID 0xDEAD-
BEAF load the specified binary state machine file model.bin.

Step 9
Enable state machines:

To enable a state machine, add the following message to the gtfStartup.cfg file:

STARTUP 501 MESSAGE 320 UINT32 0xDEADBEAF STRBUF "Main"

This message (GTF_MID_GTF_ENABLE_STATE_MACHINE) enables the state machine called Main in the
GtfCoreModel with the ID 0xDEADBEAF.

Step 10
Configure displays:

To configure a display option, add the following messages to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 511 STRBUF "Main" STRBUF "windowCaption" STRBUF "My Model"

STARTUP 0 MESSAGE 512 STRBUF "Main" STRBUF "hwLayerId" INT32 0

STARTUP 0 MESSAGE 513 STRBUF "Main" STRBUF "showWindowFrame" UINT8 1

These messages (GTF_MID_GTF_DISPLAY_CONFIG_STRING, GTF_MID_GTF_DISPLAY_CONFIG_INT
and GTF_MID_GTF_DISPLAY_CONFIG_BOOL) apply to the display that belongs to the state machine
called Main. Message 511 is used for string options, message 512 for integer options and message 513 for
boolean options.

Step 11
Configure resource configuration file:

To load the binary resource configuration file, add the following message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 312 UINT32 0xDEADBEAF MODEL_PATH "resources.bin"

This message (GTF_MID_GTF_RESOURCE_MODEL) makes the GtfCoreModel with the ID 0xDEADBEAF load
the binary resource configuration file resources.bin.

Step 12
Configure the debug database (optional):

If you want to run an EB GUIDE model in debug mode to receive error messages in more detail, add the fol-
lowing message to the gtfStartup.cfg file:

STARTUP 499 MESSAGE 318 UINT32 0xDEADBEAF MODEL_PATH "debug.bin"

This message (GTF_MID_GTF_DEBUGDATABASE_CONFIG) includes the debug database file debug.bin.

Step 13
Configure the service mapper TCP/IP port:

To be able to use EB GUIDE Monitor or a similar client, add the following message to the gtfStartup.cfg file:

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 158 of 265

STARTUP 0 MESSAGE 305 UINT16 5456

This message (GTF_MID_GTF_SERVICE_MAPPER) makes the debugger service of EB GUIDE GTF listen to
TCP/IP port 5456.

Step 14
Load a RomFS container:

To load a RomFS container, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 701 MODEL_PATH "container.romfs"

This message (GTF_MID_GTF_FILESYSTEM_LOAD_ROMFS) loads the RomFS container specified by con-
tainer.romfs into EB GUIDE GTF.

Step 15
Configure how font files are accessed by EB GUIDE GTF (optional):

To configure how font files are accessed, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 510 UINT8 1

This message (GTF_MID_GTF_FREETYPE_STREAM_TYPE) configures the font access component of EB
GUIDE GTF. If the UINT8 parameter value is 0, it uses a ROM-mapped file. If the UINT8 parameter value is
1, it uses a plain file I/O.

NOTE ROM-mapped file approach vs. plain file I/O approach
The ROM-mapped file approach in general provides higher performance. But on some
systems, for example QNX, it consumes more memory than the plain file I/O approach.
Plain file I/O in general consumes less memory than the ROM-mapped file approach. But
it can lead to lower performance.

Step 16
Disable the output of EB GUIDE Script trace functions:

To suppress the output of f:trace_string() and f:trace_dp() in EB GUIDE Script code, add the fol-
lowing message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 321 UINT32 0xDEADBEAF

Step 17
Debug monitoring information:

To display monitoring information during run-time, some renderers need additional resources independent of
the EB GUIDE model. Such resources are located in the monitoring directory inside the EB GUIDE GTF
run-time directory. If your start-up configuration does not configure monitoring displays such as frames per
second (FPS), you can safely remove these resources. To enable FPS monitoring, set the appropriate bit in
the operating mode value of the renderer. For details see the Doxygen documentation.

Step 18
Configure FreeType Cache (optional):

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 159 of 265

To configure the FreeType cache, add the following message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 321 UINT32 0xDEADBEAF

This message (GTF_MID_GTF_FREETYPE_CACHE_CONFIGURATION) sets the FreeType cache parameters
as described at http://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html. The default val-
ues are as follows:

► max_faces: 0

► max_sizes:0

► max_bytes: 0 kB

Due to the way EB GUIDE GTF handles font sizes, ft_size objects are not cached separately from ft_-
face objects at the moment. It is recommended to use meaningful values for max_sizes. This behavior
may change in future versions of EB GUIDE GTF.

Step 19
Configure the resource cache:

For each display ID, it is possible to configure a resource cache which caches textures. Add the following
message to the gtfStartup.cfg file:

STARTUP 0 MESSAGE 520 UINT32 61441 UINT32 1048576

This message (GTF_MID_GTF_RENDERER_TEXTURE_CACHE) creates a resource cache for the default dis-
play ID (61441) with a size of 1048576 bytes. Add the message several times to configure more display IDs.
Assigning display ID 0 configures all display IDs which are not configured otherwise to use the same re-
source cache.

6.5. Evaluating memory usage
Evaluating memory usage helps you to debug the system and the EB GUIDE model. During run-time, EB
GUIDE GTF can continuously print information about memory that the framework manages dynamically.

Configuring a memory report

You configure a memory report by adding a configuration message to the gtfStartup.cfg configuration file.

Prerequisite:

■ An EB GUIDE Studio project is opened.

■ The project center is displayed.

http://www.freetype.org/freetype2/docs/reference/ft2-cache_subsystem.html

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 160 of 265

Step 1
In the navigation area, click CONFIGURE > Profiles.

Step 2
Select the Simulation profile.

Step 3
Click to expand the libraries.

Step 4
Next to Messages click Add.

Step 5
For the new message, enter the following in the Parameters text box:

STARTUP 0 MESSAGE 12 UINT32 5000

The message GTF_MID_SYSTEM_REPORT_MEMORY activates memory reporting with a delay of 5000 ms be-
tween each report.

6.6. Creating a read-only file system (RomFS) con-
tainer

Creating a read-only file system (RomFS) container

The directory you create serves as root directory in the RomFS. It is referred to as "/" on POSIX platforms
and as "C:\" on Microsoft Windows platforms.

Step 1
Create a directory structure and files in a local working directory.

Step 2
Locate the command line tool GtfRomFsCreate in the tools\GtfRomFsTools sub-directory of your EB
GUIDE GTF SDK directory.

Step 3
Run GtfRomFsCreate without any parameters.

The following usage directions are displayed:

Usage: GtfRomFsCreate.exe [OPTIONS] DIRECTORY [IMAGE_NAME]

Create a read only filesystem container from a directory

Options are:

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 161 of 265

--create-c-file BASE_NAME Create a C file that contains your data,

 and a coresponding header defining it.

 The files created are BASE_NAME.c and BASE_NAME.h

 IMAGE_NAME is used as the identifier of the RomFS

 binary blob

--output-dir OUTPUT_DIR Specify the output directory for the generated files.

 This directory must exist.

--max-size N Specify a maximum size for your container

-h or --help Display this help

For usage options see the list below.

You have the following options:

Create a RomFS container
GtfRomFsCreate.exe romfs_root_directory creates the file romfs_root_directory.romfs.
This file contains romfs_root_directory.

Create a RomFS container and specify the name of the resulting file
GtfRomFsCreate.exe romfs_root_directory image creates the file image.romfs. This file con-
tains romfs_root_directory.

Limit the size of the resulting container
Specify --max-size N on the command line. If the size limit you specify is exceeded, GtfRomFsCreate
emits an error message and stops putting files into the container. The maximum size max-size is defined
in bytes.

Create a RomFS container and put it, ready to use, in a C-array
GtfRomFsCreate.exe romfs_root_directory --create-c-file c_array creates the file
romfs_root_directory.romfs. This file contains romfs_root_directory .

Content is put in the file c_array.c as const unsigned char romfs_root_directory[] =
"...";. "..." is the content of the container encoded in C hexadecimal literals.

Additionally a c_array.h header file is created. The header file has an extern const unsigned char
romfs_root_directory[N]; forward declaration which you can include and use in your code.

The --max-size N parameter is respected.

Create a RomFS container, specify the name of the resulting file and put it, ready to use, in a C-array
GtfRomFsCreate.exe romfs_root_directory image --create-c-file c_array creates the
file image.romfs. This file contains romfs_root_directory. Content is put in file c_array.c as
const unsigned char romfs_root_directory[] = "...";.

"..." is the content of the container encoded in C heximal literals.

Additionally a c_array.h header file is created. This header file has an extern const unsigned
char romfs_root_directory[N]; forward declaration, which you can include and use in your code.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 162 of 265

The --max-size N parameter is respected.

6.7. Starting and connecting EB GUIDE Monitor
EB GUIDE Monitor communicates with an EB GUIDE GTF instance using a TCP/IP connection. Therefore it
is necessary to configure EB GUIDE Monitor before you can use it to an EB GUIDE model.

Starting EB GUIDE Monitor

Step 1
Go to $GUIDE_INSTALL_PATH/tools/monitor and double-click the monitor.bat file.

EB GUIDE Monitor opens.

Step 2
If this is the first time you start EB GUIDE Monitor, do the following:

Step 2.1
In the Plugins menu, click Plugin list....

A dialog opens.

Step 2.2
In the Plugin list dialog, select the plugins you want to use.

Step 2.3
Close the Plugin list dialog.

Connecting EB GUIDE Monitor

Prerequisite:

■ EB GUIDE Monitor is opened.

Step 1
In the File menu, click Open configuration....

A dialog opens.

Step 2
Open the directory that contains an exported EB GUIDE model.

Step 3
Select the monitor.cfg file.

Step 4
Click Open.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 163 of 265

Step 5
Click Configure connection....

A dialog opens.

Step 6
Enter the host address and port of the EB GUIDE GTF process you want to connect to. If EB GUIDE GTF is
running on your PC, the host address is localhost. The port number is the service mapper port specified
in gtfStartup.cfg.

Step 7
Click OK.

Step 8
With EB GUIDE GTF running, click Connect in the toolbar.

6.8. Using and creating an Android APK for EB
GUIDE TF
For background information on Android APK see section 6.2.1, “Android APK”.

For more information on Android setup, APK creation or the Android toolchain, refer to the official Android
documentation.

As the basic concepts and approaches known for other platforms are also valid for the Android platform, the
following sections focus on the topics that are specific for Android.

6.8.1. Executing an exported EB GUIDE model on Android

Executing an exported EB GUIDE model on Android

To execute an exported EB GUIDE model on Android, you install the EB GUIDE Model Chooser and EB
GUIDE Launcher. The EB GUIDE Model Chooser provides a user interface to select exported EB GUIDE
models. Selecting an exported EB GUIDE model starts EB GUIDE Launcher. The EB GUIDE Launcher is the
framework to execute an exported EB GUIDE model on the Android device.

Prerequisite:

■ To install the two applications on the Android device, enable your system to install from a different source
than the Android Play Store. On your Android device select the Settings > Security > Unknown sources
option.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 164 of 265

Step 1
Copy EB Guide Launcher.apk and EB Guide Model Chooser.apk from the $GUIDE_INS-
TALL_PATH/platform/android/bin/ directory to your Android device or to the external storage of your
Android device.

Step 2
Open a file manager and navigate to the copied files.

Step 3
Install EB Guide Launcher.apk and EB Guide Model Chooser.apk.

Step 4
Export an EB GUIDE model. For instructions see section 5.8.5, “Exporting a project”.

Step 5
Copy the whole directory that was exported by EB GUIDE Studio to your Android device. For information
where to store the models see section 9.1.2, “File path for models”.

Step 6
To execute the EB GUIDE model on your Android device, open EB Guide Model Chooser.apk and se-
lect an EB GUIDE model from the list. The EB Guide Launcher.apk is started automatically with the se-
lected EB GUIDE model.

The EB GUIDE model is executed on your Android device.

6.8.2. Creating your own Android APK using the template

Creating your own Android APK using the template

Step 1
Import the project $GUIDE_INSTALL_PATH/platform/android/apk/GtfAndroidAppTemplate into
Eclipse or IntelliJ.

Step 2
Optional: Modify the location of the model and the native libraries by editing the implementation of the tem-
plate TemplateActivity.java.

The template activity is the main activity of your custom application.

Step 3
Copy the Android SDK binaries delivered with EB GUIDE GTF to the directory $GUIDE_INSTALL_PATH/
platform/android/apk/libs/armeabi.

Step 4
Copy an EB GUIDE model to the default external files directory of the application. The default location imple-
mented in the template activity is /data/android/com.elektrobit.gtf_android_template.pack-
age.

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 165 of 265

Step 5
Deploy and launch your application in Eclipse or IntellJ on your target device or using an Android virtual de-
vice (AVD).

The EB GUIDE model is now executed on your Android device. Customize the application according to your
requirements.

6.8.3. Creating your own Android APK from scratch

The APK files installed with the Android SDK of EB GUIDE TF are suitable for most use cases. If they are not
sufficient, use the APK template (see section 6.8, “Using and creating an Android APK for EB GUIDE TF”).
You can integrate additional EB GUIDE TF plugins that are useful for a project. Save the additional plugins in
the directory of the exported EB GUIDE model and include them in the start-up configuration file. All run-time
dependencies are resolved by EB GUIDE TF.

For background information on the custom APK, see section 6.2.1.5, “Released APK and custom APK”.

Creating your own Android APK from scratch

Step 1
Create an Android project. Use either the Eclipse ADT plugin or create it with the provided Ant tooling.

Step 2
Create a libs directory where the delivered SDK binaries are stored.

Step 3
Copy only the .so files into the directory.

Step 4
Create an activity that derives from the GtfNativeActivity class.

Step 5
Optional: Add the android-dl loading code to the onCreate method to ease .so dependency handling. If no
android-dl is available, add the necessary System.loadLibrary call for every .so file instead.

Step 6
Add a System.loadLibrary call to the onCreate method for libGtfAndroid.so and System.load-
Library calls for every EB GUIDE GTF SDK .so file.

Alternatively load only the GtfNativeActivity using AndroidDL.loadLibrary() command.

Step 7
Specify the GtfNativeActivity as library name in the EB GUIDE Launcher.apk manifest as follows:

<meta-data

 android:name="android.app.lib_name"

 android:value="GtfNativeActivity" />

EB GUIDE documentation
Chapter 6. System integrator's manual

Page 166 of 265

Refer to the NativeActivity example in the Android NDK installation directory.

Step 8
Make the following modifications:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

<uses-sdk android:minSdkVersion="10"/>

Step 9
Create a keystore file for a release build.

Step 10
Create the release build with Ant on the command line.

TIP Debug builds
Test and create debug builds within Eclipse. The Eclipse plugin takes care of the whole APK
build process, for example debug keystore.

TIP Sub-projects
Use sub-projects for a clean separation of functionality. Place the GtfNativeActivity
in a master project and divide individual functionality into sub-projects. The master project
references the other components as sub-project dependencies and the Android build per-
forms the necessary integration steps.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 167 of 265

7. Application developer's manual

7.1. Overview
As an application developer you are the target audience for the following chapters.

For more information, see section 1.1.3, “Application developers”.

For more information on the structure of the manual, see section 1.2, “Structure of user documentation”.

7.2. Interaction between HMI and applications
In most cases, the HMI interacts with at least one project specific application, for example a media player.
Asynchronous communication allows better separation of software modules and helps to reduce mutual timing
impacts.

To establish an asynchronous communication between the generated EB GUIDE model and the dedicated
application you have the following options:

► External event system

► Datapool

TIP Direction of communication
Events are the advised mechanism if the HMI needs to trigger asynchronous application
activities, for example play next track.

Datapool items are the advised mechanism if the application needs to provide information
asynchronously to the HMI, for example title list of a media player.

The external event system and the datapool provide three types of property access methods:

► The first group of methods expects parameters which are container objects, for example string objects.
Such methods are only for internal usage by EB GUIDE TF.

► The second group of methods expects functor callback parameters. These callbacks must provide access
to a stream of plain old data for example strings which are stored as null-terminated byte streams. These
methods are also intended for internal usage by EB GUIDE TF, but you can use them, too.

► The third group of methods expects parameters which are stored as plain old data structures in a buffer,
for example strings which are stored as null-terminated byte arrays. The third group is recommended for
application developers.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 168 of 265

7.2.1. EB GUIDE model

GtfCoreModel class represents a specific EB GUIDE model at run-time. It is an interface class which provides
access to other associated interfaces for example datapool and external event system.

For more details of class descriptions, see the .h files in the $GTF_INSTALL_PATH/include/ directory.

7.2.2. External event system

With events it is possible to transport a limited number of scalar values, for example integers. Events are not
intended to transport large data types such as lists. The external event system delivers every event, even if
newer events are available and the receiver has not yet fetched the out-of-date events. The receiver gets the
events in exactly the order in which they were sent.

The interface methods of class GtfExternalEventSystem are described in the GtfExternalEventSys-
tem.h file.

Class GtfEvent provides methods for event parameter encoding and decoding. The interface methods of
class GtfEvent are described in the GtfEvent.h file.

7.2.2.1. Event receipt

The external event system creates a separate event queue for each communication context. Whenever new
events arrive in a previously empty event queue, the external event system invokes the corresponding com-
munication context by calling a registered callback method.

NOTE Ensure asynchronous event processing
It is not allowed to fetch or process events directly in the registered callback method. Event
fetching and processing has to be done asynchronously, even if the whole system runs in
one and the same thread. The callback method must only invoke an asynchronous worker
task.

