
 a u t o m o t i v e . e l e k t r o b i t . c o m

for the Automotive Sector
A practical combination

Lean Software Development

2

The Lean Development Model combines agile
methods with lean software development
principles (Fig. 1)

The traditional areas of focus in the automotive
sector such as design, power train, chassis and
safety have been joined by a new element of
differentiation: Customers nowadays expect
the car’s infotainment system to offer them
the same features as their smartphones
and other mobile devices. This is somewhat
problematic because these technologies have
a much shorter development cycle than the car
development prototyping phases.
If a car manufacturer schedules 2 to 3 years
for developing a car the hardware may also be
defined this far in advance. This is different for
the software requirements which will change
drastically till the SOP (Start of Production),
which is irrevocably fixed.

End customers also expect the car they
purchase to have new functions and support
the latest technologies throughout the car’s
lifecycle. So software requirements don’t just
change during the planning phase, but through-
out the entire product lifecycle. At the same
time, it is customary to offer different ranges of
functions and country specific versions based
on the same system. Sequential development
processes such as the waterfall approach and
the V-model are somewhat limited because
they make it impossible to respond quickly and
comprehensively enough to changes.

Continuous car software upgrades of the
headunit also means that hardware require-
ments will be higher at SOP than they were at
the outset of the design process. It is far more
practical to develop software that is reduced to
the specific requirements rather than a large
generic framework to prevent an excessive
burden on computing power. This makes code
refactoring necessary, e.g. removing the code
for obsolete requirements. Only software that
is developed according to KISS (Keep It Simple
and Stupid) and Clean Code principles will have
long-term maintainability and be less suscep-
tible to new errors. To avoid regression, it is
essential to use automated test frameworks.

All these are aspects of agile software develop-
ment which make it interesting for the automo-
tive industry. The Lean Development Model is
a combination of agile and lean principles that
is specifically tailored to automotive software
development. From a project and team
management perspective, it mainly consists of
Scrum and Kanban aspects. Additional methods
from extreme programming (XP) are applied
to support the software development process
(see Fig. 1). So how did the Lean Development
Model come about?

Agile and lean principles are firmly established in today’s software development industry. However,
despite having been one of the lean manufacturing pioneers, the automotive sector has been slow to
apply the same principles to software development, where the delivery of defined work packages
to a specific deadline is still the norm. As a result, it is becoming increasingly difficult to satisfy
the automobile manufacturers’ current software requirements. The Lean Development Model
overcomes this challenge by combining various lean development methods.

LDM: Lean and Agile Best Practices

Lean
• Muda - Eliminate waste
• Muri - Avoid overload

• Mura - Avoid irregularities in processes

LDM-Scrum
• Scrum Board
• Backlog/ Sprint Backlog
• Planning Poker
• Review meeting

LDM-Kanban
• Kanban Board
• Work in Progress Limits
• Maximize throughput

Daily Standup Meeting
customer involvement

Definition of Done
iterative approach

User Stories
pull instead of push

retrospectives
(Scrum-)Master

Development methods (XP, ...)
Pair Programming
Unit testing/TDD

Refactoring
Continuous Integration & Delivery

sustainable pace

Feature development Integration
and maintenance

 Lean Software Development for the Automotive Sector . A practical combination

3

In 2008 Elektrobit Automotive introduced
Scrum to organize the development of features
for an infotainment system. This incremental
development approach with fixed-length
sprints delivered positive results because it
made the timely and regular involvement of the
client - a US automobile manufacturer - in the
development process possible.

When the feature development was nearly
finished, the focus shifted to the stabilization
and optimization of the integrated system.
However, new errors and the resulting change
in priorities, plus the fact that the experts had
different workloads, made reliable planning at
the start of each sprint difficult. As a result of
this, the team switched over to the Kanban soft-
ware development method, which was far more
suitable for stabilization and optimization work.