The following steps show the general procedure of event receipt:

1. To register an invoking callback method at system start-up, use method SetInvoker().

2. To subscribe the communication context to specific events, use method Subscribe() .

3. After a new event has arrived, GtfExternalEventSystem executes the callback method to invoke the
worker task. To fetch and process all events which are currently in the event queue of the communication
context, use method Fetch() within the task.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 169 of 265

7.2.2.2. Event publication

The following steps show the general procedure of event publication. The interface methods of class GtfEvent
are described in the GtfEvent.h file.

1. Create a local instance of class GtfEvent and provide the external event system, event group ID and
event ID to the constructor method.

2. To publish the event, use method Publish().

7.2.3. Datapool
The datapool provides an asynchronous communication mechanism based on datapool items. Datapool items
can be of scalar, list, or project specific resource types, for example string lists, image lists.

Each datapool item is a communication channel between exactly one writing communication context and one
reading communication context. Each communication context has a private sight on the datapool.

The writing communication context always has an up-to-date view on the datapool item. Updates of multiple
associated datapool items become visible simultaneously in one step. The update prevents the GUI from flick-
ering. The order of datapool item updates and the order of the resulting update notifications can differ.

Datapool items can change in two ways:

► The communication context manipulates the datapool item.

► The communication context updates its sight on the datapool to new datapool item values provided by
other communication contexts.

Committing as well as updating affects all changed datapool items at once.

NOTE Avoid competing datapool access of the same communication context
All datapool API methods that require a communication context ID as parameter are thread
safe. Due to performance issues, avoid competing datapool access of one and the same
communication context.

The interface methods of class GtfDataPool are described in GtfDataPool.h.

7.2.3.1. Internal and external IDs for datapool items

Numerical IDs are used to address the datapool item properties Writer ID and Reader ID. If the modeler does
not set a value for the properties, an internal addressing is applied. If you use internal IDs, you minimize the
addressing efforts during every API call. The internal property ID may change whenever the EB GUIDE model
is changed.

Setting a value to the properties Writer ID and Reader ID causes external addressing.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 170 of 265

Method GetMappedID() maps external datapool item IDs to the corresponding internal datapool item IDs
at run-time.

As an application developer, you can force the usage of internal property IDs during API calls. You can force
the usage by manipulating the numerical communication context ID. Use a bitwise OR operation to set the flag
eContextIdFlag_NoMapping defined in GtfTypesDP.h.

7.2.3.2. Commitment of datapool items

If one communication context changes the value of a datapool item, the new value is not visible to another
communication context. To provide the new values of a datapool item a writing communication context has to
call method Commit().

The method Commit() affects all datapool items that have been changed by the communication context since
the previous call. A communication context can change multiple values one after another, but commits all of
them at once.

An internal datapool item within HMI does not require committing because the reader and writer communication
context are equal.

7.2.3.3. Update of datapool items

To retrieve changed values, a reading communication context has to call method Update(). The method Up-
date() affects all datapool item values which have been manipulated and committed by other communication
contexts since the previous call.

Whenever values change, the datapool invokes the corresponding reader communication context by calling
a registered callback method. But this only happens if method Update() was called at least once since last
invoking. Use method SetInvoker() to register an invoking callback method at system start-up.

NOTE Ensure asynchronous update of datapool item value
It is not allowed to process updates or fetch notifications directly in the registered callback
method. Updates must be processed asynchronously and notifications must be fetched
asynchronously, even if the whole system runs in one and the same thread. The callback
method must only invoke an asynchronous worker task.

7.2.3.4. Notifications on value updates for datapool items

Only the reader communication context of a datapool item can retrieve update notifications. Use the method
Fetch() to fetch and process the notifications. The modeler can select a notification policy for datapool items
by setting the property value.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 171 of 265

NOTE An update notification does not guarantee a changed value
An update notification only indicates that the corresponding datapool item has been written
since method Fetch() was called.

7.2.3.5. Windowed lists

The windows of one list are identified by numeric IDs 0...255. There is no predefined number of windows for
one list. The application can change the number of windows at run-time.

Method List_SetLength() sets the virtual length of the windowed list.

Method List_SetWindow() defines the position and size of the windows.

Method List_Clear() sets the virtual list length as well as the position and size of all windows to 0.

Access is possible only if list elements are covered by at least one window. If the window position or window
size is changed, the newly covered list elements are uninitialized until the application writes the list element
value for the first time. Read access fails for all uninitialized list elements.

7.2.4. The main workloop
The GtfPluginLoader gives access to the workloop that is driven by the EB GUIDE TF main thread. There-
fore the interface class GtfMainWorkLoop is provided to all software modules.

The interface methods of class GtfMainWorkLoop are described in GtfMainWorkLoop.h.

To schedule task objects for execution, application developers can use the methods PerformTask() and
PerformTaskDelayed().

The interface methods of class Task are described in task.h.

NOTE Avoid blocking or delaying tasks
The EB GUIDE TF main thread first processes the method Execute() and afterwards
the method Dispose(). A blocking or delaying task will impede the thread and all other
scheduled tasks. If such a task is defined to run in the main thread, it could, for example,
delay or block HMI event processing.

7.2.5. Observer patterns and callbacks
To track the value of widget properties or to observe other model elements of the EB GUIDE model, EB GUIDE
TF uses the observer pattern. There are implementations of the observer pattern with an observer interface

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 172 of 265

class and respective registration methods, for example the GtfStateMachineObserver. Widget properties
are observed using the functor template GtfFunctorX as shown in the following example:

pWidget->subscribe(pContext, propertyIndex, this,

 gtf_bind(&MyComp::propertyChanged, this, pWidget, propertyIndex)

);

In the example the method propertyChanged is called, whenever the property at index propertyIndex
changes. section 7.2.6, “Functors” explains the usage and behavior of GtfFunctorX.

7.2.6. Functors
A functor is a data type that stores a function or method invocation and provides an interface to call the en-
capsulated function or method like an ordinary function. In EB GUIDE TF a set of functor type templates and
utility routines are provided to assemble function invocations. The GtfFunctorX templates are used to store
callbacks.

The signature of the function call is encoded in the functor template. There is a separate functor template type
for every possible number of parameters. In the documentation the number of parameters is denoted as a suffix
X. The first template parameter of GtfFunctorX describes the type of the return value. All further template
parameters define the expected parameter types of the call.

7.2.6.1. Initialization of functor templates

The functor type templates provides the following basic constructors:

GtfFunctorX<R,Params>();

The default constructor creates an empty functor object. It is safe to call an empty functor object. Empty
functors can be tested using the negation operator.

GtfFunctorX<R,Params>(R (*)(Params))

This constructor expects a pointer to a global function or static class method as parameter. The passed
function is then called by the function call operator.

GtfFunctorX<R,Params>(R (Class::*)(Params), Class*)

If you want to set a non-static method, you require an additional object pointer, for example as in the
following code: GtfFunctor0<void> example(&SomeObject::doIt, pSomeObject);. There is
also a variant of this constructor, which expects a pointer to a constant object and a method pointer of a
constant method.

GtfFunctorX<R,Params>(F const&)

This is the catch-all constructor template, for assigning compatible and callable functor types. In the previ-
ous constructors the signature required an exact match of each element of the signature. This constructor

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 173 of 265

also works for compatible functor types, for example if an GtfFunctor2<int,float,float> is initial-
ized with a GtfFunctor2<int,double,double>. These two functor types are different but compati-
ble, because a method that expects double parameters can be called with float parameters. The only
requirement for the constructor parameter F is that its function call operator can be called using implicit
conversion of the parameters denoted as Params.

A functor can also be initialized using the utility routines gtf_bind. The gtf_bind functions assemble a
GtfFunctorX instance of the parameters given. The function is available in the following versions, which
resemble the constructors of GtfFunctorX:

GtfFunctorX<R,Params> gtf_bind(R (*)(Params));

GtfFunctorX<R,Params> gtf_bind(R (Class::*)(Params), Class *);

GtfFunctorX<R,Params> gtf_bind(R (Class::*)(Params)const, Class const *);

The syntax with gtf_bind is usually simpler and less verbose compared to the GtfFunctorX constructors.
This is due to the template type deduction of the C++ compiler that allows omitting the template parameters.

7.2.6.2. GtfFunctorX value behavior

GtfFunctorX objects partially mimic the behavior of primitive values. They are put onto the stack and as-
signed. When assigned, the content of the GtfFunctorX on the right is duplicated.

GtfFunctorX objects cannot be compared. A comparison yields compile errors.

To make sure that a functor is configured during run-time, you can use it inside a boolean expression since it
yields true when initialized. Calling an uninitialized functor is not harmful because an empty fall-back function
is always available and is executed.

7.2.6.3. Argument binding with functor objects

When the signature of a method does not match the expected or required signature of the functor, it is possible
to use the extended syntax of gtf_bind. The syntax allows you to attach values to the method call or reorder
parameters in the method call.

When you attach values, the values are stored within the functor object - similar to the object pointer, which is
stored inside the GtfFunctorX when the constructor is called with a method.

To refer to the arguments of the functor, call the placeholders objects _1, _2, ... _9 which have to be passed
to the call of gtf_bind. The placeholder _1 refers to the first parameter, _2 to the second ...

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 174 of 265

NOTE Possible dynamic memory usage with gtf_bind and placeholders
A functor object created with gtf_bind requires dynamic memory if the extended version
of gtf_bind with placeholder functionality is used. gtf_bind copies all parameters into
the functor object. The internal storage of GtfFunctorX is limited. The GtfFunctorX
allocates heap memory if the storage is too small.

7.2.7. Inter-process communication
The most common way to integrate an application into the HMI is to develop an EB GUIDE GTF plugin. An
EB GUIDE GTF plugin can receive C++ interface objects that give direct access to the external event system
and the datapool of the HMI.

But in some use cases it may be required to run an application in a separate process. Unlike an EB GUIDE
GTF plugin, such an application cannot receive C++ interfaces. In this case, an interaction between HMI and
application processes requires inter-process communication (IPC).

EB GUIDE GTF includes optional libraries that provide a high level C++ interface for inter-process communica-
tion. The library GtfIPC implements a service running in the HMI process. The counterpart is GtfIPCClient,
a library used in separate application processes to communicate with the HMI process.

7.2.8. Project specific EB GUIDE Script functions

An application developer can extend EB GUIDE Script by supplying functions written in C++. Such functions
are called foreign functions and can be used in EB GUIDE Script to implement synchronous calls from the HMI
to the application. A modeler can then use foreign functions in EB GUIDE Script programs. The typical use of
foreign functions is to make features of some library written in C/C++ available to EB GUIDE Script programs.
For example it is possible to use foreign functions to make C++ math library functions such as sinus or square
root available to EB GUIDE Script programs.

TIP EB GUIDE Script functions are not recommended for communication between
HMI and application
The HMI thread is blocked until the called function returns. This may have massive impact
on the timing of HMI activities. Therefore, keep the execution time of these functions as
short as possible.

7.2.8.1. The EB GUIDE Script run-time stack

EB GUIDE Script uses a stack for the parameter and return values of a foreign function.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 175 of 265

The stack plays a vital role in the execution of EB GUIDE Script programs. If there are too many or too few
arguments for an instruction on the stack, the execution of the program is in an undefined state.

7.2.8.2. The foreign function interface

In order for the EB GUIDE Script compiler to generate calls to your foreign function, you provide information
about your foreign function:

► The name of your function: what it is called in EB GUIDE Script programs.

► The number and types of the parameters of your function.

► The type of the return value of your function.

Parameters are passed via stack in a defined order. The first parameter of your function is at the very bottom of
the stack, and the last parameter of your function is on top of the stack. The function has to pop its arguments
in reverse order.

The foreign function calls all parameters which are defined in the function signature. The foreign function has
to push the result value which is defined in the function signature, even if there are errors during the execution
of the foreign function.

NOTE The function has to preserve the integrity of the stack
You tell the compiler which parameters the function expects, and which return value it gen-
erates. The function has to behave according to that information. Take all parameters from
the stack, and push a return value to the stack.

7.3. Communicating through a plugin

Communicating through a plugin

The following section explains the general workflow for integrating EB GUIDE TF into your build system. Find
the instructions for each step in the sections below.

Step 1
Export an EB GUIDE model. For details see section 7.3.1, “Exporting an EB GUIDE model”.

Step 2
Adjust the gtfStartup.cfg to load the plugin. For details see section 7.3.2, “Adjusting the gtfStart-
up.cfg to load the plugin”.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 176 of 265

Step 3
Copy the header files of the exported EB GUIDE model. For details see section 7.3.3, “Copying the header
files of the exported EB GUIDE model”.

Step 4
Write a plugin. For details see section 7.3.4, “Writing a plugin”.

Step 4.1
Include header files in the plugin.

Step 4.2
Compile the plugin with the included header files.

Step 5
Copy the resulting DLL file. For details see section 7.3.5, “Copying the resulting DLL file”.

Step 6
Start simulation directly with gtfStartup.exe. For details see section 7.3.6, “Starting the simulation direct-
ly with gtfStartup.exe ”.

7.3.1. Exporting an EB GUIDE model
For information on how to export an EB GUIDE model, refer to section 5.8.5, “Exporting a project”.

In the following instructions C:\projects\example_project is used as export directory.

7.3.2. Adjusting the gtfStartup.cfg to load the plugin

Adjusting the gtfStartup.cfg to load the plugin

The following instruction shows you how to adjust the gtfStartup.cfg file so that it loads a plugin. Alter-
natively, you can add the plugin as a library to the profile of the EB GUIDE model in EB GUIDE Studio. For
details see section 6.3.2, “Adding a library”.

Prerequisite:

■ An EB GUIDE model is exported.

Step 1
Navigate to the exported EB GUIDE model.

Step 2
Open the gtfStartup.cfg file with a text editor.

Step 3
To load your plugin, include the following program code:

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 177 of 265

INIT LOAD MODEL_PATH "myapp"

myapp is the name of the example plugin.

7.3.3. Copying the header files of the exported EB GUIDE mod-
el

Copying the header files of the exported EB GUIDE model

EB GUIDE TF creates an events header file for each event group that is defined in the EB GUIDE model. For
example, the header file events_0xabe60.h contains all the events the application can send and receive
to interact with the EB GUIDE model. _0xabe60 represents the event group ID 704096 in hexadecimal nota-
tion.

EB GUIDE TF creates a datapool header file for each communication context defined in the EB GUIDE mod-
el. The header file datapool_F.h specifies the communication context with the ID 16. Your application us-
es the file to access datapool properties. It contains the communication context ID and the datapool item IDs
you specify.

Prerequisite:

■ An EB GUIDE model is exported.

■ The ID of the communication context of your application is known.

■ The gtfStartup.cfg file is adapted.

Step 1
Create an empty directory, for example C:\application\myapp.

Step 2
Navigate to the exported EB GUIDE model.

Step 3
Select the following files in C:\projects\example_project:

► The event header files, for example events_0xabe60.h.

► The datapool header files, for example datapool_F.h.

Step 4
Copy the selected files to the empty directory, for example C:\application\myapp.

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 178 of 265

7.3.4. Writing a plugin

Writing a plugin

To enable your plugin to react on datapool and event updates it is necessary to include the corresponding
files.

Prerequisite:

■ An EB GUIDE model is exported.

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

Step 1
Navigate to the directory where you copied the header files, for example C:\application\myapp.

Step 2
Create a file named myapp.cpp.

Step 3
Open the myapp.cpp file and write a plugin.

Find a description of all relevant classes and methods in the EB GUIDE GTF API.

Step 4
Define the communication context of your plugin.

Step 5
Include the datapool and event header files.

Step 6
Compile myapp.cpp.

The result is a DLL file myapp.dll. Your plugin is capable of communicating with the EB GUIDE model.

7.3.5. Copying the resulting DLL file

Copying the resulting DLL file

Prerequisite:

■ An EB GUIDE model is exported.

../gtf_api/index.html

EB GUIDE documentation
Chapter 7. Application developer's manual

Page 179 of 265

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

■ A compiled plugin including the header files from the exported EB GUIDE model is created.

Step 1
Navigate to the directory where you saved the myapp.dll file, for example C:\application\myapp.

Step 2
Copy C:\application\myapp to the directory where you exported the EB GUIDE model, for example C:
\projects\example_project.

7.3.6. Starting the simulation directly with gtfStartup.exe

Starting the simulation directly with gtfStartup.exe

Prerequisite:

■ An EB GUIDE model is exported.

■ The gtfStartup.cfg file is adapted.

■ A new directory is created, for example C:\application\myapp.

■ Header files from the exported EB GUIDE model are copied to this directory.

■ A compiled plugin including the header files from the exported EB GUIDE model is created.

■ The resulting DLL file is available in the directory of the exported EB GUIDE model.

Step 1
Navigate to $GUIDE_INSTALL_PATH\platform\win32\bin.

Step 2
Execute GtfStartup.exe with the complete path to gtfStartup.cfg as the first argument. Enter the fol-
lowing command line:

 GtfStartup.exe

 C:\projects\example_project

The framework opens a window which displays the start view.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 180 of 265

8. Extension developer's manual

8.1. Overview
As an extension developer you are the target audience for the following chapters. For more information, see
section 1.1.4, “Extension developers”.

For more information on the structure of the manual, see section 1.2, “Structure of user documentation”.

8.2. Background information

8.2.1. Custom effect widgets

Custom effect widgets are widgets that are capable of modifying the drawing implementation. With custom
effect widgets renderers are upgraded to open up individual drawing routines in custom shaders that you create.
With custom shaders you overwrite default shaders of EB GUIDE. You apply the functionality of your own
effects in custom shaders and a custom effect widget.

Figure 8.1. Original image drawn by default shaders

Figure 8.2. Same image, drawn by custom shaders included in a custom effect

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 181 of 265

EB GUIDE Studio uses custom effect widgets to assign its shaders to all widgets in the subtree. You specify
custom effect widget properties and use them in EB GUIDE. The properties serve as uniform input parameters
in your custom shaders.

Custom shaders can use the same input parameters as default shaders. If shaders require additional input
parameters, you define widget properties that serve as uniform input paramaters in the shader pairs. That way,
EB GUIDE Studio modelers specify input values for the shaders.

In EB GUIDE Studio, the parameters are ordinary widget properties and can be used in the same way as all
widget properties in the following locations:

► Animations

► EB GUIDE Script

► Widget conditions

The OpenGL ES 2.0 and DirectX 11 renderers use default shader pairs. You can exchange the default shaders
with your own implementation by using a custom effect widget. You can define a custom shader for drawing
specific kinds of child objects. Thus, you are able to implement various custom effects, for example:

► Changes in coloration

► Masking effects

► Texture/image replacements in 3D graphics through widget properties in EB GUIDE Studio

► Cube/environment mapping

► Vertex distortion effects

8.2.2. Custom shaders and custom effect API

Custom shaders replace the existing shader implementation by a custom implementation. Possible reasons
are, for example, to achieve better rendering results with rendering effects or to simplify rendering and get
better performance. You are able to overwrite all default shaders by custom shaders.

GtfCustomEffect makes it possible to change the applied shaders in its subtree.

8.2.2.1. Custom input parameters: Uniforms

Define the custom input parameters for custom shaders both in the CustomEffect descriptor and in the
GtfCustomEffect descriptor.

By defining custom input parameters in the CustomEffect descriptor, the parameters appear in EB GUIDE
Studio as widget properties and can be used and changed.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 182 of 265

The OpenGL ES 2.0 renderer is able to identify available custom input parameters that are defined in the
shaders. In case of OpenGL ES 2.0, the name of the uniform in custom vertex and fragment shaders is the
same as the name of the widget property in the GtfCustomEffect descriptor.

The DirectX 11 renderer on the other hand does not rely on the name. It puts the uniforms or constant buffers
into the shader registers in ascending order. That means, HLSL shaders receive the standard constant buffers
in registers b0 until bn whereas n is the number of uniforms that are returned in the shader configuration by the
custom shader. For details see GTF API documentation - "shaderUniformFlags". Custom uniforms or constant
buffers are given in subsequent registers.

NOTE Naming convention for uniform in custom shaders
Use characters in ([a-zA-Z_-][0-9a-zA-Z_-]*) for the name of the uniform in custom vertex
and fragment shaders. Ensure the name differs from one of the default uniforms.

Since types in shaders are different from types in EB GUIDE, the GtfCustomEffect widget must provide
a type for each of the custom input parameters. The shaderCustomType is contained in an instance of a
derived class of shaderCustomUniformBase. It is used for types that are available in GLSL for OpenGL
ES 2.0 and HLSL for DirectX 11. Therefore, the custom widget class must apply further interface methods to
enable the renderer to identify the uniform parameters.

The custom widget class must apply the following interface method:

shaderCustomUniformBase *getCustomParameter(char const * const propertyName)

For the property name, the function returns the pointer to the instance of the custom uniform. The pointer
is used for the shader uniform in the custom shader. Return value:

► If the widget property is not a custom shader input, the function returns NULL.

► If the widget property is a custom shader input, the function returns a derived shaderCustomUniform.
PropertyName is the name of the property in EB GUIDE which also serves as name of the uniform in the
custom shader. It has to be a NULL-terminated ASCII string.

Be aware that a returned pointer must fulfill the following characteristics:

► It must point to a permanent address, not a temporary one.

► The address it points to must be unique with respect to the uniform instance. The renderer uses this
instance to store current values and compares the current values to new values later on. The uniform
instance must be permanent.

The return value type must be compatible to the widget property type in the CustomEffect descriptor.
shaderCustomType is an enumeration mapping to the following types in the GLSL and HLSL:

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 183 of 265

8.2.2.1.1. Cube maps

It is possible to implement custom cube mapping with custom effect widgets. The EB GUIDE TF texture loader
expects the cube map image in a format which includes all six images in one file. The sub-images have to be
contained in the image one below the other in the order in the image below.

Figure 8.3. The six sides of a cube map

All sub-images have to be of the same size. This means the height of the complete cube map image has to
be dividable by six.

8.2.2.1.2. Interaction of multiple GtfCustomEffect widgets

If you model multiple GtfCustomEffect widgets as parents of a widget, the custom shader of the nearest
parent is used for drawing. If you have not configured any shader for the kind of widget in the nearest parent,
the default shader is used.

A GtfCustomEffect2 widget overwrites all custom shaders that are specified by a parent GtfCustomEf-
fect1.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 184 of 265

Figure 8.4. Example demonstrating how multiple GtfCustomEffects interact

8.2.3. Model element descriptors
In EB GUIDE Studio it is possible to add model elements. Each model element needs a descriptor that is
added to the EB GUIDE TF. The EB GUIDE TF cares about registering the additional model elements within
EB GUIDE Studio. The descriptor is also known as meta information of a model element.

A component that provides such descriptors to the EB GUIDE TF is called descriptor provider. The interface
methods of class DescriptorProvider are described in the DescriptorProvider.h file.

The following descriptors can be added:

► Widget descriptor

A widget descriptor stores all information for a single widget definition. The descriptor is used to instantiate
a default widget template within EB GUIDE Studio.

The interface methods of class WidgetDescriptor are described in the WidgetDescriptor.h file.

► Widget feature descriptor

A widget feature descriptor stores all information for a single widget feature definition. The descriptor is
used to instantiate a widget feature within EB GUIDE Studio.

The interface methods of class WidgetFeatureDescriptor are described in the WidgetFeature-
Descriptor.h file.

► Action descriptor for functions in EB GUIDE Script

An action descriptor is used to define functions in EB GUIDE Script.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 185 of 265

The interface methods of class ActionDescriptor are described in the ActionDescriptor.h file.

To add the descriptors above, you use a property descriptor. The components catch the published property
descriptor and use its information. For example, view factories use widget and widget feature information for
the creation of every widget tree which is displayed.

8.2.3.1. Property descriptor

A property descriptor stores all information for a widget property. It is also used to describe the parameters
within EB GUIDE Script functions.

The interface methods of class PropertyDescriptor are described in the PropertyDescriptor.h file.

8.2.3.2. Property constant descriptor

A property constant descriptor defines a name for a concrete property value. The constants are used as enu-
merations within EB GUIDE Studio.

For example, the integer property alignment can have the constants left, center, or right, where. And left
stands for the value 1, center stands for the value 0 and right stands for the value 2.

The interface methods of class PropertyConstantDescriptor are described in the PropertyDescrip-
tor.h file.

8.2.4. Renderer

A renderer is responsible for drawing scenes on the EB GUIDE GTF. Beside drawing, the renderer is respon-
sible for touch input and object picking. The reason why the renderer performs object picking is that only the
renderer knows at which position on the screen widgets appear.

To fulfill the tasks, the renderer uses the following interfaces:

► OpenGL ES 2.0

► DirectX 11

The OpenGL ES 2.0 and DirectX 11 renderers use pairs of fragment and vertex shaders to draw objects. These
shader pairs are little programs on the graphics processing unit that are executed during rendering.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 186 of 265

8.2.5. Shaders
Shaders affect the final look of objects. Different shader pairs are needed to render different kinds of objects.
For example, an image widget requires a shader pair that supports textured objects, while a rectangle widget
requires a shader pair that does not use any texture.

8.2.5.1. Shading languages

Shading languages are used to program the GPU rendering pipeline. With shaders, customized effects can
be used.

The following shading languages are supported by the renderers:

► OpenGL ES 2.0 uses OpenGL ES Shading Language (GLSL).

► DirectX 11 uses High Level Shading Language (HLSL)

8.2.5.2. Input and output parameters

In GLSL and HLSL, shaders use different kinds of input and output parameters. The following parameters exist:

► Uniforms (constant buffers in HLSL):

Input parameters that are constant for the whole drawing call

► Attributes:

Input parameters that are constant for one vertex

► Varyings:

Output parameters of vertex shaders and input parameters of fragment shaders. Varyings are data that is
computed in vertex shaders and transferred from vertex shader to fragment shader for each vertex.

To make custom shaders capable of drawing widgets, custom shaders have to provide default input parameters.

8.2.5.3. Default shaders

There are two possible render targets in the OpenGL ES 2.0 and DirectX 11 renderers. Thus, two different
shaders are used as follows:

► The screen shader, used when drawing to the screen respectively to the EB GUIDE Studio remote frame-
buffer

► The touch shader, used when drawing to the touch off-screen buffer

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 187 of 265

8.2.5.4. 2D and 3D default shaders

An HLSL (*.fx) shader consists of both vertex and fragment shaders. However, the vertex shader has to reside
in a function named VS and the fragment shader has to reside in a function named PS. PS (Pixel Shader) is the
name of the fragment shader in DirectX 11. The parameters of both the 2D and 3D default shaders are listed
in the files located in the $GUIDE_INSTALL_PATH\shaders directory.

8.2.5.5. Touch shaders

Touch shaders are responsible for touch evaluation. Correct functionality is assured if the vertex shader trans-
forms the vertices the same way as the non-touch variant does. The fragment shader that is used for touch
input sets the resulting color to a_color for all fragments the user may successfully touch. Set all other frag-
ments to complete transparency.

8.2.6. Widget set
The widget tree is composed of a generic class called GtfWidgetModel, which is implemented with Gtf-
PropertyContainer. GtfPropertyContainer wraps an array of properties and a type ID.

Figure 8.5. Classes that form the generic widget tree

Type IDs are assigned during the export of the EB GUIDE model. The type ID numbering scheme allows the
framework components to perform type checks in the widget tree in constant time – with a simple range check.

EB GUIDE documentation
Chapter 8. Extension developer's manual

Page 188 of 265

The renderer scans the type ID information of widgets and properties.

The GtfWidgetModel adds the following:

► An array of child widgets

► A parent pointer

► Optional: A pointer to the widget instance

► An array of widget features

► A pointer to cached renderer data to the GtfPropertyContainer

EB GUIDE documentation
Chapter 9. References

Page 189 of 265

9. References
The following chapter provides you with API documentation as well as lists and tables for example parameters,
properties, identifiers, etc.

9.1. Android

9.1.1. Android lifecycle management
The Android lifecycle management is an optimization implemented by the Android system. If an application is
moved to the background, Android releases all graphics resources like surfaces, textures and vertex buffers
to have the resources available for the application which is currently on screen. It is in the responsibility of the
application to recreate the resources when the application is switched to the foreground again.

9.1.2. File path for models
EB GUIDE models are stored in the com.elektrobit.guide_model_chooser/files folder that is locat-
ed on the primary file system. Application-related files are stored there permanently. One folder is required
per EB GUIDE model.

Examples:

► For a Samsung Galaxy S3 device with Android 4.3 that is connected to a PC with Windows 7, the
path is Computer\GT-I9300\Phone\Android\data\com.elektrobit.guide_model_choos-
er\files.

► For a Nexus 7 device with Android 4.4 that is connected to a PC with Windows 7, the path is Com-
puter\Nexus 7\Internal storage\Android\data\com.elektrobit.guide_model_choos-

er\files.

On start-up or refresh, EB GUIDE Model Chooser recursively scans the folder for EB GUIDE TF configuration
file gtfStartup.cfg. The parent folder for each start-up configuration is displayed as the model name.

9.1.3. Android layout handling
Android is designed for mobile devices. On a mobile device, some characteristics concerning the layout of the
visible screen area need to be considered. Examples:

EB GUIDE documentation
Chapter 9. References

Page 190 of 265

► When a mobile device is rotated, the graphical user interface of the smartphone has to adapt according
to the rotation.

► When a virtual keyboard is displayed on the screen of an Android device, the graphical user interface has
to adapt to the new element.

EB GUIDE supports the developer by providing events that indicate layout changes in the visible screen area.

9.1.4. Android Events

Android events belong to the SystemNotifications event group and have event group ID 13.

Table 9.1. Events

Event ID Name Description Parameters

1 RendererEnabled Sent by the application when
Android lifecycle manage-
ment stops or starts the ren-
derer

enabled: true if the render-
er was enabled, false if the
renderer was set to sleep
mode

2 setKeyboardVisibility Sent by the EB GUIDE model
if a virtual keyboard is intend-
ed to be shown

visibility: true if the virtual
keyboard is visible, false if it
is invisible

3 onKeyboardVisibility-

Changed

Sent by the application if the
keyboard is intended to be
shown

visibility: true if the virtual
keyboard is visible, false if
invisible

4 onLayoutChanged Sent by the application when
the visible area of the screen
changes

► x: x-coordinate of the top
left corner of the visible
screen area

► y: y-coordinate of the top
left corner of the visible
screen area

► width: width of the visible
screen area

► height: height of the visi-
ble screen area

9.2. Datapool items

EB GUIDE documentation
Chapter 9. References

Page 191 of 265

Table 9.2. Properties of a datapool item

Property name Description

Value EB GUIDE TF initializes the datapool item at system start-up with this value.

true: the exporter provides the property value to the EB GUIDE TF

false: the EB GUIDE TF zero initializes the property value at system start-up

Read-only If set to true, only internal communication is available.

The datapool item value is static during run-time. The value only changes if you
reinitialize it at language switching.

If set to false, external communication is available.

The datapool item value can change during run-time.

Reader ID Address that the reader’s communication context uses to access the datapool
item. If Reader ID is not defined, it is calculated automatically. If you modify
an EB GUIDE model, it is possible that the Reader ID for the datapool item
changes.

Reader context The communication context which is notified about changed values and reacts
on the value change.

Writer ID Address that the writer’s communication context uses to access the datapool
item. If Writer ID is not defined, it is calculated automatically. If you modify an EB
GUIDE model, it is possible that the Writer ID for the datapool item changes.

Writer context The communication context which writes new values.

Windowed Available in lists only

If set to true, EB GUIDE TF handles the datapool item in windowed list operating
mode. No default value is used for initialization.

If set to false, EB GUIDE TF handles the datapool item in standard list operating
mode.

9.3. EB GUIDE Script

9.3.1. EB GUIDE Script keywords
The following is a list of reserved keywords in EB GUIDE Script. If you want to use these words as identifiers
in a script, you must quote them.

EB GUIDE documentation
Chapter 9. References

Page 192 of 265

Keyword Description

color: A color parameter follows, for example {0,255,255}.

dp: A datapool item follows.

else An if condition is completed. The following block is executed as an alternative.

ev: An event follows.

f: A user-defined function follows.

false A boolean literal value

fire Fires an event

font: A font resource follows, for example {PT Sans,12}.

if A statement which tests a boolean expression. If the expression is true, the
statement is executed.

image: An image resource follows.

in A separator between a local variable declaration and the variable's scope of us-
age. Used with match_event and let.

function Declares a function

length Length of a property

let Declares a local variable that is accessible in the scope

list Declares a list type, for example an integer list

match_event Checks if the current event corresponds to an expected event and declares vari-
ables like let

popup_stack The dynamic state machine list which defines the priority of dynamic state ma-
chines

sm: A state machine follows

true A boolean literal value

unit A value of type void

v: A local variable follows.

view: A view follows.

while Repeats a statement as long as the condition is true

9.3.2. EB GUIDE Script operator precedence

The following is a list of the operators in EB GUIDE Script together with their associativity. Entries later in the
list have higher precedence.

EB GUIDE documentation
Chapter 9. References

Page 193 of 265

Table 9.3. EB GUIDE Script operator precedence

Operator Associativity

(;) left

(,) right

(+=), (-=), (=), (=>) right

(||) left

(&&) left

(!=), (==), (=Aa=) left

(<), (>), (<=), (>=) left

(+), (-) left

(*), (/), (%) left

length none

(!), (&) right

(::) left

(.) none

(->) left

([]) none

(()), ({}) none

9.3.3. EB GUIDE Script standard library
The following chapter provides a description of all EB GUIDE Script functions.

9.3.3.1. EB GUIDE Script functions A

9.3.3.1.1. abs

The function returns the absolute value of the integer number x.

Table 9.4. Parameters of abs

Argument Type Description

x integer Parameter

<return> integer Return value

EB GUIDE documentation
Chapter 9. References

Page 194 of 265

9.3.3.1.2. absf

The function returns the absolute value of the floating point number x.

Table 9.5. Parameters of absf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.1.3. acosf

The function calculates the principal value of the arc cosine of x.

Table 9.6. Parameters of acosf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.1.4. animation_before

The function checks if an animation running backwards has already passed a given point in time.

Table 9.7. Parameters of animation_before

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer point in time

<return> boolean True on success, false otherwise

9.3.3.1.5. animation_beyond

The function checks if an animation running forward has already passed a given point in time.

Table 9.8. Parameters of animation_beyond

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer point in time

<return> boolean True on success, false otherwise

EB GUIDE documentation
Chapter 9. References

Page 195 of 265

9.3.3.1.6. animation_cancel

The function cancels an animation, leaving manipulated properties in the current state.