In a later phase additional features needed to
be implemented. Instead of switching back from
established Kanban to Scrum, the team decided
to combine both methods. Task tickets were
combined into stories representing one feature
of the infotainment system. This granularity
makes it possible to prioritize stories in the
backlog in consultation with the customer.
The team then work their way through the
tickets until the story can be delivered to the
customer.

This method was initially only used locally,
because the team was predominantly based in
Germany and the development process could
be coordinated on a simple board. As the team
expanded and became less localized, additional
tools such as JIRA were used to permit the
cross-site coordination of the entire project.

The reference project

A team of around 75 developers and testers uses LDM in a
software development and integration project. They work at

four sites in the USA, Germany and China and are responsible
for the integration of supplied components and the develop-

ment of features. Team members with more than 15 different
nationalities were chosen because they are able to implement

the requirements of the various international markets more
efficiently. The use of native speakers is extremely valuable in

the development and testing of text-to-speech as well as voice
recognition functions because bugs can be prevented or at

least identified faster.

Since this is a project with a duration of more than seven
years and international assignment, many hardware variants

have to be supported. This poses special challenges in the
area of configuration and build management.

From Scrum and Kanban
to the Lean Development Model

 Lean Software Development for the Automotive Sector . A practical combination

4

In the Lean Development Model, the agile
method of prioritizing a backlog replaces the
traditional detailed planning of all resources.
The tasks are not assigned in advance by the
project manager. Instead the team pulls them
into the next workflow step (pull rather than
push) (Fig. 2). The focus is clearly on maxim-
izing throughput.

The limitation of the number of work packages
in each workflow step prevents the generation
of more interim products in earlier steps than
can be processed in later steps. Tasks that have
commenced, i.e. tickets, have to be completed
before new ones can be started. Every member
of the team is responsible for ensuring that
there is no stagnation.

For cycle time, which has to be optimized,
breaks or pauses are non-deductible. For
example, if a ticket is blocked because it is
necessary to wait for customer feedback, the
clock continues ticking. If a developer changes
the code base, he is responsible for the ticket
until the change has been validated via the
continuous integration tool chain. No further
changes are allowed to be implemented until 	
a potential bug has been eliminated.

This procedure enables daily deliveries to the
customer at an early stage of the development
process. A selected version of the software is
validated by a smoke test and delivered with
the test result. As a result the software status
is always transparent and tangible for the
customer. This enables the customer to provide
feedback for the continuous improvement of
specifications and implementation.

The Kanban flow
Ready for pull Ongoing work

Todo
1st

Analyze &
prepare

Preparation

Todo
2nd

Analyze &
prep. done

Review/
Approval

In
progress

Implementation

Coding
done

ReviewPrepared

Testing

Testing

Testing
done

ReviewNeeds
testing

Merging

Finalization

Resolved ClosedReady to
merge

The team independently pulls the tasks into
the next workflow step (Fig. 2)

1. Deliver as fast as possible
The Lean Development Model primarily follows seven principles:

 Lean Software Development for the Automotive Sector . A practical combination

5

The Definition of Done (DoD) is crucial for qual-
ity assurance and is defined by the team at the
outset of the development process. The team
decides which steps are necessary to imple-
ment a user story, for example when changes
have to be integrated. These changes have to
be implemented following all defined steps
as well as being documented and verified by
reviews. When a change is handed over to the
test team, any new or modified code already
had to pass numerous unit tests designed by
the developers. This is done to ensure that the
change has no errors at the time of hand over.

This also makes the timely identification of
issues possible. The higher the degree of
automation, the faster bugs and regressions
can be found. The tests are scaled according to
project phase and type of delivery:

	 daily smoke tests for the daily delivery,
	 focussed testing for engineering drops,
	 integration tests for key 			

	 milestone deliveries,
	 long-term validation tests for the SOP and
	 continuous unit tests as an aspect of 	

	 continuous integration.