Table 9.9. Parameters of animation_cancel

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean True on success, false otherwise

9.3.3.1.7. animation_cancel_end

The function cancels an animation and sets manipulated properties to the end state, as far as possible.

Table 9.10. Parameters of animation_cancel_end

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean True on success, false otherwise

9.3.3.1.8. animation_cancel_reset

The function cancels an animation and resets changed properties to the initial state, as far as possible.

Table 9.11. Parameters of animation_cancel_reset

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean True on success, false otherwise

9.3.3.1.9. animation_pause

The function pauses an animation.

Table 9.12. Parameters of animation_pause

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean True on success, false otherwise

EB GUIDE documentation
Chapter 9. References

Page 196 of 265

9.3.3.1.10. animation_play

The function starts or continues an animation.

Table 9.13. Parameters of animation_play

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean False if the animation is already running, true otherwise

9.3.3.1.11. animation_reverse

The function plays an animation backwards.

Table 9.14. Parameters of animation_reverse

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean False if the animation is already running, true otherwise

9.3.3.1.12. animation_running

The function determines whether an animation is currently running.

Table 9.15. Parameters of animation_running

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

<return> boolean True if the animation is running

9.3.3.1.13. animation_set_time

The function sets the current time of an animation, can be used to skip or replay an animation.

Table 9.16. Parameters of animation_set_time

Parameter Type Description

animation GtfTypeRecord The animation to manipulate

time integer time

<return> boolean True on success, false otherwise

EB GUIDE documentation
Chapter 9. References

Page 197 of 265

9.3.3.1.14. asinf

The functions calculates the principal value of the arc sine of x.

Table 9.17. Parameters of asinf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.1.15. assign_language_ids

The function fills a datapool item of type integer list with the IDs of all defined languages.

Table 9.18. Parameters of assign_language_ids

Parameter Type Description

dstItemId dp_id The ID of a datapool item in which to store the language IDs.
The datapool item must be a list of unsigned integers.

<return> void

9.3.3.1.16. assign_language_labels

The function fills a datapool item of type string list with the labels of all defined languages.

Table 9.19. Parameters of assign_language_labels

Parameter Type Description

dstItemId dp_id The ID of a datapool item in which to store the language labels.
The datapool item must be a string list.

<return> void

9.3.3.1.17. atan2f

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 9.20. Parameters of atan2f

Parameter Type Description

y floating Argument y

x floating Argument x

<return> floating Return value

EB GUIDE documentation
Chapter 9. References

Page 198 of 265

9.3.3.1.18. atan2i

The function calculates the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result.

Table 9.21. Parameters of atan2i

Parameter Type Description

y integer Argument y

x integer Argument x

<return> floating Return value

9.3.3.1.19. atanf

The function calculates the principal value of the arc tangent of x.

Table 9.22. Parameters of atanf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.2. EB GUIDE Script functions C - H

9.3.3.2.1. ceil

The function returns the smallest integral value not less than the argument.

Table 9.23. Parameters of ceil

Parameter Type Description

value floating The value to round

<return> integer The rounded value

9.3.3.2.2. changeDynamicStateMachinePriority

The function changes the priority of a dynamic state machine.

EB GUIDE documentation
Chapter 9. References

Page 199 of 265

Table 9.24. Parameters of changeDynamicStateMachinePriority

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

9.3.3.2.3. character2unicode

The function returns the Unicode value of a character. The Unicode value of the first character found in the
string is returned. In case of errors 0 is returned.

Table 9.25. Parameters of character2unicode

Parameter Type Description

str string The string with the input character

<return> integer The character as Unicode

9.3.3.2.4. clearAllDynamicStateMachines

The function removes all dynamic state machines from the dynamic state machine list.

Table 9.26. Parameters of clearAllDynamicStateMachines

Parameter Type Description

state The state with the dynamic state machine list

9.3.3.2.5. color2string

The function prints a color as eight hexadecimal values.

Table 9.27. Parameters of color2string

Parameter Type Description

value color The color to convert to string

<return> string The color formatted as string of hexadecimal digits with # as
prefix

The format of the returned string is #RRGGBBAA with two digits for each color channel: red, green, blue and
alpha.

Examples:

EB GUIDE documentation
Chapter 9. References

Page 200 of 265

► An opaque pure red color is converted to "#ff0000ff".

► A semi-transparent pure green color is converted to "#00ff007f".

9.3.3.2.6. cosf

The function returns the cosine of x, where x is given in radians.

Table 9.28. Parameters of cosf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.2.7. deg2rad

The function converts an angle form degree to radians.

Table 9.29. Parameters of deg2rad

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.2.8. expf

The function returns the value of e (the base of natural logarithms) raised to the power of x.

Table 9.30. Parameters of expf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.2.9. float2string

The function converts simple floating to string.

Table 9.31. Parameters of float2string

Parameter Type Description

value floating The value to convert to string

EB GUIDE documentation
Chapter 9. References

Page 201 of 265

Parameter Type Description

<return> string The floating value, formatted as string

9.3.3.2.10. floor

The function returns the largest integral value not greater than the argument.

Table 9.32. Parameters of floor

Parameter Type Description

value floating The value to round

<return> integer The rounded value

9.3.3.2.11. focusNext

The function forces the focus manager to forward the focus to the next focusable element.

Table 9.33. Parameters of focusNext

Parameter Type Description

<return> void

9.3.3.2.12. focusPrevious

The function forces the focus manager to return the focus to the previous focusable element.

Table 9.34. Parameters of focusPrevious

Parameter Type Description

<return> void

9.3.3.2.13. formatFloat

The function converts advanced floating to string.

Table 9.35. Parameters of formatFloat

Parameter Type Description

minStrLen integer Minimum length of the result string

maxStrLen integer Maximum length of the result string

minPrecision integer Minimum number of decimal places

EB GUIDE documentation
Chapter 9. References

Page 202 of 265

Parameter Type Description

maxPrecision integer Maximum number of decimal places

showAbsoluteValue boolean If value is negative, the formatter negates it before formatting,
thus turning it positive.

alwaysShowSign boolean Forces the formatter to show the sign for both negative and pos-
itive values

roundingMode integer The rounding mode that the formatter uses to ensure the maxi-
mum length of the result string. Possible values:

► 0: trunc

► 1: round

fillStyle integer The character to use to ensure the minimum length of the result
string. Possible values:

► 0: fills with blanks

► 1: fills with zeros

value floating The number to format

<return> string The formatted string according to the options

9.3.3.2.14. formatInteger

The function converts advanced integer to string.

Table 9.36. Parameters of formatInteger

Parameter Type Description

minStrLen integer Minimum length of the result string

maxStrLen integer Maximum length of the result string

showAbsoluteValue boolean If value is negative, the formatter negates it before formatting,
thus turning it positive.

alwaysShowSign boolean Forces the formatter to show the sign for both negative and pos-
itive values

fillStyle integer The character to use to ensure the minimum length of the result
string. Possible values:

► 0: fills with blanks

► 1: fills with zeros

base integer Possible values:

EB GUIDE documentation
Chapter 9. References

Page 203 of 265

Parameter Type Description

► 2: binary

► 10: decimal

► 16: hexadecimal

value integer The number to format

<return> string The formatted string according to the options

9.3.3.2.15. getTextHeight

The function obtains the height of a text regarding its font resource.

Table 9.37. Parameters of getTextHeight

Parameter Type Description

text string The text to evaluate

font font The font to evaluate the text size

<return> integer The height of the text

9.3.3.2.16. getTextLength

The function obtains the number of characters in a text.

Table 9.38. Parameters of getTextLength

Parameter Type Description

text string The text which to evaluate

<return> integer Number of characters in the text

9.3.3.2.17. getTextWidth

The function obtains the width of a text regarding its font resource.

Table 9.39. Parameters of getTextWidth

Parameter Type Description

text string The text to evaluate

font font The font to evaluate the text size

<return> integer The width of the text

EB GUIDE documentation
Chapter 9. References

Page 204 of 265

9.3.3.2.18. has_list_window

The function checks if the index is valid for a global list property. For windowed list properties it also checks
if the index is located inside at least one window.

Table 9.40. Parameters of has_list_window

Parameter Type Description

itemId dp_id Datapool ID of the global list property

index integer Index within the global list property

<return> boolean True if the index within a global list property is valid and located
inside at least one window, false otherwise

9.3.3.2.19. hsba2color

The function converts from HSB/HSV color space to GTF color.

Table 9.41. Parameters of hsba2color

Parameter Type Description

hue integer The color value in degrees from 0 to 360

saturation integer The saturation in percent

brightness integer The brightness in percent

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from HSB color space to GTF color, with
the alpha value applied

9.3.3.3. EB GUIDE Script functions I - R

9.3.3.3.1. int2float

The function returns the integer value converted to a floating point value.

Table 9.42. Parameters of int2float

Parameter Type Description

value integer The value to convert to floating

<return> floating The integer value, converted to floating

EB GUIDE documentation
Chapter 9. References

Page 205 of 265

9.3.3.3.2. int2string

The function converts a simple integer to string.

Table 9.43. Parameters of int2string

Parameter Type Description

value integer The value to convert to string

<return> string The integer value, in decimal notation, converted to string

9.3.3.3.3. language

The function switches the language of all datapool items, independent of group membership.

Table 9.44. Parameters of language

Parameter Type Description

languageId integer The ID of the language to switch to

<return> void

9.3.3.3.4. language_of_group

The function switches the language of a group of datapool items.

Table 9.45. Parameters of language_of_group

Parameter Type Description

groupId integer The ID of the group of datapool items for which to switch the
language

languageId integer The ID of the language to switch to

<return> void

9.3.3.3.5. localtime_day

The function extracts the day [1:31] in local time from a system time value.

Table 9.46. Parameters of localtime_day

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted information

EB GUIDE documentation
Chapter 9. References

Page 206 of 265

9.3.3.3.6. localtime_hour

The function extracts the hours from the local time of a system time value.

Table 9.47. Parameters of localtime_hour

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted hour

9.3.3.3.7. localtime_minute

The function extracts the minutes from the local time of a system time value.

Table 9.48. Parameters of localtime_minute

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted minute

9.3.3.3.8. localtime_month

The function extracts the month [0:11] from the local time of a system time value.

Table 9.49. Parameters of localtime_month

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted month

9.3.3.3.9. localtime_second

The function extracts the seconds from the local time of a system time value.

Table 9.50. Parameters of localtime_second

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted second

EB GUIDE documentation
Chapter 9. References

Page 207 of 265

9.3.3.3.10. localtime_weekday

The function extracts the week day [0:6] from the local time of a system time value. 0 is Sunday.

Table 9.51. Parameters of localtime_weekday

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted weekday

9.3.3.3.11. localtime_year

The function extracts the year from the local time of a system time value.

Table 9.52. Parameters of localtime_year

Parameter Type Description

time integer A time stamp as returned by system_time

<return> integer The extracted year

9.3.3.3.12. log10f

The function returns the base 10 logarithm of x.

Table 9.53. Parameters of log10f

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.3.13. logf

The function returns the natural logarithm of x.

Table 9.54. Parameters of logf

Parameter Type Description

x floating Argument

<return> floating Return value

EB GUIDE documentation
Chapter 9. References

Page 208 of 265

9.3.3.3.14. nearbyint

The function rounds to nearest integer.

Table 9.55. Parameters of nearbyint

Parameter Type Description

value floating The value to round

<return> integer The rounded value

9.3.3.3.15. popDynamicStateMachine

The function removes the dynamic state machine on the top of the priority queue.

Table 9.56. Parameters of popDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

9.3.3.3.16. powf

The function returns the value of x raised to the power of y.

Table 9.57. Parameters of powf

Parameter Type Description

x floating Argument x

y floating Argument y

<return> floating Return value.

9.3.3.3.17. pushDynamicStateMachine

The function inserts the dynamic state machine in a priority queue.

Table 9.58. Parameters of pushDynamicStateMachine

Parameter Type Description

state The state with the dynamic state machine list

sm integer The dynamic state machine

priority integer The priority of the dynamic state machine in the list

EB GUIDE documentation
Chapter 9. References

Page 209 of 265

9.3.3.3.18. rad2deg

The function converts an angle form radians to degree.

Table 9.59. Parameters of rad2deg

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.3.19. rand

The function gets a random value between -231 and 231-1.

Table 9.60. Parameters of rand

Parameter Type Description

<return> integer A random number between -231 and 231-1

9.3.3.3.20. request_runlevel

The function requests the framework to switch to a different run level. The only supported run level is 0, meaning
to shutdown the program.

Table 9.61. Parameters of request_runlevel

Parameter Type Description

runlevel integer The requested run level

<return> void

9.3.3.3.21. rgba2color

The function converts from RGB color space to GTF color.

Table 9.62. Parameters of rgba2color

Parameter Type Description

red integer The red color coordinate, ranging from 0 to 255

green integer The green color coordinate, ranging from 0 to 255

blue integer The blue color coordinate, ranging from 0 to 255

EB GUIDE documentation
Chapter 9. References

Page 210 of 265

Parameter Type Description

alpha integer The alpha value, ranging from 0 (totally transparent) to 255
(opaque)

<return> color The color converted from RGB color space to GTF color, with
the alpha value applied

9.3.3.3.22. round

The function rounds to nearest integer, but rounds halfway cases away from zero.

Table 9.63. Parameters of round

Parameter Type Description

value floating The value to round

<return> integer The rounded value

9.3.3.4. EB GUIDE Script functions S - W

9.3.3.4.1. seed_rand

The function sets the seed of the random number generator.

Table 9.64. Parameters of seed_rand

Parameter Type Description

seed integer The value to seed the random number generator

<return> void

9.3.3.4.2. sinf

The function returns the sine of x, where x is given in radians.

Table 9.65. Parameters of sinf

Parameter Type Description

x floating Argument

<return> floating Return value

EB GUIDE documentation
Chapter 9. References

Page 211 of 265

9.3.3.4.3. sqrtf

The function returns the non-negative square root of x.

Table 9.66. Parameters of sqrtf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.4.4. string2float

The function converts the initial part of the string to floating.

The expected form of the initial part of the string is as follows:

1. An optional leading white space

2. An optional plus ('+') or minus ('-') sign

3. One of the following:

► A decimal number

► A hexadecimal number

► An infinity

► An NAN (not-a-number)

Table 9.67. Parameters of string2float

Parameter Type Description

str string The string value

<return> floating Return value

9.3.3.4.5. string2int

The function converts the initial part of the string to integer. The result is clipped to the range from 2147483647
to -2147483648, if the input exceeds the range. If the string does not start with a number, the function returns 0.

Table 9.68. Parameters of string2int

Parameter Type Description

str string The string value

<return> integer Return value

EB GUIDE documentation
Chapter 9. References

Page 212 of 265

9.3.3.4.6. string2string

The function formats strings.

Table 9.69. Parameters of string2string

Parameter Type Description

str string The string to format

len integer The maximum length of the string

<return> string The language string

9.3.3.4.7. substring

The function creates a substring copy of the string. Negative end indexes are supported.

Examples:

► substring("abc", 0, -1) returns "abc".

► substring("abc", 0, -2) returns "ab".

Table 9.70. Parameters of substring

Parameter Type Description

str string The input string

startIndex integer The first character index of the result string

endIndex integer The first character index that is not part of the result

<return> string The language string

9.3.3.4.8. system_time

The function gets the current system time in seconds. The result is intended to be passed to the localtime_*
functions.

Table 9.71. Parameters of system_time

Parameter Type Description

<return> integer The system time in seconds

9.3.3.4.9. system_time_ms

The function gets the current system time in milliseconds.

EB GUIDE documentation
Chapter 9. References

Page 213 of 265

Table 9.72. Parameters of system_time_ms

Parameter Type Description

<return> integer The system time in milliseconds

9.3.3.4.10. tanf

The function returns the tangent of x, where x is given in radians.

Table 9.73. Parameters of tanf

Parameter Type Description

x floating Argument

<return> floating Return value

9.3.3.4.11. trace_dp

The function writes debugging information about a datapool item to the trace log and the connection log.

Table 9.74. Parameters of >trace_dp

Parameter Type Description

itemId dp_id Datapool ID of the item to trace debug information about

<return> void

9.3.3.4.12. trace_string

The function writes a string to the trace log and the connection log.

Table 9.75. Parameters of trace_string

Parameter Type Description

str string The text to trace

<return> void

9.3.3.4.13. transformToScreenX

The function takes a widget and a local coordinate and returns x position in the screen-relative world coordinate
system.

EB GUIDE documentation
Chapter 9. References

Page 214 of 265

Table 9.76. Parameters of transformToScreenX

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The x position of the screen coordinate

9.3.3.4.14. transformToScreenY

The function takes a widget and a local coordinate and returns Y position of a position in the screen-relative
world coordinate system.

Table 9.77. Parameters of transformToScreenY

Parameter Type Description

widget widget The widget to which the coordinates are relative

localX integer The x position of the local coordinate

localY integer The y position of the local coordinate

<return> integer The y position of the screen coordinate

9.3.3.4.15. transformToWidgetX

The function takes a widget and a screen coordinate as provided to the touch reactions and returns x position
in the widget-relative local coordinate system.

Table 9.78. Parameters of transformToWidgetX

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The x position of the local coordinate

9.3.3.4.16. transformToWidgetY

The function takes a widget and a screen coordinate as provided to the touch reactions and returns y position
in the widget-relative local coordinate system.

EB GUIDE documentation
Chapter 9. References

Page 215 of 265

Table 9.79. Parameters of transformToWidgetY

Parameter Type Description

widget widget The widget to which the coordinates are relative

screenX integer The x position of the screen coordinate

screenY integer The y position of the screen coordinate

<return> integer The y position of the local coordinate

9.3.3.4.17. trunc

The function rounds to the nearest integer value, always towards zero.

Table 9.80. Parameters of trunc

Parameter Type Description

value floating The value to round

<return> integer The rounded value

9.3.3.4.18. widgetGetChildCount

The function obtains the number of child widgets of the given widget.

Table 9.81. Parameters of widgetGetChildCount

Parameter Type Description

widget widget The widget of which to obtain the number of children.

<return> integer The number of child widgets

9.4. Events
Table 9.82. Properties of an event

Property name Description

Name The name of the event

Event ID A numeric value that EB GUIDE TF uses to send and receive the event

Event group Name of the event group

An event group has a corresponding ID that EB GUIDE TF uses to send and re-
ceive the event.

EB GUIDE documentation
Chapter 9. References

Page 216 of 265

9.5. Scenes
Table 9.83. Properties of a scene

Property name Description

height The height of the area in which the views of a haptic state machine are rendered
on a target device

width The width of the area in which the views of a haptic state machine are rendered
on a target device

x The x offset of the area in which the views of a haptic state machine are ren-
dered on a target device

y The y offset of the area in which the views of a haptic state machine are ren-
dered on a target device

visible If true, the state machine and its children are visible.

projectName The name of the project

windowCaption The text shown on the window frame

sceneID A unique scene identifier which can be used for example for input handling

maxFPS FPS = Frames per second

Limits the redraw rate to the value you set

0: unlimited

hwLayerID Maps the value for the rendering of the current state machine to a hardware lay-
er of a target display

colorMode The color depth which the renderer uses

► 1: 32 bit

► 2: 16 bit

multisampling 0: no multisampling is used

1: 2x multisampling is used

2: 4x multisampling is used

enableRemoteFrame-
buffer

Enables transfer of the off-screen buffer to the simulation window

showWindowFrame Puts a frame on the simulation window that allows the window to be grabbed
and moved

showWindow Opens an additional window for simulation on Windows based systems

disableVSync Disables vertical synchronization for the renderer

EB GUIDE documentation
Chapter 9. References

Page 217 of 265

Property name Description

Renderer Defines a renderer for the scene

► DirectX

► OpenVG

► OpenGL ES

9.6. Touch screen types supported by EB GUIDE
GTF
The actual types supported depend on target platform.

Table 9.84. Touch screen types supported by EB GUIDE GTF

Value Description Platform

0 Galaxy Linux

1 IMX WVGA Linux

2 Touch screen connected to mouse inter-
face

All

3 General platform-dependent touch-screen
interface

All

4 Lilliput 889GL QNX

5 General platform-dependent multitouch
touch-screen interface

Linux

9.7. Widgets

9.7.1. View widget
The view widget has the following properties.

Table 9.85. Properties of the view widget

Property name Description

name The name of the widget

EB GUIDE documentation
Chapter 9. References

Page 218 of 265

Property name Description

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget

y The y coordinate of the widget

9.7.2. Basic widgets

There are five basic widgets.

► Label

► Image

► Rectangle

► Container

► Instantiator

The following sections list the properties of basic widgets.

NOTE Unique names
Use unique names for two widgets with the same parent widget.

9.7.2.1. Label

Table 9.86. Properties of the label widget

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

EB GUIDE documentation
Chapter 9. References

Page 219 of 265

Property name Description

text The text the label displays

textColor The color in which the text is displayed

font The font in which the text is displayed

horizontalAlign The horizontal alignment of the text within the boundaries of the label.

verticalAlign The vertical alignment of the text within the boundaries of the label.

9.7.2.2. Rectangle

Table 9.87. Properties of the rectangle widget

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

fillColor The color that fills the rectangle

9.7.2.3. Image

Table 9.88. Properties of the image widget

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

image The image the widget displays

horizontalAlign The horizontal alignment of the image within the boundaries of the image widget

verticalAlign The vertical alignment of the image within the boundaries of the image widget

EB GUIDE documentation
Chapter 9. References

Page 220 of 265

NOTE Default renderer supports PNG and JPEG
The available image formats depend on the implementation of the renderer used. The de-
fault renderer only supports PNG files and JPEG files.

9.7.2.4. Container

Table 9.89. Properties of the container widget

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

9.7.2.5. Instantiator

Table 9.90. Properties of the instantiator widget

Property name Description

name The name of the widget

height The height of the widget in pixels

width The width of the widget in pixels

visible Flag which determines if the widget and its children are visible

x The x coordinate of the widget relative to its parent widget

y The y coordinate of the widget relative to its parent widget

numItems The number of instantiated child elements

lineMapping Defines which child is the template for which line

9.7.3. Animations

The following sections list the properties of the widgets in the Animations category.

EB GUIDE documentation
Chapter 9. References

Page 221 of 265

9.7.3.1. Animation

Table 9.91. Properties of the animation widget

Property name Description

name The name of the animation

alternating Defines if the animation is executed repeatedly

repeat Number of repetitions, 0 for infinite number

enabled Defines if the animation is executed

scale Factor by which the animation time is multiplied

onPause Reaction that is executed when the animation is paused. Parameter: Current an-
imation time.

onPlay Reaction that is executed when the animation is started or continued. Parame-
ters: Start time and play direction (true for forwards, false for backwards).

onTerminate Reaction that is executed when the animation completes. First parameter: ani-
mation time. Second parameter: reason for the termination, encoded as follows.

► 0: Animation is completed.

► 1: Animation is cancelled, triggered by f:animation_cancel .

► 2: Widget is destroyed due to view transition.

► 3: Animation jumps to its last step, triggered by f:animation_can-
cel_end.

► 4: Animation jumps to its first step and is then canceled, triggered by
f:animation_cancel_reset.

9.7.3.2. Constant curves

Constant curve widgets are available for int, bool, float, and color types.

Table 9.92. Properties of constant curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

EB GUIDE documentation
Chapter 9. References

Page 222 of 265

Property name Description

repeat The number of repetitions

target The target property the resulting value is assigned to

value The resulting constant value

9.7.3.3. Fast start curves

Fast start curve widgets are available for int, float, and color types.

Table 9.93. Properties of fast start curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

9.7.3.4. Slow start curves

Slow start curve widgets are available for int, float, and color types.

Table 9.94. Properties of slow start curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

EB GUIDE documentation
Chapter 9. References

Page 223 of 265

Property name Description

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

9.7.3.5. Quadratic curves

Quadratic curve widgets are available for int, float, and color types.

Table 9.95. Properties of quadratic curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

acceleration The acceleration of the curve

constant The constant value to calculate the result

9.7.3.6. Sinus curves

Sinus curve widgets are available for int, float, and color types.

Table 9.96. Properties of sinus curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

EB GUIDE documentation
Chapter 9. References

Page 224 of 265

Property name Description

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

amplitude The amplitude of the sinus curve

constant The constant value to calculate the result

phase The angular phase translation in degrees

frequency The frequency of the curve in hertz

9.7.3.7. Script curves

Script curve widgets are available for int, bool, float, and color types.

Table 9.97. Properties of script curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

curve The resulting curve function

9.7.3.8. Linear curves

Linear curve widgets are available for int, float, and color types.

Table 9.98. Properties of linear curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

EB GUIDE documentation
Chapter 9. References

Page 225 of 265

Property name Description

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

velocity The velocity to calculate the result

9.7.3.9. Linear interpolation curves

Linear interpolation curve widgets are available for int, float, and color types.

Table 9.99. Properties of linear interpolation curve widgets

Property name Description

name The name of the curve

delay The delay in ms relative to the animation start

duration Duration of the curve segment in ms

enabled Defines if the animation is executed

alternating Defines if the animation is executed repeatedly

relative Defines if update values are applied on the initial value

repeat The number of repetitions

target The target property the resulting value is assigned to

start The initial value

end The final value

9.7.4. 3D widgets
In the 3D category, there is the 3D graphic widget and four custom effect widgets.

► 3D graphic

► Material effect

► Light effect

► Light and material effect

EB GUIDE documentation
Chapter 9. References

Page 226 of 265

► No lighting effect

The following sections list the properties of 3D widgets.

9.7.4.1. 3D graphic

Table 9.100. Properties of the 3D graphic widget

Property name Description

3D graphic The 3D graphic file to be displayed

9.7.4.1.1. Supported 3D graphic formats

Only the OpenGL ES 2.0 and DirectX 11 renderers can display 3D graphics. Supported 3D graphic formats
are as follows:

► Collada (.dae)

► Blender 3D (.blend)

► 3ds Max 3DS (.3ds)

► 3ds Max ASE (.ase)

► Wavefront Object (.obj)

► Industry Foundation Classes (IFC/Step) (.ifc)

► XGL (.xgl,.zgl)

► Stanford Polygon Library (.ply)

► LightWave (.lwo)

► LightWave Scene (.lws)

► Modo (.lxo)

► Stereolithography (.stl)

► DirectX X (.x)

► AC3D (.ac)

► Milkshape 3D (.ms3d)

► Ogre XML (.mesh.xml)

► Irrlicht Mesh (.irrmesh)

► Quake I (.mdl)

► Quake II (.md2)

EB GUIDE documentation
Chapter 9. References

Page 227 of 265

► Quake III (.md3)

► Doom 3 (.md5*)

► BlitzBasic 3D (.b3d)

► Quick3D (.q3d,.q3s)

► Neutral File Format (.nff)

► Sense8 WorldToolKit (.nff)

► Object File Format (.off)

► PovRAY Raw (.raw)

► Terragen Terrain (.ter)

► 3D GameStudio (3DGS) (.mdl)

► 3D GameStudio Terrain (3DGS) (.hmp)

► Izware Nendo (.ndo)

3D graphic formats with limited support are as follows:

► AutoCAD DXF (.dxf)

► TrueSpace (.cob,.scn)

► Irrlicht Scene (.irr)

► Return to Castle Wolfenstein (.mdc)

► Valve Model (.smd,.vta)

► Starcraft II M3 (.m3)

► Unreal (.3d)

9.7.4.2. Light effect

Table 9.101. Properties of the light effect widget

Property name Description

name The name of the effect

enabled Defines if the effect is in use

lightPos Defines the position of the light for child 3D graphic widgets. A vector of three
floats.

9.7.4.3. Material effect

EB GUIDE documentation
Chapter 9. References

Page 228 of 265

Table 9.102. Properties of the material effect widget

Property name Description

name The name of the effect

enabled Defines if the effect is in use

ambientColor Defines the ambient color of child 3D graphic widgets. Three values for red,
green, and blue range from 0.0 to 1.0.

diffuseColor Defines the diffuse color of child 3D graphic widgets. Four values for red, green,
blue, and alpha range from 0.0 to 1.0.

specularColor Defines the specular color of child 3D graphic widgets. Three values for red,
green, and blue range from 0.0 to 1.0.

specularShininess Defines the specular shininess of child 3D graphic widgets.

9.7.4.4. Light and material effect

Table 9.103. Properties of the light and material effect widget

Property name Description

name The name of the effect

enabled Defines if the effect is in use

ambientColor Defines the ambient color of child 3D graphic widgets. Three values for red,
green, and blue range from 0.0 to 1.0.

diffuseColor Defines the diffuse color of child 3D graphic widgets. Four values for red, green,
blue, and alpha range from 0.0 to 1.0.

specularColor Defines the specular color of child 3D graphic widgets. Three values for red,
green, and blue range from 0.0 to 1.0.

specularShininess Defines the specular shininess of child 3D graphic widgets.

lightPos Defines the position of the light for child 3D graphic widgets. A vector of three
floats.

9.7.4.5. No lighting effect

Table 9.104. Properties of the no lighting effect widget

Property name Description

name The name of the effect

enabled Defines if the effect is in use

EB GUIDE documentation
Chapter 9. References

Page 229 of 265

9.8. Widget features
The following list contains a description of all widget features that are implemented, with a brief description on
how to use them in an EB GUIDE model.

9.8.1. Common

9.8.1.1. Virtual layer

The Virtual layer widget feature defines that a widget is bound to a layer. During run-time, the layer is mapped
to a real hardware layer.

Table 9.105. Properties of the Virtual layer widget feature

Property name Description

layerId During run-time, the layer influences rendering order for all widgets with this wid-
get feature. Possible values range from 0 for the lowest layer to 5 for the top lay-
er.

NOTE Layer assignments are static
Layer assignments are static and cannot be changed during run-time.

9.8.1.2. Text truncation

The Text truncation widget feature truncates the content of the text property if it does not fit into the widget
area.

Table 9.106. Properties of the Text truncation widget feature

Property name Description

truncationPolicy For single-line texts, truncationPolicy defines the position of the truncation.
Possible values:

► Leading: Text is replaced at the beginning of the text.

► Trailing: Text is replaced at the end of the text.

For multi-line texts, truncationPolicy defines where text is replaced. Possible
values:

EB GUIDE documentation
Chapter 9. References

Page 230 of 265

Property name Description

► Leading: Lines at the beginning are replaced and text of the first visible line
is truncated at the beginning of the text.

► Trailing: Lines at the end are replaced and text of the last visible line is trun-
cated at the end of the text.

truncationSymbol The string that is shown instead of the replaced text part

NOTE Labels with bi-directional texts
Text that contains two text directions, right-to-left and left-to-right, is called bi-directional text.
In case of bi-directional text, the truncation symbol is added with respect to the text, but not
to its formatting. This means:

► If you use leading the truncation symbol is added to the left-hand side of the first
visible line.

► If you use trailing the truncation symbol is added to the right-hand side of the last
visible line.

9.8.1.3. Toggle button

The Toggle button widget feature changes a button into a toggle button. The appearance of toggle buttons
does not change on pressing or releasing.

The Toggle button widget feature has no additional properties.

9.8.1.4. State enabled

The State enabled widget feature adds an enabled property to a widget.

Table 9.107. Properties of the State enabled widget feature

Property name Description

enabled If true, the widget reacts on touch and press input

9.8.1.5. State selected

The State selected widget feature adds a selected property to a widget. It is typically set by the application
or the HMI modeler. It is not changed by any other component of the framework.

EB GUIDE documentation
Chapter 9. References

Page 231 of 265

Table 9.108. Properties of the State selected widget feature

Property name Description

selected Returns true if the widget is selected

9.8.1.6. State focused

The State focused widget feature enables a widget to have input focus.

Table 9.109. Properties of the State focused widget feature

Property name Description

focusable Defines whether the widget receives the focus or not. Possible values:

► 0: not focusable

► 1: focusable only by touch

► 2: focusable only by key

► 3: focusable

focused If true, the widget has focus

9.8.1.7. State touched

The State touched widget feature enables a widget to react to touch input.

Table 9.110. Properties of the State touched widget feature

Property name Description

touchable If true, the widget reacts on touch input

touched If true, the widget is currently touched

touchPolicy Defines how to handle touch and movement that crosses widget boundaries.
Possible values:

► Press then react: Press first, then the widget reacts. Notifications of moving
and releasing are only active within the widget area.

► Press and grab: Press to grab the contact. The contact remains grabbed
even if it moves away from the widget area.

► Press then react on contact: Even if the contact enters the pressed state
outside the widget boundaries, the subsequent move and release events
are delivered to the widget.

touchBehavior Defines touch evaluation. Possible values:

EB GUIDE documentation
Chapter 9. References

Page 232 of 265

Property name Description

► 0: Whole area

To identify the touched widget, the renderer evaluates the widget's clipping
rectangle.

► 1: Visible pixels

To identify the touched widget, the renderer evaluates the widget the
touched pixel belongs to.

Transparent pixels in an image with alpha transparency or pixels inside let-
ters such as in O or A are not touchable.

Combining the State touched widget feature with the Touch pressed widget feature allows modelling a push
button.

TIP Performance recommendation:

If performance is an important issue in your project set the touchBehavior property to
Whole area. EB GUIDE GTF evaluates Whole area faster than Visible pixels.

9.8.1.8. State pressed

The State pressed widget feature defines that a widget can be pressed.

Table 9.111. Properties of the State pressed widget feature

Property name Description

pressed True if a key is pressed while the widget is focussed

Combining the State touched widget feature with the Touch pressed widget feature allows modelling a push
button.

9.8.1.9. Multi-state

The Multi-state widget feature handles the visibility of child widgets. Only the content of one child is visible
at a time.

Table 9.112. Properties of the Multi-state widget feature

Property name Description

containerIndex Index of the children of the parent widget

EB GUIDE documentation
Chapter 9. References

Page 233 of 265

Property name Description

containerMapping If a mapping is set, each child of the container is re-addressed by its appropriate
value in containerMapping.

If a mapping is not set, undefined or if the length does not match the number of
children in the container, the mapping is not used. Instead, the order of widgets
in the widget tree is used as their index. The topmost child has index 0, next in-
dex 1 etc.

9.8.1.10. Multi-line

The Multi-line widget feature enables line breaks for a label widget.

Table 9.113. Properties of the Multi-line widget feature

Property name Description

lineGap The size of the gap between the lines. A negative value decreases the gap, a
positive value increases the gap.

lineSeparators Defines at what letter in the line a break is to be made once the line is full.

maxLineCount The number of visible lines

NOTE Character replacement
Sequences of '\\' '\\' are replaced by '\\' . Sequences of '\\' 'n' are replaced by '\n'.

If the size of the label is increased so that one line is sufficient to display the text, '\n' is
replaced by ' '.