A defined sequence of test steps guarantees
the quality of new and modified code. (Fig. 3)

The automation is controlled by the Jenkins
continuous integration tool. Integrated test
frameworks allow the simulation of interactions
and the proper presentation of results for
the testers and developers. The developers
get direct feedback on static code analysis
and unit tests, as well as test coverage. Sonar
evaluations (SonarQube) are a valuable source
of support to architects, project managers and
test managers. Metrics for Lint warnings, dupli-
cation and complexity, and the SIG Maintenance
Model, (http://www.sig.eu/en/Research/690.
html) make it easier to keep an overview.

Repository Integration
Tool

Build Code
Analysis

Test
Automation

Deployment

The course for successful testing is set right
at the beginning. Design improvements and
architecture stability are achieved by compli-
ance with Design For Testability (DFT) and
Test Driven Development (TDD) principles with
refactoring.

2. Build integrity in

 Lean Software Development for the Automotive Sector . A practical combination

6

In all long-term software projects, the initial
plan is soon rendered obsolete by changed
requirements and frameworks. It therefore has
to be updated throughout the entire project.
At the beginning of each iteration it is neces-
sary to agree on all requirements in terms
of content so that the story teams can plan it
in detail. Requirements for future iterations
are kept diffuse to ensure that the team can
respond flexibly to changes. Assumptions made
at the start of the project often have to be
revised. Definitions for architecture and design
should only be made if they are necessary
for the next steps. The objective is to avoid
expensive dead ends and keep options open so
that the system can be adapted when precise
information becomes available. Optimizations
are implemented as late as possible. The
software architecture and test coverage have
to support regular refactoring.

To optimally utilize team resources, the team
always concentrates on the feature set which
is required at any one time. Work-in-progress
(WiP) limits for every team member and each
workflow step prevent too many things being
worked on simultaneously. This reduces change
times, hand-over losses and the error rate.
Semi-finished functionality, which is considered
as waste at the time of delivery, can also be
avoided in this way.

Errors can never be completely ruled out.
Therefore the work process has to be geared 	
to the earliest possible identification of bugs 	
to minimize the development of erroneous
functions and waste of time. It is equally
important to discard features that are no
longer required. Over engineering and rushed
implementation based on assumptions shall
be avoided. Besides reducing the development
time, this also reduces the efforts for main-
tenance and testing.

The seven kinds of waste in software development (Fig. 4)

Not all suppliers work iteratively. The integra-
tion of their updated components has to be
followed by a stabilization phase. In this phase,
all tickets are prioritized not in priorization
levels but in a distinct order – the ticket
backlog. The planned target for the next itera-
tion, and therefore the number of tickets to be
processed, is calculated on the basis of metrics
such as cycle time and new ticket inflow. A high
priority ticket may necessitate the adaptation
of the content of an iteration.

Code to stock

Task Switching
Waiting /

Delay

Handoff/
Conveyance

Overproduction

Defects

Overprocessing
3. Decide as late as possible

4. Eliminate waste

 Lean Software Development for the Automotive Sector . A practical combination

7

Team work is based on self-determination,
motivation and commitment to a common
objective. The focus is on the individual and 	
his competencies, not the human resource. 	
The team continuously adapts the development
process more or less independently, e.g. by
holding retrospectives.

The team communication is supported by a
visualization of the workflow on a magnetic 	
wall board (Fig. 5).

When the team members work at different
locations, they have local boards that are
synchronized with an electronic overview. 	
The project manager puts the high priority
work packages in the to-do column. The next
free member of a story team then ‘pulls’ the
ticket. He or she tags it with one of his two
magnets (personal WiP limit) on the board. 	
If both personal magnets are already in use,
the open tickets have to be finished first or
passed on to a colleague (Fig. 6).

The physical board helps the local teams to
keep an overview. If there are any unresolved
issues or findings, the team member marks the
ticket with a ‘talk about me’-magnet. 		
The team addresses the tagged tickets at the
daily stand-up meeting. More detailed discus-
sions may follow within smaller groups.

When features are being developed the story
teams that perform all the tasks in a user story
are dynamically formed. The stories, which
are an aspect of Scrum, also help the teams to
keep an overview in Kanban. Teams are inter-
disciplinary and include software architects,
testers and developers. At the daily stand-up
meeting team members take turns to report on
the story’s current status. This ensures that all
team members are equally involved.