9.8.1.11. Button group

The Button group widget feature is used to model an array of radio buttons. In an array, every radio button
has the Button group widget feature and a unique button ID.

Use a datapool item for the buttonValue property. Assign the datapool item to all widgets in the radio button
array.

Selecting and deselecting a widget within the button group can be done by an external application that sets
the buttonValue property. Alternatively, changes can be triggered by touch or key input as well as by adding
a condition that sets the button value.

Table 9.114. Properties of the Button group widget feature

Property name Description

buttonId The ID that identifies a button within a button group

EB GUIDE documentation
Chapter 9. References

Page 234 of 265

Property name Description

buttonValue The current value of a button. If this value matches the buttonId, the button is
selected.

selected Evaluates if buttonID and buttonValue are identical. If true, the button is select-
ed.

9.8.1.12. Rotary button

The Rotary button widget feature turns a widget into a rotary button. A widget with the Rotary button widget
feature reacts to increment and decrement events by changing an internal value. The Rotary button widget
feature can be used to create a scale, a progress bar, or a widget with a preview value.

Table 9.115. Properties of the Rotary button widget feature

Property name Description

currentValue The current rotary value

maxValue The maximum value for the currentValue property

minValue The minimum value for the currentValue property

incValueTrigger If true, the currentValue property is incremented by 1

incValueReaction Reaction to an incrementation of the currentValue property

decValueTrigger If true, the current value is decremented by 1

decValueReaction Reaction to a decrementation of the currentValue property

steps The number of steps to calculate the increment or decrement for the currentVal-
ue property

valueWrapAround Possile values:

► true: currentValue continues at the inverse border, if minValue or maxVal-
ue is exceeded.

► false: currentValue does not decrease/increase if minValue or maxValue
is exceeded.

9.8.2. Focus

9.8.2.1. User-defined focus

The User-defined focus widget feature enables additional focus functionality for the widget. A widget that uses
the feature manages a local focus hierarchy for its widget subtree.

EB GUIDE documentation
Chapter 9. References

Page 235 of 265

Table 9.116. Properties of the User-defined focus widget feature

Property name Description

focusNext The trigger that assigns the focus to the next child widget

focusOrder Focus order makes it possible to skip child widgets when assigning focus. The
ID of a child widget corresponds to its position in the subtree. Child widgets that
are not focusable are skipped by default. Order in which the child widgets are fo-
cused:

► defined: User-defined widget order is used.

► not defined: Default widget order is used instead.

Each child widget requires the State focused widget feature, otherwise widgets
are ignored for focus handling. Example: focusOrder=1|0|2 means the second
widget receives focus first, then the first widget receives focus, and finally the
third widget.

focusPrevious The trigger that assigns the focus to the previous child

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► 0: stop at hierarchy level

► 1: wrap within hierarchy level

► 2: step up in hierarchy

focusedIndex The index defines the position of the child widget in the focusOrder list. If the
widget is not focusable, the child next in the list is used.

initFocus The index of the focused child widget at initialization

9.8.2.2. Auto focus

With the Auto focus widget feature, the order in which child widgets are focused is pre-defined. Focusable
child widgets cannot be skipped. A widget with the Auto focus widget feature manages a local focus hierarchy
for its widget subtree. The Auto focus widget feature checks the widget subtree for child widgets with the
focusable property.

The order of the widgets in the layout is used to calculate focus order. Depending on layout orientation, the
algorithm begins in the upper left or upper right corner.

Table 9.117. Properties of the Auto focus widget feature

Property name Description

focusNext The condition on which the focus index is incremented

focusPrevious The condition on which the focus index is decremented.

EB GUIDE documentation
Chapter 9. References

Page 236 of 265

Property name Description

focusFlow The behavior for focus changes within the hierarchy. Possible values:

► 0: stop at hierarchy level

► 1: wrap within hierarchy level

► 2: step up in hierarchy

focusedIndex The index of the currently focused child widget as the n-th child widget which is
focusable

initFocus The index defines the focused child widget at initialization. If the widget is not fo-
cusable, the next focusable child is used.

9.8.3. Input handling

9.8.3.1. Move over

The Move over widget feature enables a widget to react on movement within its boundaries.

Property name Description

moveOver The widget's reaction on a movement within its boundaries

9.8.3.2. Move out

The Move out widget feature enables a widget to react on movement out of its boundaries.

Property name Description

moveOut The widget's reaction on a movement out of its boundaries

9.8.3.3. Move in

The Move in widget feature enables a widget to react on movement into its boundaries.

Property name Description

moveIn The widget's reaction on a movement into its boundaries

EB GUIDE documentation
Chapter 9. References

Page 237 of 265

9.8.3.4. Touch pressed

The Touch pressed widget feature enables a widget to react on being pressed.

Property name Description

touchPressed The widget's reaction on being pressed

9.8.3.5. Touch released

The Touch released widget feature enables a widget to react on being released.

Property name Description

touchShortReleased The widget's reaction on being released

9.8.3.6. Touch grab lost

The Touch grab lost widget feature enables a widget to react on a lost touch contact.

A contact can disappear when it is part of a gesture or leaves the touch screen without releasing. In these
cases the touchShortReleased reaction is not executed.

Property name Description

onTouchGrabLost The reaction on a lost touch contact

9.8.3.7. Touch status changed

The Touch status changed widget feature enables a widget to react on changes of its touch status.

Property name Description

touchStatusChanged The widget's reaction on changes of its touch status

9.8.3.8. Touch move

The Touch move widget feature enables a widget to react on being touched and moved.

Property name Description

touchMoved The widget's reaction on being touched and moved

EB GUIDE documentation
Chapter 9. References

Page 238 of 265

9.8.3.9. Gestures

The Gestures widget feature enables the widget to react on touch gestures.

The Gestures widget feature has no additional properties.

9.8.3.10. Key pressed

The Key pressed widget feature enables a widget to react on a key being pressed.

Property name Description

keyPressed The widget's reaction on a key being pressed.

Reaction argument:

► keyId: returns true, if the widget reacts on the incoming key event

9.8.3.11. Key Unicode

The Key Unicode widget feature enables a widget to react on Unicode key input.

Property name Description

keyUnicode The widget's reaction on a Unicode key input.

Reaction argument:

► keyId: returns true, if the widget reacts on the incoming key event

9.8.3.12. Key released

The Key released widget feature enables a widget to react on a key being released.

Property name Description

keyShortReleased The widget's reaction on a key being released.

Reaction argument:

► keyId: returns true, if the widget reacts on the incoming key event

9.8.3.13. Key status changed

EB GUIDE documentation
Chapter 9. References

Page 239 of 265

The Key status changed widget feature enables a widget to react on a key being pressed or released. It
defines the reaction to key input such as short press, long, ultra long and continuous.

Property name Description

keyLongPressed The widget's reaction on a key being pressed or released.

Reaction argument:

► keyId: returns true, if the widget reacts on the incoming key event

9.8.3.14. Rotary

The Rotary widget feature enables a widget to react on being rotated.

Property name Description

rotaryReaction The widget's reaction on being rotated. Returns true, if the widget reacts on an
incoming rotary event.

Reaction arguments:

► rotaryId: integer ID

► increment: number of units the rotary input shifts when the incoming event
is sent

9.8.3.15. Moveable

The Moveable widget feature enables a widget to ne moved by touch.

Property name Description

moveDirection The direction into which the widget moves. Possible values:

► 0: free

► 1: horizontal

► 2: vertical

9.8.4. Gestures

9.8.4.1. Hold gesture

EB GUIDE documentation
Chapter 9. References

Page 240 of 265

A hold gesture without movement

NOTE The Hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 9.118. Properties of the Hold gesture widget feature

Property name Description

holdDuration Minimal time in milliseconds the contact must stay in place for the gesture to be
recognized as a hold gesture

onGestureHold Reaction that is triggered once the gesture is recognized. The reaction is trig-
gered only once per contact: when holdDuration is expired and the contact still
is in a small boundary box around the initial touch position.

Reaction arguments:

► x: X coordinate of the contact position

► y: Y coordinate of the contact position

9.8.4.2. Long hold gesture

A long hold gesture without movement

NOTE The Long hold gesture widget feature does not trigger the Touch grab lost widget feature.

Table 9.119. Properties of the Long hold gesture widget feature

Property name Description

longHoldDuration Minimal time in milliseconds the contact must stay in place for the gesture to be
recognized as a long hold gesture

onGestureLongHold Reaction that is triggered once the gesture is recognized. The reaction is trig-
gered only once per contact: when longHoldDuration has expired and the con-
tact still is in a small boundary box around the initial touch position.

Reaction arguments:

► x: X coordinate of the contact position

EB GUIDE documentation
Chapter 9. References

Page 241 of 265

Property name Description

► y: Y coordinate of the contact position

9.8.4.3. Flick gesture

A quick brush of a contact over a surface

Table 9.120. Properties of the Flick gesture widget feature

Property name Description

flickMaxTime Maximal time in milliseconds the contact may stay in place for the gesture to be
recognized as a flick gesture.

onGestureFlick Reaction that is triggered once the gesture is recognized.

Reaction arguments:

► speed: relative speed of the flick gesture

Speed in pixels/ms divided by flickMinLength/flickMaxTime

► directionX: X part of the direction vector of the gesture

► directionY: Y part of the direction vector of the gesture

flickMinLength Minimal distance in pixels a contact has to move on the surface to be recognized
as a flick gesture

9.8.4.4. Pinch gesture

Two contacts that move closer together or further apart

Table 9.121. Properties of the Pinch gesture widget feature

Property name Description

onGesturePinchStart Reaction that is triggered once the start of the gesture is recognized. Reaction
arguments:

► ratio: Current contact distance to initial contact distance ratio

► centerX: X coordinate of the current center point between the two contacts

► centerY: Y coordinate of the current center point between the two contacts

onGesturePinchUpdate Reaction that is triggered when the pinch ratio or center point change

onGesturePinchEnd Reaction that is triggered once the gesture is finished

pinchThreshold Minimal distance in pixels each contact has to move from its initial position for
the gesture to be recognized. Reaction arguments:

EB GUIDE documentation
Chapter 9. References

Page 242 of 265

Property name Description

► Angle: Angle between the line specified by the initial position of the two con-
tacts and the line specified by the current position of the two contacts. The
angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two contacts

► centerY: Y coordinate of the current center point between the two contacts

9.8.4.5. Rotate gesture

Two contacts that move along a circle

Table 9.122. Properties of the Rotate gesture widget feature

Property name Description

onGestureRotateStart Reaction that is triggered once the start of the gesture is recognized

onGestureRotateUpdate Reaction that is triggered when the recognized angle or center point changes

onGestureRotateEnd Reaction that is triggered once the gesture is finished

rotateThreshold Minimal distance in pixels each contact has to move from its initial position for
the start of the gesture to be recognized

Reaction arguments for onGestureRotateEnd, onGestureRotateStart, onGestureRotateUpdate:

► angle: Angle between the line specified by the initial position of the two involved contacts and the line
specified by the current position of the two contacts. The angle is measured counter-clockwise.

► centerX: X coordinate of the current center point between the two contacts

► centerY: Y coordinate of the current center point between the two contacts

9.8.4.6. Path gestures

A shape drawn by one contact is matched against a set of known shapes.

Table 9.123. Properties of the Path gesture widget feature

Property name Description

onPathStart Reaction that is triggered once a contact moves beyond the minimal box (path-
MinXBox, pathMinXBox). Reaction argument:

► gestureId: ID of the path that was matched

onPathNotRecognized Reaction that triggered when the entered shape does not match. The reaction is
only triggered if onPathStart has been triggered already.

EB GUIDE documentation
Chapter 9. References

Page 243 of 265

Property name Description

onPath Reaction that is triggered when the entered shape matches. The reaction is only
triggered if onPathStart has been triggered already.

pathMinXBox X coordinate of the minimal distance in pixels a contact must move so that the
path gesture recognizer starts considering the input

pathMinYBox Y coordinate of the minimal distance in pixels a contact must move so that the
path gesture recognizer starts considering the input

9.8.4.6.1. Gesture IDs

Gesture identifiers depend on the configuration of the path gesture recognizer. The following table shows an
example configuration which is included in EB GUIDE.

Table 9.124. Path gesture samples configuration included in EB GUIDE

ID Shape Description

0 Roof shape left to right

1 Roof shape right to left

2 Horizontal line left to right

3 Horizontal line right to left

4 Check mark

EB GUIDE documentation
Chapter 9. References

Page 244 of 265

ID Shape Description

5 Wave shape left to right

6 Wave shape right to left

9.8.5. Effects

9.8.5.1. Border

The Border widget feature adds a configurable border to the widget. The border starts at the widget boundaries
and is placed within the widget.

Table 9.125. Properties of the Border widget feature

Property name Description

borderThickness The thickness of the border in pixels

borderColor The color that is used to render the border

borderStyle The style that is used to render the border

9.8.5.2. Coloration

The Coloration widget feature colors the widget and its widget subtree. It also affects transparency if the alpha
value is not opaque.

Example 9.1.
Usage of the Coloration widget feature

For all colors with RGBA components between 0.0 and 1.0, the algorithm in the Coloration widget fea-
ture multiplies the current color values of a widget by the colorationColor property value. Multipli-
cation is done per pixel and component-wise.

A semi-transparent gray colored by an opaque blue results in semi-transparent darker blue as follows:

EB GUIDE documentation
Chapter 9. References

Page 245 of 265

(0.5, 0.5, 0.5, 0.5) * (0.0, 0.0, 1.0, 1.0) = (0.0, 0.0, 0.5, 0.5)

Table 9.126. Properties of the Coloration widget feature

Property name Description

colorationEnabled If true, coloration is used

colorationColor The coloration used. Possible values:

► Pure

► Opaque

► White

9.8.6. Layout

9.8.6.1. Absolute layout

The Absolute layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Property name Description

itemLeftOffset An integer list that stores the offset from the left border for all child widgets

itemRightOffset An integer list that stores the offset from the right border for all child widgets

itemTopOffset An integer list that stores the offset from the top border for all child widgets

itemBottomOffset An integer list that stores the offset from the bottom border for all child widgets

9.8.6.2. Flow layout

The Flow layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

EB GUIDE documentation
Chapter 9. References

Page 246 of 265

Name Description

horizontalChildAlign The horizontal alignment of child widgets

verticalChildAlign The vertical alignment of child widgets

layoutDirection The direction in which the widget is positioned

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

9.8.6.3. Grid layout

The Grid layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Name Description

numColumns The horizontal space between two child widgets

numRows The vertical space between two child widgets

horizontalGap The horizontal space between two child widgets

verticalGap The vertical space between two child widgets

9.8.6.4. Box layout

The Box layout widget feature defines position and size of each child widget.

Position and size properties of child widgets are set by the parent widget. Invisible child widgets are ignored
in the calculation.

Name Description

gap The space between two child widgets, depending on the layout direction

layoutDirection The direction in which the widget is positioned

9.8.6.5. List layout

The List layout widget feature defines position and size of each child widget.

EB GUIDE documentation
Chapter 9. References

Page 247 of 265

Position properties of child widgets and the listIndex property of the List index widget feature are set by
the parent widget.

Best used in conjunction with instantiator widgets to create the child widgets.

Name Description

layoutDirection The direction in which the widget is positioned

segments For horizontal layout direction: the number of rows

For vertical layout direction: the number of columns

firstListIndex The list index of the first visible list item, defined by the widget feature

listLength The number of list items

scrollValueMin The minimum scroll value, which is mapped to the beginning of the list

scrollValueMax The maximum scroll value, which is mapped to the end of the list

scrollValue The current scroll value

scrollIndex The base list index the scrollOffset property applies to. Scrolling starts at the
list item given in the scrollIndex property.

scrollOffset The amount of pixels to scroll the list

scrollOffsetRebase If the scrollOffsetRebase property changes, the current scrollOffset is translat-
ed to scrollIndex. The remaining offset is written to the scrollOffset property.

bounceValue The bounceValue property is zero as long as the scrollOffset property results
in a position inside the valid scroll range. It has a positive value if the scroll po-
sition exceeds the beginning of the list and a negative value if the scroll position
exceeds the end of the list. If bounceValue is added to scrollOffset, the scroll
position is back in range.

bounceValueMax The maximum value which scrollOffset can move outside the valid scroll range.
scrollOffset is truncated if the user tries to scroll further.

9.8.6.6. Layout margins

The Layout margins widget feature adds configurable margins to a widget that uses the Flow layout or the
Absolute layout widget feature.

Name Description

topMargin Margin of the top border

bottomMargin Margin of the bottom border

leftMargin Margin of the left border

EB GUIDE documentation
Chapter 9. References

Page 248 of 265

Name Description

rightMargin Margin of the right border

9.8.7. List management

9.8.7.1. List index

The List index widget feature adds a list index property to a widget. It is intended to be used in combination
with the List layout widget feature.

Table 9.127. Properties of the List index widget feature

Name Description

listIndex The index of the current widget in a list

9.8.7.2. Line index

The Line index widget feature adds a line index property to a widget. It is intended to be used in combination
with tables.

Table 9.128. Properties of the Line index widget feature

Name Description

lineIndex The index of the current line in a table

9.8.7.3. Line template index

The Line template index widget feature adds a line template index property to a widget. It is intended to be
used in combination with instantiator widgets.

Table 9.129. Properties of the Line template index widget feature

Name Description

lineTemplateIndex The index of the used line template

9.8.7.4. View port

EB GUIDE documentation
Chapter 9. References

Page 249 of 265

The View port widget feature clips oversized elements at the widget borders. It is intended to be used in
combination with container widgets or lists.

Table 9.130. Properties of the View port widget feature

Property name Description

xOffset The horizontal offset of the visible clipping within the drawn area of child widgets

yOffset The vertical offset of the visible clipping within the drawn area of child widgets

9.8.8. Transformations

Transformations modify location, form, and size of widgets.

The order in which transformations are executed is equal to the order in the widget tree. If multiple transforma-
tions are applied to one widget at the same widget tree hierarchy level, the order is as follows:

1. Translation

2. Shearing

3. Scaling

4. Rotation around z-axis

5. Rotation around y-axis

6. Rotation around x-axis

9.8.8.1. Translation

The Translation widget feature is used to translate the widget and its subtree. It moves widgets in x, y and
z directions.

Table 9.131. Properties of the Translation widget feature

Property name Description

translationEnabled Defines whether translation is used or not

translationX Translation on the x-axis

translationY Translation on the y-axis

translationZ Translation on the z-axis if widget is a 3D graphic

9.8.8.2. Rotation

EB GUIDE documentation
Chapter 9. References

Page 250 of 265

The Rotation widget feature is used to rotate the widget and its subtree

Table 9.132. Properties of the Rotation widget feature

Property name Description

rotationEnabled Defines whether rotation is used or not

rotationAngleX Rotation angle on the x-axis

rotationAngleY Rotation angle on the y-axis

rotationAngleZ Rotation angle on the z-axis if widget is a 3D graphic

9.8.8.3. Scaling

The Scaling widget feature is used to scale the widget and its subtree

Table 9.133. Properties of the Scaling widget feature

Property name Description

scalingEnabled Defines whether scaling is used or not

scalingX Scaling on the x-axis in percent

scalingY Scaling on the y-axis in percent

scalingZ Scaling on the z-axis in percent if widget is a 3D graphic

9.8.8.4. Shearing

The Shearing widget feature is used to distort widgets in the widget subtree.

Table 9.134. Properties of the Shearing widget feature

Property name Description

shearingEnabled Defines whether shearing is used or not

shearingXbyY Shearing amount of x-axis by y-axis

shearingXbyZ Shearing amount of x-axis by z-axis if widget is a 3D graphic

shearingYbyX Shearing amount of y-axis by x-axis

shearingYbyZ Shearing amount of y-axis by z-axis if widget is a 3D graphic

shearingZbyX Shearing amount of z-axis by x-axis if widget is 3D.

shearingZbyY Shearing amount of z-axis by y-axis if widget is a 3D graphic

9.8.8.5. Pivot

EB GUIDE documentation
Chapter 9. References

Page 251 of 265

The Pivot widget feature defines the pivot point of transformations which are applied to the widget. If no pivot
point is configured, the default pivot point is at (0.0, 0.0, 0.0).

Table 9.135. Properties of the Pivot widget feature

Property name Description

pivotX Pivot point on the x-axis relative to parent widget

pivotY Pivot point on the y-axis relative to parent widget

pivotZ Pivot point on the z-axis relative to parent widget if widget is a 3D graphic

EB GUIDE documentation
Chapter 10. Installation

Page 252 of 265

10. Installation

10.1. Background information

10.1.1. Restrictions

NOTE Compatibility
EB GUIDE product line 6 is not compatible with any previous major version.

NOTE EB GUIDE Speech Extension
EB GUIDE Speech Extension is licensed as an add-on product that is enabled only when
purchased.

NOTE User rights
To install EB GUIDE on Windows 7 or Windows 8 systems, you require administrator rights.

10.1.2. System requirements

Observe the following settings:

Table 10.1. Recommended settings for EB GUIDE Studio

Hardware PC with quad core CPU with at least 2 GHz CPU
speed and 8 GB RAM

Operating system Windows 7, Windows 8

Screen resolution Usage of 2 separate monitors with 1600 x 1200 pix-
els

Software Microsoft .NET Framework 4.5.1.

EB GUIDE documentation
Chapter 10. Installation

Page 253 of 265

DirectX 11

Table 10.2. Recommended settings for EB GUIDE SDK

Target platform compiler Microsoft Visual Studio 2013 or newer

File integration CMake

10.2. Downloading from EB Command
EB Command is the server from which you are going to download the EB GUIDE product line software.

NOTE Activate your account
After ordering a product, you receive a mail from sales department. Click the link in the
email. Follow the steps to create an account as directed in the email and in the browser,
then proceed to log in.

Downloading from EB Command

Prerequisite:

■ Your user account is activated.

Step 1
Open a browser and go to https://command.elektrobit.com/command/mod_perl/login.pl.

The EB Command front page opens.

Step 2
To change the language, toggle the language in the lower left corner of the screen.

Step 3
Type in your alias, which is your user name.

Step 4
Type in your password and click the Login button.

The main page opens.

Step 5
Select a project, for example EB GUIDE Studio. The project overview opens.

Step 6
Select the distribution container in the version you want to download, for example EB GUIDE Studio Core
6.x. An overview of all downloadable items open.

Step 7
Select the Actions check box beside the file you want to download.

https://command.elektrobit.com/command/mod_perl/login.pl

EB GUIDE documentation
Chapter 10. Installation

Page 254 of 265

Step 8
Click Download Selection.

TIP Downloading multiple files
If you select multiple files for download, a download package is generated. You are
prompted to save the file CommandDownload<date>.zip to your local system.

The download starts. To log out from EB Command, click the Logout button.

10.3. Installing EB GUIDE

Installing EB GUIDE

Prerequisite:

■ You downloaded the setup file studio_setup.exe.

■ You have administrator rights on the operating system.

Step 1
Double-click the setup file studio_setup.exe.

A dialog opens.

Step 2
Click Yes.

The Setup - EB GUIDE Studio dialog opens.

Step 3
Accept the license agreement and click Next

Step 4
Select a directory for installation.

The default installation directory is C:\Program Files (x86)\Elektrobit\EB GUIDE <version>.

Step 5
Click Next.

A summary dialog displays all selected installation settings.

Step 6
To confirm the installation with the settings displayed, click Install.

The installation starts.

EB GUIDE documentation
Chapter 10. Installation

Page 255 of 265

Step 7
To exit the setup click Finish.

You have installed EB GUIDE.

TIP Multiple installations
It is possible to install more than one EB GUIDE versions.

10.4. Troubleshooting the installation

10.4.1. Renderer errors
If you are unable to use the renderer in EB GUIDE Studio, use the Renderer test in the Start menu to evaluate
problems. Also make sure that you are using the current driver for your graphics card.

For DirectX 11 renderers, make sure that you have installed the DirectX 11 that is available at Microsoft's
website.

10.5. Uninstalling EB GUIDE

Uninstalling EB GUIDE

NOTE Removing EB GUIDE permanently
If you follow the instruction, you remove EB GUIDE permanently from your PC.

Prerequisite:

■ EB GUIDE is installed.

■ You have administrator rights on the operating system.

Step 1
On the Windows Start menu, click All Programs.

EB GUIDE documentation
Chapter 10. Installation

Page 256 of 265

Step 2
On Elektrobit menu, click the version you want to uninstall.

Step 3
On the submenu, click Uninstall.

Glossary

Page 257 of 265

Glossary

A
animation An animation is a set of time-dependent functions. These functions can be

used to change datapool items and widget properties or to send events. These
functions are described either by an animation curve or using EB GUIDE
Script.

There are two types of animations: widget animations and view transition an-
imations.
See Also widget animation, view transition animation.

API Application programming interface

C
communication context The communication context describes the environment in which communica-

tion occurs. Each communication context is identified by a unique numerical
ID.

D
datapool The datapool is a data cache in an EB GUIDE model that provides access

to datapool items during run-time. It is used for data exchange between the
application and the HMI.

datapool item Datapool items store and exchange data. Each item in the datapool has a
communication direction.

E
EB GUIDE GTF EB GUIDE GTF is the graphics target framework of the EB GUIDE product

line and is part of the EB GUIDE TF. EB GUIDE GTF represents the run-time
environment to execute EB GUIDE models on target platforms.

EB GUIDE GTF SDK EB GUIDE GTF SDK is the development environment contained in EB GUIDE
GTF. It is a sub-set of the EB GUIDE SDK. Another sub-set is the EB GUIDE
Studio SDK.

EB GUIDE model An EB GUIDE model is the description of an HMI created with EB GUIDE
Studio.

Glossary

Page 258 of 265

EB GUIDE product line The EB GUIDE product line is a collection of software libraries and tools which
are needed to specify an HMI model and convert the HMI model into a graph-
ical user interface that runs on an embedded environment system.

EB GUIDE Script EB GUIDE Script is the scripting language of the EB GUIDE product line.
EB GUIDE Script enables accessing the datapool, model elements such as
widgets and the state machine, and system events.

EB GUIDE SDK EB GUIDE SDK is a product component of EB GUIDE. It is the software de-
velopment kit for the EB GUIDE product line. It includes the EB GUIDE Studio
SDK and the EB GUIDE GTF SDK.

EB GUIDE Studio EB GUIDE Studio is the tool for modeling and specifying HMI model with a
graphical user interfaces.

EB GUIDE Studio SDK EB GUIDE Studio SDK is an application programming interface (API) to com-
municate with EB GUIDE Studio. It is a sub-set of the EB GUIDE SDK. An-
other sub-set is the EB GUIDE GTF SDK.

EB GUIDE TF EB GUIDE TF is the run-time environment of the EB GUIDE product line. It
consists of EB GUIDE GTF and EB GUIDE STF. It is required to run an EB
GUIDE model.

G
global property See datapool item.

GUI Graphical user interface

H
HMI Human machine interface

M
model element A model element is an object within an EB GUIDE model, for example a state,

a widget, or a datapool item.
See Also EB GUIDE model.

P
project center All project-related functions are located in the project center, for example pro-

files and languages.

Glossary

Page 259 of 265

project editor In the project editor you model the behavior and the appearance of the human
machine interface.

property A property is a name-value pair. The name is used as identifier, the value
contains data.

R
resource A resource is a data package that is part of the EB GUIDE model. Examples

for resources are fonts, images, 3D-objects. Resources are stored outside of
the EB GUIDE model, for example in files, depending on the operating system.

S
state A state defines the status of the state machine. States and state transitions

are modeled in state diagrams.

state machine A state machine is a set of states, transitions between those states, and ac-
tions.

T
transition A transition defines the change from one state to another. A transition is usu-

ally triggered by an event.

U
UI User interface

V
view A view is a graphical representation of a project-specific HMI-screen and is

related to a specific state machine state. A view consists of a tree of widgets.

W
widget A widget is a model element with one of the following functions:

► Graphical representation

► Logical behavior

► Data

Glossary

Page 260 of 265

► Any combination of the three above

Index

Page 261 of 265

Index
Symbols
3D graphic, 46, 82

add, 102
reference, 226
supported formats, 226

3D widgets, 82
reference, 225

A
absolute layout

reference, 245
action, 96, 146
Android APK, 125
Android APK restrictions , 128
animation, 257

reference, 220
animations, 81
API, 257 (see application programming interface)
application programming interface, 40
auto focus

reference, 235

B
basic widgets, 80

reference, 218
border

reference, 244
box layout

reference, 246
button group

reference, 233

C
C++ exception, 137
choice state, 88
command area

project editor, 30
command line, 135, 149
communication context, 40, 116, 257

compound state, 88
condition, 95
configuration file, 144
constant curve

reference, 221
container, 80

add, 102
reference, 220

content area
project center, 27
project editor, 29

control panel, 129

D
datapool, 41, 41, 257
datapool item, 41, 116, 257

link, 118
reference, 190
windowed list, 41

DirectX 11, 139, 139

E
EB GUIDE GTF, 257
EB GUIDE GTF SDK, 257
EB GUIDE model, 42, 257

model element, 42
EB GUIDE Model Chooser, 126
EB GUIDE product line, 257
EB GUIDE project, 42
EB GUIDE Script, 47, 257

comments, 48
datapool access, 54
events, 57
expressions, 49
foreign function calls, 54
identifiers, 47
if-then-else, 53
l-values, 51
lists, 56
local variables, 51
namespaces, 47
r-values, 51

Index

Page 262 of 265

standard library, 59
string formatting, 59
types, 48
while loops, 52
widget property, 55

EB GUIDE SDK, 257
EB GUIDE Studio, 257
EB GUIDE Studio SDK;, 257
EB GUIDE TF, 257
effects

widget feature, 244
entry action, 90
event

reference, 215
event system, 43
events, 57
exit action, 91

F
fast start curve

reference, 222
finger ID, 79
flow layout

reference, 245
fonts, 44

G
gesture, 77

non-path gesture, 77
path gesture, 77

gestures
reference, 238

global property, 258 (see datapool item)
grid layout

reference, 246
GtfPluginLoader, 139
gtfStartup.cfg, 139, 144, 149

profile, 150
GtfStartup.exe, 139, 144, 149
GUI, 258

H
HMI, 258
hold gesture

reference, 239

I
icons, 60
image, 80

9-patch, 45
add, 101
reference, 219
supported formats, 44
SVG, 45

instantiator, 80
reference, 220

internal transition, 98

J
JavaScript, 134

K
key pressed

reference, 238
key released

reference, 238
key status changed

reference, 238
key Unicode

reference, 238

L
label, 80

font, 102
reference, 218

layout margins
reference, 247

library
add, 151

light and material effect
reference, 228

light effect
reference, 227

Index

Page 263 of 265

line index
reference, 248

line template index
reference, 248

linear curve, 224
linear interpolation curve, 225
link

datapool item, 118
widget property, 103, 104

list index
reference, 248

list layout
reference, 246

long hold gesture
reference, 240

M
material effect

reference, 227
message, 138, 146

add, 152
model element, 42, 258

delete, 91
move in

reference, 236
move out

reference, 236
move over

reference, 236
moveable

reference, 239
multi-line

reference, 233
multi-state

reference, 232
multi-touch input, 79

N
navigation area

project center, 27, 28
no lighting effect

reference, 228

O
OpenGL ES 2.0, 139, 139
OpenVG 1.1, 139, 139

P
path gesture, 111

reference, 242, 243
pinch gesture

reference, 241
pivot

reference, 250
POSIX signal, 137
problems area

project editor, 31
profile

clone, 150
gtfStartup.cfg, 150

project center, 26, 258
content area, 27
navigation area, 27

project editor, 27, 258
command area, 30, 31
content area, 29
navigation area, 28
problems area, 31

properties panel
command area, 31
project editor, 31

property, 258

Q
quadratic curve

reference, 223

R
rectangle, 80

reference, 219
renderer, 139
resource, 259
resource management, 44
resources

3D graphic, 46

Index

Page 264 of 265

font, 44
image, 45

RomFS, 138
rotary

reference, 239
rotary button

reference, 234
rotation

reference, 249

S
scaling

reference, 250
scene configuration

reference, 216
script curve, 224
shearing

reference, 250
shortcuts, 60
signal, 145
simulation, 129
sinus curve

reference, 223
slow start curve

reference, 222
state, 62, 87, 87, 92, 259

choice state, 65
compound state, 62
entry action, 90
exit action, 91
final state, 64
history state, 66
initial state, 63
view state, 63

state enabled
reference, 230

state focused
reference, 231

state machine, 61, 259
add, 85
comparison to UML, 76
delete, 87

dynamic state machine, 61
execution of state machine, 72
haptic state machine, 61
include state machine, 61, 77
logic state machine, 61
state, 62
transition, 69
UML 2.5 notation, 76

state pressed
references, 232

state selected
reference, 230

state touched, 231
status bar

project editor, 31
system message, 152

T
target, 135
template

create, 110
use, 111

template interface, 110
add property, 110
remove property, 110

text truncation, 229
toggle button

reference, 230
token, 146
touch gesture (see gesture)
touch grab lost

reference, 237
touch input (see gesture)
touch move

reference, 237
touch pressed

reference, 237
touch released

reference, 237
touch screen, 136
touch status changed

reference, 237

Index

Page 265 of 265

transition, 69, 92, 259
action, 96
add, 92
condition, 95
internal, 97
move, 93
trigger, 94

translation
reference, 249

trigger, 94

U
UI, 259
user-defined focus

reference, 234
user-defined property, 106

V
view, 80, 259

add, 98
view port

reference, 248
view widget

reference, 217
virtual layer, 229

W
widget, 79, 259

add, 99
delete, 101
group, 102
position, 99
resize, 100

widget feature
add, 106
remove, 107

widget property, 84
add, 106
EB GUIDE Script, 55
link, 103
link to datapool item, 104
user-defined, 106

widget template, 84, 110
widget template interface, 84
windowed list

datapool item, 41

X
XML, 129

	EB GUIDE documentation
	Table of Contents
	1.About this documentation
	1.1. Target audiences of the user documentation
	1.1.1. Modelers
	1.1.2. System integrators
	1.1.3. Application developers
	1.1.4. Extension developers

	1.2. Structure of user documentation
	1.3. Typography and style conventions
	1.4. Naming conventions

	2.Safe and correct use
	2.1. Intended use
	2.2. Possible misuse

	3.Support
	4.Introduction to EB GUIDE
	4.1. The EB GUIDE product line
	4.2. EB GUIDE Studio
	4.2.1. Modeling HMI behavior
	4.2.2. Modeling HMI appearance
	4.2.3. Handling data
	4.2.4. Exporting the EB GUIDE model