A 10 m² magnetic board supports team communication (Fig. 5).

Personalized magnets prevent team members from taking on too much work (Fig. 6).

5. Empower the team

 Lean Software Development for the Automotive Sector . A practical combination

8

Kaizen (Japanese for "change for the best”),
a concept of continuous improvement, is a
central aspect of Lean Development. Problems
are addressed at the daily stand-up meetings
and then discussed and resolved in smaller
groups. If necessary, the documented rules
are adapted to prevent problems reoccurring.
The team retrospectives are used to review
the course of the project and identify best
practices as well as improvement measures.
This ensures a stable project progress while
applying any necessary changes incrementally.
Work processes, such as the “Definition of
Done”, are always documented and prominently
displayed for all team members.

Pair programming and reviews, plus an
in-house Wiki, enable the regular exchange of
project knowledge and technical know-how.
Furthermore Elektrobit has an in-house
academy to support knowledge transfer where
anyone can be a participant as well as a trainer.

In this project, Elektrobit is responsible for
the entire system as integrator. However, even
in projects where responsibility is only taken
partially, it is important to keep an overview at
all times. The interaction of all components is
what creates the impression the end customer
will have in the car. It is therefore important
to test the software not only in a lab environ-
ment on development equipment but also in
the car, both on a test track and in everyday
driving situations. This not only identifies bugs
but also shows possible usability optimizations
for the carmaker. Usability is one of the most
important customer satisfaction criteria
[http://autos.jdpower.com/ratings/].

7. See the whole

6. Amplify learning

 Lean Software Development for the Automotive Sector . A practical combination

9

Over the course of the project it became
evident that none of the lean methods alone
adequately addressed all aspects necessary
for a successful development of embedded
software. However, this custom combination of
suitable methods and their continuous adapta-
tion to project requirements enabled the team
to increase transparency during the develop-
ment process and identify problems earlier.

Christian Hausner

is Project Manager at Elektrobit Automotive
GmbH. He is a certified Scrum Master and
managed projects for various automotive
manufacturers. He supports international
projects in applying agile project management
methods.

Using the Lean Development Model, the car
manufacturer gets far more involved in the
software development. Instead of receiving
finished work packages on pre-defined dates,
the customer gets daily insights into the devel-
opment progress and may propose adaptations
or suggest new ideas at any time. The resulting
infotainment system satisfies the entertainment
electronics requirements, not just the ones that
were defined at the beginning of the project.

Martin Dusch

is Team Manager at Elektrobit Automotive
GmbH. He has been a developer and project
manager and worked in quality and knowledge
management since 2002. As a certified Scrum
Master, he has been involved in agile software
development for more than five years.

Conclusion

 Lean Software Development for the Automotive Sector . A practical combination

 automotive.elektrobit.com

Global presence

Beijing � Shanghai China

 Paris (Carri�res-sur-Seine) France

 Tokyo Japan

 Vienna Austria

 Bothell (WA) . Farmington Hills (MI) USA

 Boeblingen . Brunswick . Erlangen . Ingolstadt . Radolfzell . Munich . Ulm Germany

 Brasov Romania

About EB Automotive

EB Automotive is recognized internationally as one of the most important 	
suppliers of embedded software solutions in the automotive industry. 			
In addition to the development of products, EB Automotive also specializes 		
in services and consulting for the automotive industry, supplying implemen-	
tations of software solutions for a broad range of AUTOSAR and FlexRay, 	
functional safety, infotainment, navigation, HMI and driver assistance systems.
EB continues to invest in feature integration and development tools ensuring
in-vehicle devices ship in volume earlier and arrive quickly to market.

Elektrobit Automotive GmbH
Am Wolfsmantel 46
91058 Erlangen, Germany
Phone: +49 9131 7701 0
Fax: +49 9131 7701 6333
automotive.elektrobit.com