	4.3. EB GUIDE TF

	5.Modeler’s manual
	5.1. Overview
	5.2. Components of the graphical user interface
	5.2.1. Project center
	5.2.1.1. Navigation area
	5.2.1.2. Content area

	5.2.2. Project editor
	5.2.2.1. Navigation area
	5.2.2.2. Content area
	5.2.2.3. Command area
	5.2.2.4. Toolbox
	5.2.2.5. Properties panel
	5.2.2.6. Status bar
	5.2.2.7. Problems area

	5.3. Tutorial: Getting started
	5.3.1. Starting EB GUIDE
	5.3.2. Creating a project
	5.3.3. Modeling HMI behavior
	5.3.4. Modeling HMI appearance
	5.3.5. Starting the simulation

	5.4. Background information
	5.4.1. Animations
	5.4.2. Application programming interface between application and model
	5.4.3. Communication context
	5.4.4. Datapool
	5.4.4.1. Concept
	5.4.4.2. Datapool items
	5.4.4.3. Windowed lists

	5.4.5. EB GUIDE model and EB GUIDE project
	5.4.6. Event handling
	5.4.6.1. Event system
	5.4.6.2. Events

	5.4.7. Languages
	5.4.8. Resource management
	5.4.8.1. Fonts
	5.4.8.2. Images
	5.4.8.2.1. SVG images
	5.4.8.2.2. 9-patch images

	5.4.8.3. 3D graphics

	5.4.9. Scripting language EB GUIDE Script
	5.4.9.1. Capabilities and areas of application
	5.4.9.2. Namespaces and identifiers
	5.4.9.3. Comments
	5.4.9.4. Types
	5.4.9.5. Expressions
	5.4.9.6. Constants and references
	5.4.9.7. Arithmetic and logic expressions
	5.4.9.8. L-values and r-values
	5.4.9.9. Local variables
	5.4.9.10. While loops
	5.4.9.11. If-then-else
	5.4.9.12. Foreign function calls
	5.4.9.13. Datapool access
	5.4.9.14. Widget properties
	5.4.9.15. Lists
	5.4.9.16. Events
	5.4.9.17. String formatting
	5.4.9.18. The standard library

	5.4.10. Shortcuts and icons
	5.4.10.1. Shortcuts
	5.4.10.2. Icons

	5.4.11. State machines and states
	5.4.11.1. State machines
	5.4.11.1.1. Haptic state machine
	5.4.11.1.2. Logic state machine
	5.4.11.1.3. Dynamic state machine

	5.4.11.2. States
	5.4.11.2.1. Compound state
	5.4.11.2.2. View state
	5.4.11.2.3. Initial state
	5.4.11.2.4. Final state
	5.4.11.2.5. Choice state
	5.4.11.2.6. History states

	5.4.11.3. Transitions
	5.4.11.4. Execution of a state machine
	5.4.11.5. EB GUIDE notation in comparison to UML notation
	5.4.11.5.1. Supported elements
	5.4.11.5.2. Not supported elements
	5.4.11.5.3. Deviations

	5.4.12. Touch input
	5.4.12.1. Non-path gestures
	5.4.12.2. Path gestures
	5.4.12.3. Input processing and gestures
	5.4.12.4. Multi-touch input

	5.4.13. Widgets
	5.4.13.1. View widget
	5.4.13.2. Basic widgets
	5.4.13.3. Animations
	5.4.13.4. 3D widgets
	5.4.13.5. Widget properties
	5.4.13.6. Widget templates

	5.5. Modelling HMI behavior
	5.5.1. Modelling a state machine
	5.5.1.1. Adding a state machine
	5.5.1.2. Defining an entry action for a state machine
	5.5.1.3. Defining an exit action for a state machine
	5.5.1.4. Deleting a state machine

	5.5.2. Modelling states
	5.5.2.1. Adding a state
	5.5.2.2. Adding a state to a compound state
	5.5.2.3. Adding a choice state
	5.5.2.4. Defining an entry action for a state
	5.5.2.5. Defining an exit action for a state
	5.5.2.6. Deleting a model element from a state machine

	5.5.3. Connecting states through transitions
	5.5.3.1. Adding a transition between two states
	5.5.3.2. Moving a transition
	5.5.3.3. Defining a trigger for a transition
	5.5.3.4. Adding a condition to a transition
	5.5.3.5. Adding an action to a transition
	5.5.3.6. Adding an internal transition to a state

	5.6. Modeling HMI appearance
	5.6.1. Managing graphical elements
	5.6.1.1. Adding a view
	5.6.1.2. Adding a widget to a view
	5.6.1.3. Positioning a widget
	5.6.1.4. Resizing a widget
	5.6.1.5. Deleting a widget from a view
	5.6.1.6. Adding an image to a view
	5.6.1.7. Grouping widgets
	5.6.1.8. Adding a 3D graphic to a view
	5.6.1.9. Changing the font of a label
	5.6.1.10. Linking between widget properties
	5.6.1.11. Linking a widget property to a datapool item
	5.6.1.12. Adding a user-defined property to a widget
	5.6.1.13. Adding a widget feature
	5.6.1.14. Removing a widget feature

	5.6.2. Adding a language to the EB GUIDE model
	5.6.2.1. Adding a language
	5.6.2.2. Deleting a language

	5.6.3. Re-using an element
	5.6.3.1. Creating a template
	5.6.3.2. Defining the template interface
	5.6.3.3. Using a template

	5.6.4. Tutorial: Modelling a path gesture

	5.7. Handling data
	5.7.1. Adding an event
	5.7.2. Adding a parameter to an event
	5.7.3. Addressing an event
	5.7.4. Deleting an event
	5.7.5. Adding a datapool item
	5.7.6. Establishing external communication
	5.7.7. Linking between datapool items
	5.7.8. Deleting a datapool item

	5.8. Handling a project
	5.8.1. Creating a project
	5.8.2. Opening a project
	5.8.2.1. Opening a project from the file explorer
	5.8.2.2. Opening a project within EB GUIDE Studio

	5.8.3. Saving a project
	5.8.4. Testing and improving an EB GUIDE model
	5.8.4.1. Validating an EB GUIDE model
	5.8.4.2. Starting the simulation

	5.8.5. Exporting a project

	6.System integrator's manual
	6.1. Overview
	6.2. Background information
	6.2.1. Android APK
	6.2.1.1. System requirements
	6.2.1.2. Features of the EB GUIDE TF APK
	6.2.1.3. Description of the EB GUIDE TF APK files
	6.2.1.4. Restrictions
	6.2.1.5. Released APK and custom APK

	6.2.2. Application simulation
	6.2.2.1. Control panels
	6.2.2.2. Application script objects
	6.2.2.3. Communication with the target
	6.2.2.4. Command line mode

	6.2.3. Configuration of touch screen devices
	6.2.4. EB GUIDE TF and C++ exceptions
	6.2.5. EB GUIDE TF and POSIX signals
	6.2.6. Linking EB GUIDE TF statically
	6.2.7. Message handling
	6.2.8. Read-only file system support
	6.2.9. Renderers supported in EB GUIDE
	6.2.10. Software module structure of EB GUIDE TF
	6.2.10.1. Run level and interface management

	6.2.11. The gtfStartup.cfg configuration file
	6.2.11.1. Mapping rule structure
	6.2.11.2. Signals
	6.2.11.3. Actions
	6.2.11.4. Execution order of mapping rules
	6.2.11.5. Example of a gtfStartup.cfg file

	6.2.12. The GtfStartup.exe executable file
	6.2.12.1. Command line parameters
	6.2.12.2. Single instance detection on Windows platforms

	6.3. Configuring profiles
	6.3.1. Cloning a profile
	6.3.2. Adding a library
	6.3.3. Adding messages
	6.3.4. Configuring a display

	6.4. Configuring the system start
	6.4.1. Configuring the system start for operating systems that support shared object files
	6.4.2. Configuring the gtfStartup.cfg file

	6.5. Evaluating memory usage
	6.6. Creating a read-only file system (RomFS) container
	6.7. Starting and connecting EB GUIDE Monitor
	6.8. Using and creating an Android APK for EB GUIDE TF
	6.8.1. Executing an exported EB GUIDE model on Android
	6.8.2. Creating your own Android APK using the template
	6.8.3. Creating your own Android APK from scratch

	7.Application developer's manual
	7.1. Overview
	7.2. Interaction between HMI and applications
	7.2.1. EB GUIDE model
	7.2.2. External event system
	7.2.2.1. Event receipt
	7.2.2.2. Event publication

	7.2.3. Datapool
	7.2.3.1. Internal and external IDs for datapool items
	7.2.3.2. Commitment of datapool items
	7.2.3.3. Update of datapool items
	7.2.3.4. Notifications on value updates for datapool items
	7.2.3.5. Windowed lists

	7.2.4. The main workloop
	7.2.5. Observer patterns and callbacks
	7.2.6. Functors
	7.2.6.1. Initialization of functor templates
	7.2.6.2. GtfFunctorX value behavior
	7.2.6.3. Argument binding with functor objects

	7.2.7. Inter-process communication
	7.2.8. Project specific EB GUIDE Script functions
	7.2.8.1. The EB GUIDE Script run-time stack
	7.2.8.2. The foreign function interface

	7.3. Communicating through a plugin
	7.3.1. Exporting an EB GUIDE model
	7.3.2. Adjusting the gtfStartup.cfg to load the plugin
	7.3.3. Copying the header files of the exported EB GUIDE model
	7.3.4. Writing a plugin
	7.3.5. Copying the resulting DLL file
	7.3.6. Starting the simulation directly with gtfStartup.exe

	8.Extension developer's manual
	8.1. Overview
	8.2. Background information
	8.2.1. Custom effect widgets
	8.2.2. Custom shaders and custom effect API
	8.2.2.1. Custom input parameters: Uniforms
	8.2.2.1.1. Cube maps
	8.2.2.1.2. Interaction of multiple GtfCustomEffect widgets

	8.2.3. Model element descriptors
	8.2.3.1. Property descriptor
	8.2.3.2. Property constant descriptor

	8.2.4. Renderer
	8.2.5. Shaders
	8.2.5.1. Shading languages
	8.2.5.2. Input and output parameters
	8.2.5.3. Default shaders
	8.2.5.4. 2D and 3D default shaders
	8.2.5.5. Touch shaders

	8.2.6. Widget set

	9.References
	9.1. Android
	9.1.1. Android lifecycle management
	9.1.2. File path for models
	9.1.3. Android layout handling
	9.1.4. Android Events

	9.2. Datapool items
	9.3. EB GUIDE Script
	9.3.1. EB GUIDE Script keywords
	9.3.2. EB GUIDE Script operator precedence
	9.3.3. EB GUIDE Script standard library
	9.3.3.1. EB GUIDE Script functions A
	9.3.3.1.1. abs
	9.3.3.1.2. absf
	9.3.3.1.3. acosf
	9.3.3.1.4. animation_before
	9.3.3.1.5. animation_beyond
	9.3.3.1.6. animation_cancel
	9.3.3.1.7. animation_cancel_end
	9.3.3.1.8. animation_cancel_reset
	9.3.3.1.9. animation_pause
	9.3.3.1.10. animation_play
	9.3.3.1.11. animation_reverse
	9.3.3.1.12. animation_running
	9.3.3.1.13. animation_set_time
	9.3.3.1.14. asinf
	9.3.3.1.15. assign_language_ids
	9.3.3.1.16. assign_language_labels
	9.3.3.1.17. atan2f
	9.3.3.1.18. atan2i
	9.3.3.1.19. atanf

	9.3.3.2. EB GUIDE Script functions C - H
	9.3.3.2.1. ceil
	9.3.3.2.2. changeDynamicStateMachinePriority
	9.3.3.2.3. character2unicode
	9.3.3.2.4. clearAllDynamicStateMachines
	9.3.3.2.5. color2string
	9.3.3.2.6. cosf
	9.3.3.2.7. deg2rad
	9.3.3.2.8. expf
	9.3.3.2.9. float2string
	9.3.3.2.10. floor
	9.3.3.2.11. focusNext
	9.3.3.2.12. focusPrevious
	9.3.3.2.13. formatFloat
	9.3.3.2.14. formatInteger
	9.3.3.2.15. getTextHeight
	9.3.3.2.16. getTextLength
	9.3.3.2.17. getTextWidth
	9.3.3.2.18. has_list_window
	9.3.3.2.19. hsba2color

	9.3.3.3. EB GUIDE Script functions I - R
	9.3.3.3.1. int2float
	9.3.3.3.2. int2string
	9.3.3.3.3. language
	9.3.3.3.4. language_of_group
	9.3.3.3.5. localtime_day
	9.3.3.3.6. localtime_hour
	9.3.3.3.7. localtime_minute
	9.3.3.3.8. localtime_month
	9.3.3.3.9. localtime_second
	9.3.3.3.10. localtime_weekday
	9.3.3.3.11. localtime_year
	9.3.3.3.12. log10f
	9.3.3.3.13. logf
	9.3.3.3.14. nearbyint
	9.3.3.3.15. popDynamicStateMachine
	9.3.3.3.16. powf
	9.3.3.3.17. pushDynamicStateMachine
	9.3.3.3.18. rad2deg
	9.3.3.3.19. rand
	9.3.3.3.20. request_runlevel
	9.3.3.3.21. rgba2color
	9.3.3.3.22. round

	9.3.3.4. EB GUIDE Script functions S - W
	9.3.3.4.1. seed_rand
	9.3.3.4.2. sinf
	9.3.3.4.3. sqrtf
	9.3.3.4.4. string2float
	9.3.3.4.5. string2int
	9.3.3.4.6. string2string
	9.3.3.4.7. substring
	9.3.3.4.8. system_time
	9.3.3.4.9. system_time_ms
	9.3.3.4.10. tanf
	9.3.3.4.11. trace_dp
	9.3.3.4.12. trace_string
	9.3.3.4.13. transformToScreenX
	9.3.3.4.14. transformToScreenY
	9.3.3.4.15. transformToWidgetX
	9.3.3.4.16. transformToWidgetY
	9.3.3.4.17. trunc
	9.3.3.4.18. widgetGetChildCount

	9.4. Events
	9.5. Scenes
	9.6. Touch screen types supported by EB GUIDE GTF
	9.7. Widgets
	9.7.1. View widget
	9.7.2. Basic widgets
	9.7.2.1. Label
	9.7.2.2. Rectangle
	9.7.2.3. Image
	9.7.2.4. Container
	9.7.2.5. Instantiator

	9.7.3. Animations
	9.7.3.1. Animation
	9.7.3.2. Constant curves
	9.7.3.3. Fast start curves
	9.7.3.4. Slow start curves
	9.7.3.5. Quadratic curves
	9.7.3.6. Sinus curves
	9.7.3.7. Script curves
	9.7.3.8. Linear curves
	9.7.3.9. Linear interpolation curves

	9.7.4. 3D widgets
	9.7.4.1. 3D graphic
	9.7.4.1.1. Supported 3D graphic formats

	9.7.4.2. Light effect
	9.7.4.3. Material effect
	9.7.4.4. Light and material effect
	9.7.4.5. No lighting effect

	9.8. Widget features
	9.8.1. Common
	9.8.1.1. Virtual layer
	9.8.1.2. Text truncation
	9.8.1.3. Toggle button
	9.8.1.4. State enabled
	9.8.1.5. State selected
	9.8.1.6. State focused
	9.8.1.7. State touched
	9.8.1.8. State pressed
	9.8.1.9. Multi-state
	9.8.1.10. Multi-line
	9.8.1.11. Button group
	9.8.1.12. Rotary button

	9.8.2. Focus
	9.8.2.1. User-defined focus
	9.8.2.2. Auto focus

	9.8.3. Input handling
	9.8.3.1. Move over
	9.8.3.2. Move out
	9.8.3.3. Move in
	9.8.3.4. Touch pressed
	9.8.3.5. Touch released
	9.8.3.6. Touch grab lost
	9.8.3.7. Touch status changed
	9.8.3.8. Touch move
	9.8.3.9. Gestures
	9.8.3.10. Key pressed
	9.8.3.11. Key Unicode
	9.8.3.12. Key released
	9.8.3.13. Key status changed
	9.8.3.14. Rotary
	9.8.3.15. Moveable

	9.8.4. Gestures
	9.8.4.1. Hold gesture
	9.8.4.2. Long hold gesture
	9.8.4.3. Flick gesture
	9.8.4.4. Pinch gesture
	9.8.4.5. Rotate gesture
	9.8.4.6. Path gestures
	9.8.4.6.1. Gesture IDs

	9.8.5. Effects
	9.8.5.1. Border
	9.8.5.2. Coloration

	9.8.6. Layout
	9.8.6.1. Absolute layout
	9.8.6.2. Flow layout
	9.8.6.3. Grid layout
	9.8.6.4. Box layout
	9.8.6.5. List layout
	9.8.6.6. Layout margins

	9.8.7. List management
	9.8.7.1. List index
	9.8.7.2. Line index
	9.8.7.3. Line template index
	9.8.7.4. View port

	9.8.8. Transformations
	9.8.8.1. Translation
	9.8.8.2. Rotation
	9.8.8.3. Scaling
	9.8.8.4. Shearing
	9.8.8.5. Pivot

	10.Installation
	10.1. Background information
	10.1.1. Restrictions
	10.1.2. System requirements

	10.2. Downloading from EB Command
	10.3. Installing EB GUIDE
	10.4. Troubleshooting the installation
	10.4.1. Renderer errors

	10.5. Uninstalling EB GUIDE

	Glossary
	Index

